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Abstract

The intermittency of solar energy, due to occlusion from cloud cover, is one of the key factors inhibit-

ing its widespread use in commercial, residential, and utility-scale settings. Hence, real-time forecasting

of solar irradiance for grid-connected photovoltaic (PV) systems is necessary to mitigate voltage fluctua-

tions, limited time to adjust between energy sources and ultimately, energy disruptions.

Images of the sky provide rich context of cloud patterns around a localized PV site and if these

images are captured in sequence, provide a copious amount of data for inference. The stochastic nature

of the trajectory of cloud patterns are very difficult to forecast which in-turn makes foresight into when

solar energy will decrease, difficult. However, by leveraging learning-based frameworks coupled with

other sources of data such as global horizontal irradiance (GHI), we open the world of solar irradiance

forecasting to the field of computational imaging to increase forecasting accuracy and present an exciting

advance to state-of-the-art methods.

Limitations of traditional solar irradiance forecasting methods using sky images initially stem from

limitations of the imaging systems themselves. Existing imagers provide non-uniform spatial resolution

of the sky with a higher detail and resolution at the zenith and significantly lower-resolution near the

horizon – severely limiting long-term prediction. To that end, we make the following contributions to the

theory, hardware, and algorithms of computational imaging for long-term solar irradiance forecasting are

made.

Initially, we present a learning-based framework that forecasts future sky image frames with higher

precision than previous methods. Our key contribution within this work is the derivation of an optimal

warping algorithm that counters the adverse effects of non-uniform spatial resolution present in traditional

sky imagers. We show that by warping these images to a new space, the model more accurately deter-

mines cloud evolution for longer time horizons. Secondly, we present a catadioptric imaging system that

maintains wide-angle imagery and uniform spatial resolution of the sky without the need of any warping-

based algorithms. This catadioptric system optically redistributes pixels without the need of any digital

warping which preserves resolution and accurate pixel information. Finally, we present both learning and

non-learning based algorithms that exploit the benefit of our catadioptric imaging system which achieves

accurate long-term prediction of solar irradiance and sun occlusion by clouds.

Together, these contributions provide a fundamental advance to solar irradiance forecasting using core

computational imaging.

v
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1Introduction

The sky is the daily bread of the eye.

— Ralph Waldo Emerson

As the increase of concern in global warming and environmental pollution increases, there has been

a large push towards utilizing more clean energy solutions within the electricity grid. Solar energy is a

viable solution due to the abundant and available sun which can be harnessed as a clean energy source.

Therefore, at this turning point of energy generation, solar energy is stemming its way towards the fore-

front of this push.

In the first quarter of 2024 alone, the United States (US) solar energy market has installed 11.8

gigawatts-direct current (GWdc) capacity with the utility-scale segment attributing to a large portion of

that total at 9.8 GWdc; the second best quarter for this segment. PV energy accounts for 75% (Figure 1.1)

of electricity-generating capacity additions within this quarter and will continue to rise within the years

to come [Davis et al., 2024].

Solar energy is generated from solar irradiance, the output of light energy from the sun measured at

a location on Earth, which is converted to usable energy through the use of photovoltaic (PV) devices.

Increasing the penetration of solar generation into the electricity grid, however, has been deemed difficult

due to intermittent weather changes around a localized PV site. In particular, cloud occlusion of the sun,

which scatters or absorbs the sun’s rays, drastically decreases the amount of available solar irradiance that

reaches PV sites at ground level [Alados-Arboledas et al., 1995, Wielicki et al., 1995]. Cloud cover and

factors such as shape, vertical depth, and trajectory are stochastic by nature and influenced by complex

global interactions that are very difficult to forecast. This random nature of cloud factors lead to large

fluctuations in the availability of solar irradiance and as a result, the output power is prone to fluctuations

and uncertainly which poses a challenge for grid operators when balancing the demand for energy versus

consumption. Figure 1.2 shows how significant solar irradiance can fluctuate within a short window of
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Figure 1.1: Photovoltaic availability. From left to right: Total US PV installations from 2014 to present

along with future predictions to 2029. US electricity-generation additions from 2010 to Q1 2024 [Davis

et al., 2024].

time due to cloud occlusion.

Failure to maintain stable operation across the grid leads to voltage and frequency fluctuations, limited

time to adjust between energy sources, and ultimately energy disruptions [Diagne et al., 2013, Impram

et al., 2020, Infield and Freris, 2020, Kumar et al., 2016]. In fact, studies suggest that many of the

available regulation equipment is not capable of mitigating the adverse effects of PV intermittency. The

development of complex power inverters with the use of sophisticated forecasting and monitoring systems

is needed to maintain grid stability while incorporating PV power [Eftekharnejad et al., 2013]. Further-

more, downstream tasks for grid components such as the charging and discharging of a connected solar

battery for energy storage, can be improved through optimal scheduling via irradiance forecasting. This

can lead to improved self consumption maximization of these components. As one can see - solar en-

ergy is invariably intermittent, posing a significant challenge in its full integration and wide-spread usage

within the electricity grid [S. Sayeef and Rowe, 2012, Sovacool, 2009]. How do we increase the use of

solar generation into the electricity grid while preventing system downtime due to random weather fluctu-

ations? My thesis presents various computational imaging and learning-based methods that answers this

question in an attempt to accurately forecast solar irradiance.

Images of the sky provide rich context of cloud patterns around a localized PV site and if these images

are captured in sequence, provide a copious amount of data for inference. These images are traditionally

captured by ground-based cameras with a large field-of-view (FOV) via a fisheye lens or hemispherical

mirror. These imagers provide non-uniform spatial resolution of the sky with a higher detail and resolution

at the zenith and significantly lower-resolution near the horizon. As a result the apparent motion of clouds

within these images are non-uniform; large at the zenith and compressed at the periphery (Figure 1.3).
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Figure 1.2: GHI variability. On the left, we show GHI values over a full day. The excerpt figure on

the right shows the variability of GHI within a short time window. In less than a minute, GHI decreases

about 1000𝑊 /𝑚2 and remains low for a few minutes. The inability to forecast this phenomena can lead

to balancing issues between demand and consumption and ultimately energy disruptions.

The motion of clouds at the periphery is vital because it builds on the future evolution of their trajectory.

Optical flow and learning-based algorithms therefore suffer when attempting to make a prediction of cloud

evolution due to this non-linear apparent motion present in traditional imagers. The affect of this is shown

in previous works where accurate predictions are only made within very short forecasting windows (e.g.

a few minutes) [Andrianakos et al., 2019a, Kato and Nakagawa, 2020, Le Guen and Thome, 2020, Nie

et al., 2024]. To that end, this thesis aims to increase long-term prediction of solar irradiance forecasting

using computational imaging.

1.1 Thesis Contribution

This thesis makes the following contributions to improve solar irradiance forecasting:

• Precise Forecasting of Sky Images Using Spatial Warping (Chapter 3). To address the limitations of

traditional sky imagers, why not bring the original image to a new space where we can obtain uniform

apparent motion? That’s exactly what this chapter proposes. We present a spatial warping algorithm

that takes the image and warps it to a new space that ensures that clouds further from the zenith of

the hemispherical mirror have similar apparent motion to those in the periphery. By doing this during

training time, we are able to show that we can obtain longer forecasting of cloud evolution.

• A Catadioptric Sky Imaging System (Chapter 4) Digitally warping traditional sky images does in-

deed help in forecasting, but we can take this one step further and optically warp these images instead.
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Figure 1.3: Sky image samples. (First 3) samples of sky images captured from the National Renewable

Energy Laboratory (NREL) whole sky imager (WSI) [Andreas and Stoffel, 1981]. (Last) simulated image

of a hemispherical imager with a large checkerboard placed in its FOV. This image shows the resulting

affect of the non-linearity present when using these imagers.

In this chapter, A novel computational sky imaging system is developed and deployed that utilizes a

catadioptric system of a hyperboloidal-shaped mirror. The benefits of this system with the optimal mir-

ror shape profile is that it provides a uniform spatial resolution of the sky (for each height), over the

entire field of view of the device. We are able to use these captured images to build a large dataset of

images for inference.

• Algorithms For Long-Term Forecasting (Chapter 5) We show the benefits of utilizing our hyperboloidal-

shaped imaging system for long-term solar irradiance forecasting via a suite of learning and non-

learning based algorithms.

1.2 Thesis Structure

The remainder of this thesis is structured in the following way: In chapter 2, I delve into the topic thor-

oughly by presenting the background of solar irradiance forecasting. This includes discussing traditional

data capture devices, forecasting methods, as well as limitations and key challenges in long-term fore-

casting of solar irradiance. Chapter 3-5 discussed the presented contributions. In chapter 6, I expound on

the results of the contributions that is presented within this thesis. I also present possible future directions

to take within the scope of solar irradiance forecasting using sky images.



2Background

Within this thesis, I focus on the main contribution of the intermittency in solar generation which is cloud

occlusion of the sun. By turning this into an imaging problem, we can use periodically captured images

of the sky to gain inference on atmospheric factors that affect the amount of solar irradiance reached at

ground-level PV systems. This chapter discusses the basics of sky imagery along with traditional methods

used to analyze sky conditions and perform accurate forecasts of solar irradiance.

2.1 The Importance of Solar Irradiance Forecasting

Before introducing methods that use information from sky images to accurately forecast solar irradiance,

we need to discuss why this forecasting is necessary.

Meeting electricity grid demands. Balancing demand versus consumption is vital for electricity grid

operators to ensure no system downtime and power outages for consumers. Integrating solar energy into

the grid challenges this requirement due to the intermittency of solar power which is influenced by cloud

occlusion of the sun. Fluctuations in solar output can lead to suboptimal grid decisions which can be

mitigated by irradiance forecasting that provides critical insights into solar energy’s impact on the grid.

In-turn, this allows for better management of electricity loads, storage, and backup generation. Also, by

knowing the availability of power long into the future, operators are able to ramp up other energy sources

to meet demand [Gowrisankaran et al., 2016].

Alternative energy. Other forms of power (e.g. gas and hydrothermal turbines) require tens of min-

utes, if not hours, to warm up for full use and leaving them running, even in a low-powered state, is

wasteful. Without solar forecasting, sufficient reserve capacity must be maintained to cover significant

fluctuations in solar generation. This may lead to operating conditions where conventional generators

are maintained and operated at inefficient partial load states to cover the loss of unscheduled generation
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capacity [West et al., 2014]. Therefore, accurate forecasting knowledge of available power is necessary

to balance demand and consumption for grid operators [Dixon et al., 2022].

Stability. Solar power brings new challenges within the electricity grid. These challenges: poor voltage

regulation, long recovery times from voltage dips, and protection failures affect the stability of the grid and

is caused by the intermittency of solar power. While energy storage techniques such as battery storage,

ultra-capacitors, fuel cells, and flywheels help smooth this voltage fluctuations within the grid, they also

raise costs substantially. A proactive approach is to use solar forecasts to manage fluctuations and limit

the need for extensive storage capacity [Saleh et al., 2018]. Using irradiance forecasts to dynamically

adjust inverter output has been shown to improve voltage regulation in a smart grid environment [Ghosh

et al., 2017].

Storage. Indeed, the question of "why not store unused energy in batteries?" pops up. It is a valid

solution which, if it was a complete solution would null this thesis, can be tricky when integrating within

the electricity grid. Take a mobile phone with a battery for example. The battery discharges, you charge it

again, and the cycle repeats for the life of the device. Over time, the quality of the battery decreases and it

either does not hold full charge, it discharges quickly, or both. Recently, with the goal prolonging battery

life in mind, mobile phone manufacturers have developed software for optimized charging strategies based

on when users charge their phone and how they use it. With the image of a very relatable example in your

head, adapt that same principle to PV sites with extra energy stored in batteries, increased by a scale factor

of 10. Solar irradiance forecasting is needed for optimized charging and discharging of PV components,

prolonging their longevity, and for the overall preservation of resources [Berrada and Loudiyi, 2016, K

et al., 2023, Modi et al., 2024].

On the aside, for large-scale utility grids, storing large amounts of energy requires large batteries

which is expensive and takes up a significant amount of space. For example, a large-sized battery storage

system providing 500 Megawatts (MW) of power for 4 hours has a storage capacity of 2,000 Mega-watt-

hours (MWh). The average battery cost of a system this size is $470 per kilowatt hour (kWh) resulting in

a total of about $900 million. A significant cost to deploy and maintain long-term.

2.2 Sky Imaging Systems

Acquisition of sky images for solar irradiance forecasting comes in 2-fold. They be can captured from a

top-down view using a satellite or a bottom-up view using ground based imagers looking up towards the

sky. There are advantages and disadvantages of each acquisition approach. Satellite-based imagery has a
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Figure 2.1: Total Sky Imager. (Left) a Total Sky Imager (TSI) [Victor, 2005]. (Right-top) sample

images from a TSI. (Right-bottom) Specifications of the TSI.

larger spatial coverage, often over kilometer (km) scales, with constant persistence. However, they suffer

from low temporal resolution; often capturing images every 30 minutes. There is also a data latency when

sending captured images to be processed on Earth. Deploying and maintaining satellites are costly as well,

although there are some publicly available datasets for use. Compared to satellites, ground-based imagery

is cost-effective, has a high temporal resolution, and captures localized data around a PV site to accurately

forecast irradiance. However, ground-based sky imagers have limited coverage determined by the shape

of the lens; limiting prediction ranges. They are also high susceptible to local weather conditions such as

rain and snow which inhibits any form of acquisition. For this thesis, I focus on ground-based imagery

for accurate localized solar irradiance forecasts.

Ground-based devices used to capture images of the sky - often dubbed Sky Imagers - encompass

a fisheye lens [Cazorla et al., 2008, Kleissl et al., [n.d.]] or a catadioptric (see below) combination of

cameras and mirrors [Victor, 2005]. These are wide FoV images captured in regular intervals. The

imagers also have additional features such as a shadow-band to prevent over-saturation by the sun in the

image and prevent damage to the camera sensor. Figure 2.1 shows an example of a Total Sky Imager

(TSI).
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Catadioptric Imaging. Catadioptric imagers which utilizes the reflective nature of mirrors during the

image acquisition process are designed such that their shape can achieve various tasks. Baker and Nayar

have extensively studied the family of these shapes [Baker and Nayar, 1998]. The shape of the mirror

(hemispherical, planer, parabolic, etc.) affects the effective viewpoint, FOV, resolution, and manufactura-

bility of the mirror. Overall, a catadioptric setup is a great way to increase the customizability of a sky

imaging setup.

Key Challenges. An apparent limitation of these imagers is the non-linear fisheye distortion introduced

which affects clouds motion estimates for trajectory predictions. The further-out clouds attenuate evolu-

tion over time and their prior motion estimates attribute to longer forecasting horizons. These sky imagers,

either from a traditional RGB camera with a fisheye lens or a catadioptric setup, capture images in regular

intervals. The need of the fisheye lens/hemispherical mirror is to capture a wide angle (about 180◦) sky

image with a single shot. These existing setups are not sufficient for accurate long-term prediction of

cloud evolution due to the limitation of the imager.

Obtaining a 180◦ (FoV) photograph results in a highly nonlinear mapping between the sky and the

image. As shown in Figure 1.3, objects in the periphery are heavily compressed compared to those at

the zenith. This makes motion modeling near the horizon fragile to small perturbation. This problem is

exacerbated by optical flow estimation, which is hard to perform on cloud imagery that lack high-contrast

textures. The resulting flow estimates are inherently fragile, especially near the horizon. While enforcing

smoothness priors on the flow estimates often leads to robustness especially at the zenith, they tend to

make the flow at the horizon nearly zero. Hence, the nonlinear spatial resolution is not conducive for

predicting cloud evolution over longer time horizons

By addressing how these images are captured along with improving methods for predicting sun oc-

clusion and irradiance values, we can make better long-term predictions.

2.3 Irradiance

Irradiance is the measure of energy per unit area expressed in watts per meter-squared (𝑊 /𝑚2) on the

ground. Irradiance can be scattered through the atmosphere or through clouds before reaching the ground.

This is referred to as diffuse irradiance (DI). The irradiance directly coming from the sun is called direct

normal irradiance (DNI) and is a measure of the beam radiation through a plane perpendicular to the

direction of the sun. The total amount of irradiance from the sun that hits the ground is global horizontal

irradiance (GHI). GHI is the summation of diffuse and direct irradiance incident on a horizontal surface
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Figure 2.2: Pyranometer. A thermopile pyranometer which measures GHI in units of watts per meter-

squared (𝑊 /𝑚2).

represented via equation 2.1 where 𝑧 is the solar zenith angle [Stein et al., 2012].

𝐺𝐻𝐼 = 𝐷𝐼 + 𝐷𝑁𝐼 · cos(𝑧) (2.1)

GHI is measured using a pyranometer (Figure 2.2). A pyranometer is used on a planar surface and

measures GHI (direct and diffuse) within a wavelength range of 0.3 𝜇𝑚 and 3 𝜇𝑚. The thermopile pyra-

nometer used for this thesis is a sensor based on thermopiles designed to measure the broad band of the

solar radiation flux density from a 180◦ FOV. The difference between the pyranometer output and PV

output should be noted. GHI measures the available solar energy, while PV output measures the electrical

energy produced via solar energy. PV output is affected by factors such as temperature, panel orientation,

and efficiency. Compared to Figure 1.2 that shows the variability of GHI under cloudy conditions, Figure

2.3 shows GHI under a clear sky day.

Now that the foundation of sky imaging has been laid, we go into methods of forecasting both sky

images and GHI along with the methods used to increase predictions.

2.4 Sky Image Forecasting

Non-learning forecasting. Sky image forecasting is the process of predicting future sky image(s) based

on a sequence of past frames. These algorithms seek to understand and predict the evolution and trajec-

tory of clouds within these images. Non-learning based image forecasts primarily use motion estimation

techniques such as optical-flow based methods, block matching, particle image velocimetry (PIV), or

correlation-based methods [Chow et al., 2015, 2011, Chu et al., 2013, Huang et al., 2013]. Solely using
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Figure 2.3: Clear sky GHI. We GHI values over a full day with minimum to no clouds. Notice how

smooth the curve of GHI values are when clouds are not present.

motion estimation techniques to model cloud dynamics has immediate consequences due to the vari-

ability and constant changing of shape of clouds which makes forecasting their trajectory difficult. For

example, accurate short-term forecasts, approximately 1 min, using block-matching based estimation, be-

come increasingly difficult when complex cloud dynamics are involved. Predicting long-term poses an

even greater challenge and results in severe degradation. More recent methods have seen better success

by incorporating deep learning methods, coupled with motion estimation, to model cloud dynamics and

evolution in sky images.

Learning-based forecasting. Learning-based forecasting methods improve upon traditional motion-

based estimation by tasking machine and deep learning frameworks to learn a representation capable of

forecasting solar irradiance using sky images. In particular, the model 𝑓𝜃 learns a mapping between sky

images at past time instances [𝐼𝑡−𝑁 , . . . , 𝐼𝑡−1, 𝐼𝑡 ] and future sky image frames
[
𝐼𝑡+1, . . . , 𝐼𝑡+𝑁

]
or irradiance

values
[
𝐺𝑡+1, . . . ,𝐺𝑡+𝑁

]
. Initial works used a convolutional neural network (CNN) as this framework

[Crisosto et al., 2021, Feng et al., 2022, Jiang et al., 2020, Paletta and Lasenby, 2020a,b, Sun et al.,

2019] to predict a sky image frame or solar irradiance value. Recurrent models (e.g. RNN and LSTM)

have also been used to assist in modeling the temporal dynamics between the sequence of frames [Kato

and Nakagawa, 2020]. More recent works have explored using a generative adversarial network (GAN)

[Andrianakos et al., 2019b, Nie et al., 2023], modeling the physical dynamics to enhance cloud motion
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analysis [Le Guen and Thome, 2020], and even transformer models [Demir et al., 2022, Liu et al., 2023,

Mercier et al., 2023, Pospichal et al., 2022, Zhang et al., 2024]. Each of these models have their unique

benefits when forecasting irradiance or a subsequent sky image. Due to the lack of a unified dataset or

benchmarks for solar irradiance forecasting, it can be difficult comparing models and prediction results –

especially when these models are trained on sky images captured from different regions. Each location

has their own unique set of weather pattens which may not be transferable to a new location when using

a learned model.

Nowcasting is a popular approach used in forecasting solar irradiance. It works by using a learning

framework to initially forecast a sky image frame. That predicted image is then passed through another

model that estimates the solar irradiance value based on the current cloud conditions within the image

[Gao and Liu, 2022, Nouri et al., 2023, Song et al., 2022].

Sky image understanding. To aid in forecasting solar irradiance, there are numerous methods that seek

to understand the semantics and dynamics within the scene to increase accuracy. Segmentation is a widely

used method to differentiate between pixels corresponding to a cloud, the sky, or the sun [Dev et al., 2019,

Li et al., 2011, Liu et al., 2015, Xie et al., 2019]. These segmented pixels assist in modeling the motion

of clouds in a sequence of frames and remove unnecessary information within the sky image. However,

segmentation is often difficult due to thin and opaque clouds which is difficult to differentiate between

sky and cloud pixels. Also the decision on how to handle overlapping clouds at different heights makes

segmentation even more difficult.

Sun location identification within sky images is also necessary for some tasks. This can be done by

using intensity based identification where the brightest pixel is classified as the location of the sun [Paletta

and Lasenby, 2020c]. Using the camera information along with the location of the sun in the real-world

relative to the sky imager is another method. However, this method cannot be used when information

about the imager is unavailable. Using infrared cameras is also a promising approach due to the imagers

ability to overcome saturation by the sun [Niccolai and Nespoli, 2020].

2.5 GHI Forecasting

Some methods only use GHI and bypass incorporating sky imagery into the forecasting pipeline [Almar-

zooqi et al., 2024, Alzahrani et al., 2017, Jailani et al., 2023]. This essentially becomes a time-series

forecasting task where the goal is to predict a future GHI value given only past GHI values. This is a

very difficult task because there is no notion of cloud trajectory within the learning pipeline. If you do not
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know that a cloud is headed towards the sun via an image, it will not be possible to forecast a decrease in

GHI solely using past GHI values. Therefore, incorporating sky images into the task of solar irradiance

forecasting is essential for accurate long-term prediction.

This thesis will address these traditional limitations by presenting methods in the subsequent chapters

that increases the long-term forecasting of solar irradiance.



3Precise Forecasting of Sky Images Using Spatial

Warping

Prediction is very difficult, especially if it’s about the future.

— Niels Bohr

In chapter 2, we discussed methods to capture sky images and the limitations that prevented long-term

forecasting when using traditional imagers. For example, the Total Sky Imager (TSI) is one approach for

predicting solar irradiance by monitoring the movement of clouds around a particular site. It captures of

a hemispherical image of the sky with a 180° FOV using a catadioptric system of a single RGB camera

observing the sky through a curved mirror. Figure 3.2 provides examples of such images.

These TSIs capture images periodically, every 30 seconds, and as a result, these images can be stacked

together to create a time-lapse of historical cloud cover data around a particular site. Such TSIs, coupled

with a pyranometer that measures GHI, have been utilized in recent studies to nowcast and forecast solar

irradiance [Al-lahham et al., 2020, Dev et al., 2016, Siddiqui et al., 2019].

It is important to note that the definitions of short and long-term prediction of cloud movement in

sky-images is subjective to the sampling period, 𝑇0, at which the images are captured. Here, 𝑇0 is set as

𝑇0 = 30 seconds. Therefore, short-term prediction is quantitatively defined as predicting 30 seconds in the

future, whereas long-term prediction is anything greater than 30 seconds. Overall, however, both short and

long-term prediction is difficult due to the constant changing shape of clouds. Accurate prediction greater

than short-term is exacerbated by distortions introduced by the hemispherical mirror used to capture the

wide FOV sky image. Specifically, in a typical image obtained from a TSI, objects near the horizon are

spatially-compressed and hence, appear much smaller at the horizon than when they are at the zenith.

Due to this non-linear mapping produced by hemispherical mirrors, uniform physical motion of clouds

leads to apparent motion of varying magnitude on the image plane. This in turn affects the accuracy of

motion estimates for cloud movement tracking as the apparent motion at the horizon is extremely small

and overwhelmed by the larger optical flow induced by clouds at the zenith. For forecasting longer time
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SkyNet-UNet PhyD-Net Optical Flow Truth

Figure 3.1: Predicting future sky images. Left-to-right: Results from SkyNet-UNet (the proposed

technique), PhyD-Net-Dual [Le Guen and Thome, 2020], optical flow, and ground truth images. The

methods take in as input images [𝐼𝑡−5, 𝐼𝑡−3, 𝐼𝑡−1, 𝐼𝑡 ], and predict future frames [�̂�𝑡+1, �̂�𝑡+2, ..., �̂�𝑡+5] (From

top-to-bottom).



3.1. PRIOR WORK 15

horizons, the small movement of these clouds are what determines how the texture of clouds evolve over

time.

We attempt to counter this problem by warping the original image to a different space where the

apparent motion is uniformly preserved both at the zenith and the horizon. This allows us to achieve

longer forecasting times when modeling cloud evolution in sky images.

Contributions. In this chapter, we propose SkyNet, which focuses on improving sky-image prediction.

The main contributions for this chapter are as follows:

• Cloud forecasting via spatially warped images. Our primary contribution is in showing that spatially-

warping the sky images during training facilitates longer-forecasting of cloud evolution. This counters

the adverse affects of resolution loss near the horizon.

• Incorporating larger temporal context. We adapt prior work on future frame prediction in videos [Liu

et al., 2018] to the case of sky images. Here, to increase precision in forecasting, we go beyond two

input frames to usher in a larger temporal context. Specifically, to predict the image at time 𝑡 + 1, we

take in as input four input images spanning {𝑡 − 5, 𝑡 − 3, 𝑡 − 1, 𝑡}.

• Training and validation. We train and evaluate our approach on a large dataset of sky images and

demonstrate the ability to accurately forecast sky image frames with higher resolution metrics than

previous cloud forecasting methods. We further use the forecasted sky-images to evaluate our results

on estimating the GHI value for future time instances.

The accuracy of the proposed SkyNet predictions are shown in Figure 3.1 where we show our ability to

predict sky images for future time-instants to 𝑡 + 5. Each frame denotes a time lapse of 30 seconds in this

dataset and hence, we predict up to two and a half minutes into the future.

3.1 Prior Work

We discuss prior work in modeling cloud dynamics with the goal of predicting solar irradiance.

3.1.1 Modeling Sky Evolution Using Optical Flow

Early works for cloud motion modeling such as those of Ai et al. [Ai et al., 2017a] and Jayadevan et

al. [Jayadevan et al., 2012] use a grid or block-based optical flow methods to model cloud velocity and

motion. This motion estimation method involves constructing a set of grid elements across the sky image

in which the direction and velocity is then found between the correlation of grid blocks between adjacent

frames. Although accurate for short-term cloud movement prediction at approximately 1 min, this tech-
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nique becomes increasingly difficult when complex cloud dynamics are involved. Clouds are not uniform

objects and their shape and trajectory can shift drastically. Also, clouds can overlap at different heights

with different velocities and trajectories at each height. Therefore, this method becomes less accurate and

difficult to forecast for long-term time horizons.

Recent advances of optical flow techniques have improved upon block-based motion estimation. Dif-

ferential methods for optical flow estimation such as the Lucas-Kanade and Horn-Schunck are common

and popular techniques for estimating cloud motion [Chang et al., 2017, El Jaouhari et al., 2015, Tiwari

et al., 2019, Zhang et al., 2019].

Solely using optical flow to model cloud dynamics maintains consequences of the variability and

constant changing of shape of clouds; making forecasting their trajectory difficult. More recent methods

have seen better success by incorporating deep-learning methods with optical flow and other variables to

model cloud dynamics and evolution in sky images.

3.1.2 Modeling Sky Evolution Using Deep Learning

Many of the works that utilize learning frameworks tasks a model to learn cloud dynamics from a previous

representation of images to then predict a subsequent sky image. This predicted sky image is then used to

predict solar irradiance at that time instance.

Kato and Nakagawa [Kato and Nakagawa, 2020] use a convolutional long short-term memory network

(LSTM) with optical flow vectors and past sky images as input to generate a predicted sky image by

extrapolating the flow vectors with the input images. Andrianakos et al. [Andrianakos et al., 2019b]

utilize a generative adversarial network (GAN) for sky image prediction to counter the adverse blurry

image effects of using traditional mean squared error loss (MSE) for image prediction. Le Guen and

Thome [Le Guen and Thome, 2020] incorporate physical knowledge in deep models based on PhyDNet

[Guen and Thome, 2020] that exploits physical dynamics to enhance cloud motion modeling.

Deep neural networks are currently the most recent methods for modeling cloud dynamics in sky

image frames and provide some of the best prediction results. However, precise forecasting of future sky

image frames for longer time horizons is hindered by artifacts induced by the imager. Fisheye camera

lenses and hemispherical mirrors, commonly used for capturing sky images due to their wide angle FOV,

compress the imagery near the horizon which affects the prediction of cloud evolution when forecasting

sky images. To counter this, we present a uniform warping scheme on the captured images to ensure that

clouds further from the zenith of the hemispherical mirror have similar apparent motion to those in the

periphery, so as to ensure accurate forecasting.
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Figure 3.2: Sample TSI Images. Sample images captured by a TSI [Victor, 2005] across various

conditions.

3.2 Background and Problem Setup

We begin by describing how sky images are captured along with the basic notation of how cloud occlusion

relates to the amount of solar radiation being received at a site. We follow this by deriving the proposed

uniform warping method for sky images.

3.2.1 Total Sky Imagers and Solar Irradiance

A TSI provides a time-lapse video sequence from an RGB camera that observes the sky via a hemispher-

ical mirror [Victor, 2005]. Generally, these systems are deployed to capture imagery of the sky at regular

intervals for applications such as solar irradiance forecasting and visualizing cloud dynamics. To prevent

damage of the camera sensor from direct expose of the sun, the TSI typically includes a mechanical arm

that travels along the path of the sun throughout the images to occlude direct exposure. Figure 3.2 shows

some images from the TSI.

The RGB image captured from the TSI provides a sky map from which we can identify the location

of clouds, their movement over time, and even a crude understanding of their absorption properties by
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associating the cloud cover at a time instance with it’s associated GHI value when using a ground-based

pyranometer. Suppose that we have a solar panel collocated with the TSI, denoted by the location 𝑥 . If

the area of this panel is 𝐴 in𝑚2, then the radiant flux Φ(𝑡) measured at time 𝑡 is given as:

Φ(𝑡) = 𝐴
∫
𝜆

𝑄 (𝜆)𝐸𝑥 (𝜆, 𝑡)𝑑𝜆. (3.1)

where𝑄 (𝜆) is the quantum efficiency of the panel, and 𝐸𝑥 (𝜆, 𝑡) is the spectral irradiance at the location

of the panel, at the wavelength 𝜆 and time 𝑡 , expressed in the units of 𝐽/(𝑛𝑚 ·𝑚2). This spectral irradiance

can be related to the spectral radiance 𝐿𝑥 (𝜔, 𝜆, 𝑡) — the flux at a point 𝑥 along a direction 𝜔 in the units

of 𝐽/(𝑛𝑚 ·𝑚2 · 𝑆𝑟 ). Therefore, the radiant flux Φ(𝑡) can now be written as:

Φ(𝑡) = 𝐴
∫
𝜆∈Λ

𝑄 (𝜆)
[∫

𝜔∈Ω
𝐿𝑥 (𝜔, 𝜆, 𝑡)max(0, n𝑇𝜔)𝑑𝜔

]
𝑑𝜆. (3.2)

The set Ω defines the solid angle over which light is received at the solar panel and n is the surface

normal, or the orientation of the solar panel, in the same coordinates as 𝜔 . As an approximation, this

integral can be written as the occlusion map of the clouds multiplied by the spectral radiance from sunlight

as well as skylight, which can be pre-measured.

3.2.2 Problem Definition

The goal of this chapter is to provide a framework for short term prediction of sky images. Specifically,

the TSI takes an image every 𝑇0 seconds to provide a time lapse video.1 For simplicity of notation, we

denote this time-lapse video as a collection of frames {. . . , 𝐼𝑡−1, 𝐼𝑡 , 𝐼𝑡+1, . . .}, where 𝑡 is an integer-valued

index for the sequence, keeping in mind that any two successive images are obtained 𝑇0 seconds apart by

the TSI.

Given {. . . , 𝐼𝑡−2, 𝐼𝑡−1, 𝐼𝑡 }, the past and current images in time lapse sequence at a time instant 𝑡 , our goal

is to predict {𝐼𝑡+1, 𝐼𝑡+2, . . .}, the images in the time lapse sequence for the next few instants. Since clouds

often move fast, there is little correlation between images taken at sufficiently far away time instances;

hence, we can restrict the time horizon of images that we consider both for the input images (from the

past) as well as the predicted output images (of the future). Hence, our objective can be refined to using

the image set {𝐼𝑡−𝑇𝑝 , . . . , 𝐼𝑡−1, 𝐼𝑡 } to predict the image set {𝐼𝑡+1, 𝐼𝑡+2, . . . , 𝐼𝑡+𝑇𝑓 }, where the choice of the

input time horizon 𝑇𝑝 and output time horizon 𝑇𝑓 are discussed later.

1For the dataset that we work with, this sampling period𝑇0 = 30 seconds. This choice balances the need to monitor fast moving

clouds, that would benefit from shorter sampling period, and the size of the dataset, which scales inversely with𝑇0.
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Figure 3.3: Cloud resolution. A cloud subtends a smaller angle when it is further away from the zenith.

This results in the nonlinear spatial warping and poses critical challenges for effective forecasting of cloud

movement.

Challenges. Modeling the evolution of the sky and predicting images at future time instants faces chal-

lenges that stem from the clouds themselves as well as features induced by the imager. Clouds are amor-

phous, lacking the rich features that are prized in traditional motion modeling and flow estimation. Such

domain-specific concerns can be handled by using learning techniques that implicitly build a prior for

the underlying imagery. However, even when using sophicated learning techniques, there are significant

challenges that arise from the spatial distortions introduced by the TSI.

Getting a 180◦ FOV photograph with a TSI results in a highly nonlinear mapping between the sky

and the image as is seen in Figure 3.3. The effect of this distortion is easily seen in Figure 3.2. An

immediate consequence of this nonlinear warping is that motion near the horizon is not easily observable;

for the same amount of cloud movement, the perceived optical flow on the image plane of the camera

is significantly smaller at the horizon. This makes motion modeling near the horizon fragile to small

perturbation. This problem is exacerbated by optical flow estimation, which is hard to perform on cloud

imagery that lack high-contrast textures. The resulting flow estimates are inherently fragile, especially

near the horizon. While using enforcing smoothness priors on the flow estimates often leads to robustness

especially at the zenith, they tend to make the flow at the horizon nearly zero. Hence, the nonlinear spatial

resolution is not conducive for predicting cloud evolution over longer time horizons.

Solution outline. To address these challenges in motion estimation, and provide a framework for precise

prediction of sky images, we make two modifications to traditional ideas in future frame prediction.

• Optimal spatial warping. First, under a simple model of image formation, we propose a warping of the

TSI image so as to preserve motion of clouds over the spatial field. This serves to amplify motion near

the horizon that is otherwise small. We describe this in Section 3.3.
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• Multi-image prediction. Second, since the image after warping is still smooth, we use multiple frames

from the past to stabilize motion estimates. We perform this by adapting prior work on two-frame

activity prediction. This is described in Section 3.4.

3.3 Optimal Warping of Sky Images

The warping of sky images is necessary because the apparent motion of clouds around the periphery of

the hemispherical mirror will be much smaller than when at the zenith. As a result, we can only get

good optical flow estimates at the zenith at the cost of poor optical flow estimates elsewhere. For better

long-term prediction of cloud evolution and as a result, better long-term prediction of solar irradiance, we

spatially warp the images so that the apparent motion is more uniform. We design a warping scheme so

that over a specific site, we can achieve uniform optical flow.

Image formation model. We model the imager as being an orthographic camera observing the sky

through a spherical mirror of radius 𝑅𝑚 . The optical axis of the camera points is normal to the ground,

and the optical center is aligned to the center of the hemispherical mirror. We model the ground as being

planar, an assumption that is reasonable given that the radius curvature of the earth is couple of orders of

magnitude larger than the geographic region we can image with the TSI. Given this, we adopt a world

coordinate system whose origin is at the center of the spherical mirror. The 𝑥𝑦 coordinate plane is aligned

with the ground plane and the 𝑧 axis is pointing towards the sky and hence, the optical axis of the camera

is aligned to [0, 0,−1]⊤. Figure 3.4 provides a schematic of this setup.

Suppose that a cloud at 𝑋𝑐 = [𝑥𝑐 , 𝑦𝑐 , ℎ]⊤ maps to image pixel coordinates [𝑢𝑐 , 𝑣𝑐 ]⊤. We now seek

to estimate the relationship between these quantities. We first move from cartesian coordinates on the

ground plane to polar coordinates, which allows us to exploit the rotational symmetry of the mirror about

the 𝑧-axis. With this, we can write the cartesian coordinates of the cloud as

𝑋𝑐 = [𝑥𝑐 , 𝑦𝑐 , ℎ]⊤ =

[
𝜌 cos𝜃 𝜌 sin𝜃 ℎ

]⊤
. (3.3)

and that of the image pixel coordinates as

[𝑢𝑐 , 𝑣𝑐 ]⊤ =

[
𝑠 cos𝜃 𝑠 sin𝜃

]⊤
. (3.4)

where (𝜌, 𝜃 ) and (𝑠, 𝜃 ) are polar coordinates for ground and image plane location, respectively, for

the cloud. Note that we have effectively used the rotational symmetry of the mirror in insisting both the

clouds and its corresponding camera pixel subtend the same angle 𝜃 in polar coordinates.
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Figure 3.4: Warping scheme. Overview of how the 3D position of a cloud in the world space gets

mapped to a point on the image plane using a hemispherical mirror.

Let’s denote 𝑃 as the point on the mirror that reflects the cloud to its corresponding image plane pixel.

Given that the camera is orthographic, we can derive the 𝑃 to be

𝑃 =

[
𝑠 cos𝜃 𝑠 sin𝜃

√︁
𝑅2𝑚 − 𝑠2

]𝑇
. (3.5)

This comes from the fact that the point 𝑃 is on a sphere of radius 𝑅𝑚 . We can now enforce Snell’s

laws of reflection to relate 𝜌 and 𝑠 to each other; thereby getting the functional relationship between the

position of the cloud in world coordinates to its location on the image plane. Specifically, we can write

the surface normal at 𝑃 , which is simply a unit norm vector oriented along 𝑃 , to be equal to the average

between the line produced by the point 𝑃 and the vertical line at 𝑒𝑧 :(
𝑋𝑐 − 𝑃
∥𝑋𝑐 − 𝑃 ∥

+ 𝑒𝑧
)
· 1
2
=

𝑃

∥𝑃 ∥ . (3.6)

Noting that ∥𝑃 ∥ = 𝑅𝑚, the radius of the sphere, we can express the 3rd coordinate of (3.6) as

1
2
·
[
ℎ −

√︁
𝑅2𝑚 − 𝑠2

∥𝑋𝑐 − 𝑃 ∥
+ 1

]
=

[√︁
𝑅2𝑚 − 𝑠2
𝑅𝑚

]
. (3.7)

We can now solve for ∥𝑋𝑐 − 𝑃 ∥ to get

∥𝑋𝑐 − 𝑃 ∥ = 𝛾 (𝑠) =
ℎ −

√︁
𝑅2𝑚 − 𝑠2

2
√
𝑅2
𝑚−𝑠2
𝑅

− 1
≈ ℎ

2
√
𝑅2
𝑚−𝑠2

𝑅𝑚
− 1

. (3.8)

Now plugging 𝛾 (𝑠) = ∥𝑋𝑐 − 𝑃 ∥ back into (3.6), we get
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𝑋𝑐 − 𝑃
𝛾 (𝑠) + 𝑒𝑧 =

2𝑃
𝑅𝑚

, (3.9)

from which we can obtain an expression for 𝑋𝑐 as

𝑋𝑐 = 𝛾 (𝑠)
[
2𝑃
∥𝑃 ∥ + 𝑒𝑧

]
+ 𝑃 . (3.10)

Therefore, we can expand (3.10):

©«
𝜌 cos𝜃

𝜌 sin𝜃

ℎ

ª®®®®¬
= 𝛾 (𝑠)


2
𝑅𝑚

©«
𝑠 cos𝜃

𝑠 sin𝜃√︁
𝑅2𝑚 − 𝑠2

ª®®®®¬
−

©«
0

0

1

ª®®®®¬
+

©«
𝑠 cos𝜃

𝑠 sin𝜃√︁
𝑅2𝑚 − 𝑠2

ª®®®®¬

. (3.11)

From the top two rows of the previous equation, we can relate 𝜌 to 𝑠 as follows:

𝜌 =

(
2𝛾 (𝑠)
𝑅𝑚

+ 1
)
𝑠 =

(
2ℎ

2
√︁
𝑅2𝑚 − 𝑠2 − 𝑅𝑚

+ 1

)
𝑠

≈ 2ℎ𝑠

2
√︁
𝑅2𝑚 − 𝑠2 − 𝑅𝑚

.

Instead of modeling 𝜌 directly, we can model 𝜌

ℎ
which gives us height invariance

𝜌 =
𝜌

ℎ
=

2𝑠
2
√
𝑅2 − 𝑠2 − 𝑅

. (3.12)

Therefore, it does not matter the height at which the cloud is and therefore, we do not need to specify ℎ.

Remarks. While there is a significant distortion of the sky in the image plane of the camera, we can

undo this distortion by redefining the image in terms of 𝜌 instead of 𝑠. That is, using the expression

in equation (3.12), we can map the image plane from (𝑠 cos𝜃, 𝑠 sin𝜃 ) to (𝜌 cos𝜃, 𝜌 sin𝜃 ). This has the

benefit of normalizing the observed optical flow so that it no longer suffers from the spatial distortion.

More specifically, in the transformed coordinates, the observed flow magnitude is the same, immaterial

of where the motion occurs in the field of view of the device.

Inverting the warping function. We can invert the relationship between 𝜌 and 𝑠 in equation (3.12),

using some algebraic manipulation to get the following inverse relationship.

𝑠 =
−𝑅𝑚𝜌 + 𝑅𝑚𝜌

√︁
1 + 3(1 + 𝜌2)

2(1 + 𝜌2) . (3.13)
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Figure 3.5: Radial distance of warp. We show how the appearance of an input image changes under the

proposed warping. The plot on the left visualizes how we map from radial distances on the image to radial

distances in the proposed representation. Choosing different values of the range of 𝜌 produces different

FOVs and associated distortions. This is visualized in the center column. The right column shows the

image after inverting the warp to obtain the original image.

Implementation details. To implement the warping function, we need to find the radius of the mirror

𝑅𝑚 . We observe that for an orthographic camera and a planar ground, the horizon maps to a circle with a

radius of 𝑅𝑚/
√
2. We use this to estimate 𝑅𝑚 in pixel count. The other important parameter that we need

to set is the maximum value of 𝜌 . Setting 𝜌 ∈ [0, 𝜌max] defines the FOV of the device to be restricted

to ± tan−1 𝜌max; for example, choosing 𝜌 ∈ [0, 1] corresponds to a FoV of the sky of ±45°. Figure 3.5

shows warped and unwarped images for different values of this range. A small value of this range leads to

poor coverage of the sky and a large value has textures that are extremely blurred due to the nonlinearity

of the warp as well as the incorporation of trees and buildings. For all of our experiments, we choose a

range for 𝜌 ∈ [0, 3] corresponding to a FoV of ±71◦ which provided a good balance between coverage

and distortions. Finally, to avoid loss of information, we upsample the image dimensions by a factor of

three.

Figure 3.5 also shows how the warping can be inverted so as to revert back to the original image

space. It is worth observing how the relative sizes of clouds at the zenith and horizon changes in the

warped space. This warping ensures that motion magnitude is preserved and spatially-invariant. Next, we
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Figure 3.6: SkyNet Learning Pipeline. (Left) The proposed SkyNet forecasting method that incorpo-

rates the U-Net [Ronneberger et al., 2015] or ConvLSTM [SHI et al., 2015] neural network architecture

used to forecast a subsequent sky-image frame. (Right) Diagram of U-Net architecture used for SkyNet.

look at a learning framework for multi-image prediction.

3.4 SkyNet

To forecast sky images, we learn a deep neural network that we refer to as SkyNet that takes in as input

multiple images and predicts the next frame.

Network input. As mentioned earlier, using multiple images to forecast provides us robust estimates

of slow moving clouds as well as to combat the distortions introduced by the imager. To faciliate this,

we use the stack of images {𝐼𝑡−5, 𝐼𝑡−3, 𝐼𝑡−1, 𝐼𝑡 } to predict the image at 𝐼𝑡+1. This choice reflects the need to

have a long time horizon in the past, but given the redundancy, dropping some of the intermediate images

help alleviate training time. The images are warped using the approach described in Section 3.3.

Network architecture. We consider 2 network architectures for our SkyNet Model. Initially, our first

network architecture, SkyNet-UNet, adapts the future frame prediction model proposed for activity fore-

casting in [Liu et al., 2018]. The backbone of this architecture is a U-Net [Ronneberger et al., 2015]

that takes in the input images to predict the image at the next time instant in the time lapse. Our second

network architecture, SkyNet-LSTM, performs the same task as our initial network architecture, however,

incorporates a convolutional long short-term memory network (ConvLSTM) [SHI et al., 2015]. Both ar-

chitectures incorporate the same loss function further described below. Figure 3.6 shows the end-to-end

training pipeline for SkyNet.
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SkyNet-UNet starts with the number of input channels representing the number of time steps being

considered. For each layer of the encoder, the number of channels are doubled until the bottleneck of the

architecture which has 512 layers. The decoder, with skip connections between the encoder, brings the

number of channels down to the target image size.

SkyNet-LSTM incorporates a similar encoder-decoder architecture using 2 ConvLSTM cells for the

encoder.

Loss functions. The forecasting model enforces the predicted frames to be close to their ground truth

in the spatial space as well as enforcing the optical flow between the predicted frames to be close to their

optical flow ground truth as well. This is done by imposing a combination of penalties as network loss

functions between the predicted frame �̂�𝑡+1 and ground truth 𝐼𝑡+1. The network is trained using three loss

functions based on intensity, gradient, and motion. The intensity loss ensures that pixels in the RGB space

are similar by minimizing the ℓ2 distance between �̂� and 𝐼 :

𝐿𝑖𝑛𝑡 (�̂� , 𝐼 ) = ∥�̂� − 𝐼 ∥22. (3.14)

When forecasting frames using the standard Mean Squared Error (MSE) loss function, the predicted

images are blurry. This is due to the fact that MSE generates the expected value of all the possibilities for

each pixel independently which causes a blurry Image. Therefore, the gradient loss is used to sharpen the

predicted image:

𝐿𝑔𝑑 (�̂� , 𝐼 ) =
∑︁
𝑖, 𝑗

∥ | �̂�𝑖, 𝑗 − �̂�𝑖−1, 𝑗 | − | 𝐼𝑖, 𝑗 − 𝐼𝑖−1, 𝑗 | ∥1 + ∥ | �̂�𝑖, 𝑗 − �̂�𝑖, 𝑗−1 | − | 𝐼𝑖, 𝑗 − 𝐼𝑖, 𝑗−1 | ∥1, (3.15)

where 𝑖 and 𝑗 are the spatial indices of the image.

To predict an image with the correct motion, we place a loss on the optical flow field generated by

the predicted image and the input image. We employ a pre-trained CNN [Hui et al., 2018] for the optical

flow estimation. Denoting 𝑓𝑜𝑝 as the optical flow network used, the motion penalty is expressed as:

𝐿𝑜𝑝 = ∥ 𝑓𝑜𝑝 (�̂�𝑡+1, 𝐼𝑡 ) − 𝑓𝑜𝑝 (𝐼𝑡+1, 𝐼𝑡 )∥1 . (3.16)

The three functions above are combined to define the overall loss function as:

𝐿 = 𝜆𝑖𝑛𝑡𝐿𝑖𝑛𝑡 (�̂�𝑡+1, 𝐼𝑡+1) + 𝜆𝑔𝑑𝐿𝑔𝑑 (�̂�𝑡+1, 𝐼𝑡+1) + 𝜆𝑜𝑝𝐿𝑜𝑝 (�̂�𝑡+1, 𝐼𝑡+1, 𝐼𝑡 ). (3.17)

We define 𝜆𝑖𝑛𝑡 , 𝜆𝑔𝑑 , and 𝜆𝑜𝑝 as 0.5, 0.001, 0.01 respectfully.
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Training Details. Our implementation of the models are in Python using the PyTorch framework [Paszke

et al., 2017]. Training until convergence ends around 40 epochs with a learning rate of 0.001 using Adam

optimization [Kingma and Ba, 2015] and a batch size of 4. We run all of our experiments on 3 NVIDIA

GeForce RTX 2080 Ti GPUs which takes about 1.5 hours per epoch to train.

Long-Term Forecasting. To forecast a sky image frame longer into the future, we implement a simple

recursive method. Once we have a prediction for �̂�𝑡+1, to predict the image at time 𝑡 + 2, we use the image

set {𝐼𝑡−4, 𝐼𝑡−2, 𝐼𝑡 , �̂�𝑡+1}; that is, we use the predicted image at 𝑡 + 1 to recursively predict the next image in

the sequence. We can repeat this multiple times to increase the time horizon of the predictions.

3.5 Experiments

We compare our method to prior deep-learning approaches to model cloud evolution in sky images along

with the benefit of warping the sky images to achieve better long-term prediction.

3.5.1 Sky-Image Dataset

We use a publicly available dataset of TSI images for training and evaluation. The source of the dataset is

a TSI located on the Nauru Island and available for download at the Atmospheric Radiation Measurement

facility [Victor, 2005]. Images in the dataset were captured over a duration spanning November 2002 to

September 2013. Each successive image pairs are 30 seconds apart and are at a resolution of 352 × 288

pixels. In total, the dataset includes 4, 272, 938 images. However, for our study, we utilize a subset of the

available data as our primary train and test sets. We utilize 42, 171 images from the year 2002 for training

and validation and a disjoint set of 5, 271 images from 2003 for testing. Figure 3.2 shows sample images

from the dataset.

3.5.2 Comparison to Previous Methods

Figure 3.1 provides qualitative comparison between the SkyNet predictions, as well as basic optical flow-

based prediction using a constant velocity model, and the PhyD-Net-Dual approach [Le Guen and Thome,

2020]. As is seen in Figure 3.1, SkyNet predictions are of a significantly higher quality than the com-

petitors. We provide quantitative evaluation in the form of Peak-signal-to-noise-ratio (PSNR) for these

competing methods in Figure 3.7. Here, we also compare with a version of the SkyNet models without the

optimal warping applied to it to study the influence that the warping function has. We observe that there
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Figure 3.7: Forecasting results. Performance of various methods for sky image forecasting for time a

time horizon of 𝑡 + 1 to 𝑡 + 5.

is a significant drop in performance when forecasting without the warping function; especially looking

beyond the first predicted image.

We also compare against a two-frame version of SkyNet-UNet, both with and without spatial warping,

to test the effectiveness of using a larger time horizon. In this version, we only provide {𝐼𝑡−1, 𝐼𝑡 } as inputs

to the network. As we expect, the performance of the prediction drops by a small amount when given a

smaller past horizon, and by a larger amount when we disable spatial warping.

It should also be noted from Figure 3.7 that although the SkyNet-UNet model performs the best at time

instance t+1, as the images are forecasted longer into the future, the SkyNet-LSTM model outperforms

all other tested models. This may be attributed to the long-term memory units of the convLSTM network.
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PSNR values in dB

�̂�𝑡+1 �̂�𝑡+2 �̂�𝑡+3 �̂�𝑡+4 �̂�𝑡+5

1K Dataset 31.24 31.05 30.94 30.88 30.84

10K Dataset 32.16 31.71 31.4 31.19 31.05

100K Dataset 33.2 32.64 32.28 32.03 31.84

Table 3.1: Affect of dataset size on results. Comparison of PSNR for various dataset sizes of 1K, 10K,

and 100K samples.

3.5.3 Dataset Size Dependent Results

We also experimented with the affect that the size of dataset had on prediction results. As shown in

Table 3.1, as we increase the amount of training data from 1000, 10000, and 100000 respectfully, the

model performance increases. This is due to the fact that more data allows the model to generalize to

unseen samples. At the same time, although we train on a small subset of the sky-image dataset, there are

upwards of millions of images in total that can be utilized for training. Therefore, with the right amount

of training, our method can be improved even further.

3.5.4 GHI

Prediction of cloud movement in a subsequent image is only one step in precise prediction of solar irradi-

ance. Therefore, using the predicted frames, we calculate GHI values similar to [Al-lahham et al., 2020]

in order to validate our results on accurately forecasting solar irradiance. GHI values were captured at

the same site that the TSI images were taken. We use a random forest (RF) ensemble model that, when

trained with ground truth GHI values and sky-images, predicts a GHI value for that time instance. Table

3.2 shows predicted GHI values captured each minute on a day’s worth of data. Given 4 previous sky-

image frames at time instants {𝑡 − 5, 𝑡 − 3, 𝑡 − 1, 𝑡} as input, the predicted image frame at �̂�𝑡+1 is used as

inference to compute GHI. This is repeated for all time instances throughout the specified day. Table 3.2

shows comparison signal-to-noise (SNR) metrics for longer term prediction. Time instances after 𝑡 + 1

are recursively forecasted using predicted frames.
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GHI prediction performance (dB)

𝑡 + 1 𝑡 + 3 𝑡 + 5 𝑡 + 7

SkyNet 18.45 16.24 14.40 13.27

PhyD-Net 17.54 15.27 13.66 12.62

Optical Flow 17.53 15.76 14.34 13.83

Table 3.2: SkyNet GHI predictions. (Top) Predicted GHI values captured each minute on August

6, 2003. Each minute interval of GHI is predicted using 4 previous time instances. The table below

shows comparison metrics. (Bottom) Comparison of the signal-to-noise-ratio for GHI. Due to the fact

that ground truth GHI values are captured each minute, we must predict every other subsequent image

frame. For example 𝑡 +5 represents a 5-min ahead forecasting time using 4 previous time instance frames.

These values are averages over 5 days from 08/06/2003 to 08/11/2003.

3.6 Discussion

Limitations. Although SkyNet improves upon previous works modeling cloud dynamics, our method

has limitations. First, due to the fact that we are using a learning-based algorithm, we are restricted

to modeling clouds in the image intensity space where physical factors are not measured. Second, our

model is also dataset dependent, inferring that sky images captured using a different camera than a TSI

will require retraining on that camera specific dataset.

Overall, within this chapter, we presented SkyNet which improved sky-image prediction to model

cloud dynamics with higher spatial and temporal resolution than previous works. Our method handles

distorted clouds near the horizon of the hemispherical mirror by partially warping the sky images dur-
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ing training to facilitate longer forecasting of cloud evolution. Although our method performs well, the

textures are still blurred near the horizon which is hard to undo and further degrades when predicting

longer into the future. Possible future works can plan to move away from the RGB image space and

capture the 3D distribution of clouds. This will allow the understanding of the absorption and reflectance

properties of clouds across a large scale to better attenuate how they affect the amount of solar radiation

being received at the ground. Also, we would like to develop computational imaging approaches that cap-

tures wide-angle FOV images without the expense of objects being distorted near the horizon. In chapter

4, we actually present this follow-up work of a deployed computational sky imaging setup and present

algorithms in chapter 5 for accurate prediction of solar irradiance.

Above all, we believe the methods presented in this chapter is the first step toward precise prediction

of solar irradiance to enable the widespread use of solar power both commercially and residentially.





4A Catadioptric Sky Imaging System

In the previous chapter, we discussed an initial warping method to combat the non-linear spatial resolu-

tion stemming from traditional sky imagers. Digital warping does help alleviate some of the underlying

challenges in non-uniform flow estimation, but it is fundamentally limited by the loss of resolution at

image formation. Adding more pixel by using more cameras or even a higher resolution sensor can be an

effective approach, but comes with increased costs. Further, direct imaging of the sky needs to be done

with some care, given that the potential damage to the sensor caused by a focused image of the sun. We

instead pose a different question: is it possible to optically redistribute the pixels in a wide FOV camera

so that resolution is uniform for a cloud as it traverses the field of a sensor?

In this chapter, we take a different approach than before and optically warp the scene by designing a

catadioptric system that provides a uniform spatial resolution of the sky (for each height), over the entire

field of view of the device. We achieve this by imaging the sky through a mirror whose shape is designed

to provide the aforementioned property. This design also has the added benefit of making motion of the

clouds equally perceptible, be it at the zenith or the horizon. As a result of using this mirror shape in a

catadioptric setup, our ability to estimate cloud trajectory is improved over traditional methods even when

a cloud is farther away. This improves long-term cloud evolution prediction and as a result, prediction of

when a cloud will occlude the sun.

Contributions. We present a method that advances long-term forecasting of cloud evolution and enables

predictions far beyond previous works into the 10s of minutes. Our contributions for this chapter are as

follows:

• Imaging system for whole sky imager. We have designed and deployed a novel sky imager comprising

of a catadioptric system with an adapted hyperboloidal mirror [Baker and Nayar, 1998] to capture and

analyze sky images with the eventual goal of improved solar forecasting.
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• Dataset of sky images. Using our imaging system, we have captured high dynamic range sky images

across a period spanning many months. The dataset also provides time-synchronized ground solar

irradiance captured using a pyranometer.

• Predicting from spatial-temporal slices. We have a novel prediction algorithm that uses estimated wind

velocity to identify an informative 2D space-time slice of the imagery; this allows us to ignore the clouds

that are unlikely to occlude the sun at our vantage point. More importantly, it significantly simplifies

the resulting prediction problem, which we perform using a learned-network.

This long-term prediction is an order of magnitude improvement over previous methods such as in

chapter 3. That method relied on a similar premise, but with digital warping that showed prediction

results that only span 2-3 minutes.

4.1 Prior Work

Large Field-of-View Sky Imagers. As previously stated, a limitation of sky imagers is the non-linear

fisheye distortion introduced which affects clouds optical flow estimates for trajectory prediction. The

further-out clouds attenuate evolution over time and their prior motion estimates attribute to longer fore-

casting horizons. To combat this issue, many works have attempted to spatially warp these images

to achieve uniform apparent motion and limit the apparent fisheye distortion [Paletta et al., 2022, Ra-

jagukguk et al., 2021, Richardson et al., 2017]. In chapter 3, we have even shown that spatially warping

these images achieves longer forecasting horizons. Limiting the long-term prediction accuracy when us-

ing digital warping is the loss of resolution of pixels at the periphery [Eising et al., 2008, Ishii et al., 2003].

Think of it as digital zoom versus optical zoom. Periphery pixels are stretched out and then interpolated.

Therefore, true pixel values at these locations are absent. For learning and optical flow based methods,

these pixel values are essential for accurate long-term prediction.

Predicting Cloud Movement. Modeling cloud evolution through tracking and forecasting clouds solely

using sky images are achieved using mainly two methods. Initial works utilized motion based methods [Ai

et al., 2017b, Chang et al., 2017, El Jaouhari et al., 2015, Jayadevan et al., 2012] using pairs of subsequent

sky images to forecast cloud trajectory. Overall, this method is inadequate for long-term prediction due

to the variability of cloud shapes and trajectory between image captures making it difficult to forecast.

More recent works have seen greater success using deep learning based methods to predict a subse-

quent sky image for a future time instance [Julian and Sankaranarayanan, 2021, Nie et al., 2023, Paletta

et al., 2022, Sun et al., 2014, Wei et al., 2023]. Learning-based methods can be further improved for more
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accurate long-term forecasting by addressing the fisheye distortion of the scene introduced by traditional

large-FOV imagers. However, in this chapter, we show that optical warping leads to even greater success

when coupled with learning-based predictions.

Photovoltaic Power Output Prediction. Directly predicting photovoltaic power output has been a di-

rection taken by previous works. These studies either take a statistical approach to predicting future

irradiance values from past values [Alzahrani et al., 2017, Sharifzadeh et al., 2019] or finding the rela-

tionship between an associated sky image and its irradiance value; also known as nowcasting [Zhen et al.,

2020], [Zhang et al., 2018]. However, these works do not take the future state of cloud patterns into con-

sideration which directly influences the amount of irradiance received at the ground. Therefore, by having

an accurate method of predicting the future distribution of clouds, a better estimate of future irradiance

can be obtained.

Computational Imaging for Atmospheric Tomography. Many works attempt to image clouds as a

true three-dimensional (3D) volumetric matter rather than two-dimensional (2D) beings in images. These

works fall under the category of solutions with the goal of tomographic reconstruction. They consider the

heterogeneous multi-scattering media and reconstruct the full volumetric field using distributed ground-

based camera systems [Aides et al., 2020, Holodovsky et al., 2016, Mejia et al., 2018, Veikherman et al.,

2014], or airborne imagery [Diner et al., 2018, 2013, Martonchik et al., 1998]. Although beneficial for

true analysis of solar irradiance transmission through atmospheric media, we believe that simple 2D RGB

images are sufficient for long-term prediction of sun occlusion by cloud for this application.

Catadioptric Imaging Systems. Catadioptric imaging which utilizes the reflective nature of mirrors dur-

ing the acquisition process are designed such that their shape can achieve various tasks [Baker and Nayar,

1998]. In particular, the hyperboloidal shape provides practical wide-angle imaging with minimal distor-

tion and solves to the aforementioned challenges. This selected mirror shape will be further discussed in

the subsequent sections.

4.2 Problem Definition

In this section, we introduce the problem of sky imaging by stating the desired specifications and dis-

cussing the gaps between these requirements and current wide FOV imagers.
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4.2.1 Design Specifications

Prediction of cloud movement requires precise estimates of their velocities when they are at the periphery

of the field of view. For example, a cloud with a typical height of 1km and a velocity of 50 km/hr, will

cover an angle of tan−1 (25/1) = 87◦, in a camera’s view, over half an hour. If the sun is at the zenith,

to provide a reliable prediction half-an-hour in the future, we need a 174◦ field of view, as well as the

ability to precisely sense motion when the cloud is near the horizon. This provides us with our design

specifications: an imager with extremely large field of view approaching 180◦, while providing the ability

to detect and estimate cloud motion over the entire field. We interpret the second part of the specification

as one of providing uniform spatial resolution for the cloud as it appears and traverses the FOV of the

imager. While uniform resolution by itself is not a necessary condition (for example, we could ask for

higher resolution at the horizon over the zenith), it allows for a robust solution that can also accommodate

cloud creation events within the FOV.

4.2.2 Gaps in Current Sky Imagers

Current wide FOV imagers can be built with a fisheye lens or more commonly with a catadioptric system

where the sky is imaged through a hemispherical mirror. Such traditional sky imagers are not conducive

for long-term prediction due to their lack of resolution at the periphery of the imager. Specifically, in such

systems, an object placed at the zenith of the sky will appear to have a larger total spatial extent as opposed

to the same object at the horizon. Figure 4.1 visualizes this circumstance via a large checkerboard placed

above a simulated hemispherical mirror. The checkerboard, which has a length and width of 50 km, is

placed 2 km high above the mirror where each square is uniformly spaced at 1 km per square space. This

hemispherical setup shows that squares at the zenith of the imager appear larger compared to squares

at the periphery, despite their physical dimensions being the same. This compression of the squares at

the horizon translates to poor localization of clouds at the horizon in the world. Another related factor

is our ability to estimate motion. In current sky imagers, motion of clouds appear to be non-uniform

despite their physical speed being largely the same (since clouds are driven by wind), with large apparent

motion at the zenith and significantly smaller ones at the horizon. In more practical terms, the imagery in

current images only allow for precise estimates of cloud velocity only after it is significantly away from

the horizon; in turn, this limits the time horizon over which sun occlusions can be predicted.
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Figure 4.1: Simulated hemispherical imaging setup. A rendering obtained using Blender to visualize

the non-uniform resolution of a hemispherical mirror. (Top) We create a scene consisting of a checker-

board with a length and width of 50 km, placed 2 km high above the ground. Each square on the checker

board has physical extent of 1 km. (Bottom-left) Our imaging system consists of a pinhole camera ob-

serving the sky or the checkerboard indirectly through a hemispherical mirror. (Bottom-right) The image

observed on the camera has high resolution at the zenith of the image and significantly lower resolution

at the periphery.

4.2.3 Solution Outline

Our goal is to address the limitations of current sky imagers which achieve a large viewing angle at the

cost of two issues that limit long-term cloud motion prediction: lack of resolution at the horizon, and

non-uniformity of motion. How can the problem of non-linear motion and lack of pixel resolution be

circumvented?

Our approach relies on the insight that we can redesign the mirror used in a sky imager to spatially

redistribute the pixels with the eventual goal of having the same spatial resolution on a cloud over the

FOV of the imaging system—immaterial of whether the cloud is at the horizon or at the zenith. This

allows for early detection of clouds, as well as simplifies the motion estimation problem since the clouds

largely translate over the field of view.
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Figure 4.2: Catadioptric setup. Visualization of the equations presented in section 4.3

The second part of our solution, discussed in chapter 5, is an algorithmic technique for prediction over

time-horizons of tens of minutes. Part of the challenge here is the high-dimensionality of the input image

which makes any learning-based solution hard to implement due to compute and memory requirements,

as well as the need for a large amount of input data. To simplify this problem, we argue that cloud motion

due to wind is largely translational; hence, to predict the occlusion of the sun as well as solar irradiance

at future time instants, it is sufficient if we look at a spatial slice through the sun that is parallel to the

wind direction. While this likely misses out on predicting irradiance due to indirect skylight, it has all the

relevant information for predicting direct sunlight which is the dominant term in the overall irradiance.

Finally, we build and deploy a test bed, and collect a dataset of sky images over a period of months.

We evaluate our algorithms over this dataset, as well as a synthetic counterpart, in Section 5.

4.3 Mirror Design

We frame the problem of mirror design as one that flattens the sky image formed on the sensor. Figure

4.2 illustrates the relevant variables. Here, we delve into the derivation of the general mirror shape pro-

file, which share the same goals as [Baker and Nayar, 1998], followed by the specific solution for the

hyperboloidal case.

For a catadioptric system, it is desirable to have a single center of projection, also called the fixed

viewpoint constraint, for geometrically corrected images. This constraint requires that in 3D-space, the

catadioptric sensor only measures the intensity of light passing through a single point. This constraint
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Figure 4.3: Mirror shape comparison. We show the plotted equation of the line forming the hyper-

boloidal mirror shape. We also show the hemispherical shape as a comparison.

is laxed for the direction of light passing through this point. The location at which this 3D point is

sampled is known as the effective viewpoint. As shown in Figure 4.2(a), this constraint also requires that

each reflected ray of light that passes through the pinhole of the camera would have passed through the

effective viewpoint if not reflected by the mirror.

With Figure 4.2(a) and 4.2(b) as a visualization of the formation for these equations, we can now go

into the derivation of the fixed viewpoint constraint. The effective viewpoint 𝑣 = (0, 0) lies at the origin of

the 𝑧, 𝜌-axis in the 2D cartesian coordinate frame. The effective pinhole 𝑝 = (0, 𝑐) is located at the camera

height 𝑐. With this, the goal is to find the 2D mirror profile

𝑧 (𝜌) = 𝑧 (𝑥,𝑦) . (4.1)

Due to the fact that an incoming angle 𝜃 from the world intersects the mirror at a point (𝜌, 𝑧), we

assume that it also passes through the origin at 𝑣 and reflects at an angle 𝛼 . 𝛾 and 𝛽 are the angles between

the 𝑧-axis of the reflected and the normal at a point (𝜌, 𝑧) respectfully. Shown in Figure 4.2(b), this results

in the constraint that

𝜃 + 𝛼 + 2𝛽 + 2𝛾 = 180◦. (4.2)

Based on the law of reflection, 𝛾 = 90◦ − 𝛼 , which can be plugged into (4.2) to reach
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2𝛽 = 𝜃 + 𝛼. (4.3)

Taking the tan of both sides and using the sum of angles and double angle trigonometric identites

2 tan 𝛽
1 − tan2 𝛽

=
tan𝜃 − tan𝛼
1 + tan𝜃 tan𝛼

. (4.4)

We can now also define the relationship with these angles and the current geometry:

tan𝜃 =
𝑧

𝜌
. (4.5)

tan𝛼 =
𝑐 − 𝑧
𝜌

. (4.6)

tan 𝛽 =
𝑑𝑧

𝑑𝜌
, (4.7)

which can be plugged into equation (4.4) to get the fixed viewpoint constraint:

2
(
𝑑𝑧

𝑑𝜌

)
1 −

(
𝑑𝑧

𝑑𝜌

)2 =

(
𝑧

𝜌

)
−

(
𝑐 − 𝑧
𝜌

)
1 +

(
𝑧

𝜌
· 𝑐 − 𝑧

𝜌

) . (4.8)

The fixed viewpoint constraint can be rearranged into a 1𝑠𝑡-order differential equation in which the

solution can be found by solving it as a quadratic to obtain the expression for the surface slope. We can

ultimately find the general solution of the fixed viewpoint constraint in the form of two equations

(
𝑧 − 𝑐

2

)2
− 𝜌2

(
𝑘

2
− 1

)
=
𝑐2

4

(
𝑘 − 2
𝑘

)
(𝑘 ≥ 2) . (4.9)

(
𝑧 − 𝑐

2

)2
+ 𝜌2

(
1 + 𝑐2

2𝑘

)
=

(
2𝑘 + 𝑐2

4

)
(𝑘 > 0) , (4.10)

where 𝑘 = 2 exp𝐶 > 0, a constant, and 𝐶 is the constant of integration. As a result, equation (4.9) and

(4.10) form the mirror shape profiles as a 2-parameter function of 𝑘 and 𝑐. A number of solutions can

be created to construct the mirror profile using one of the two equations, however for the hyperboloidal

solution, equation (4.9) is used with values of 𝑘 > 2 and 𝑐 > 0.
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Figure 4.4: Simulated Hyperboloidal Mirror. (Left-to-right): Surface plot of hyperboloidal shape as a

line spun around it’s axis. Surface plot of final mirror shape. 3D mesh of mirror shape.

4.3.1 Hyperboloidal Solution with Perspective Camera

In the 2D (𝑧, 𝜌) cartesian frame, we initially specify the parameters critical for the mirror development.

Our basic setup is that of a pinhole camera with a sensor size of𝑤 = 12.5mm, placed at a distance 𝑐 = 1m

from the mirror, with a field of view of 𝑓𝑐 = 200mm, and mirror curvature of 𝑘 = 38. These choices are

based on design considerations for the final implementation where we need the camera to be sufficiently

far away so as to avoid blocking a significant portion of the FOV. The long focal length also allows us to

effectively mimic the pinhole camera with a lens-based counterpart. The mirror has a shape 𝑧 = 𝑓 (𝜌),

where 𝜌 is the radial distance over the ground plane. We make an additional assumption that the cloud is

at some height ℎ; the exact height of the clouds do not play an actual role as we will assume that ℎ ≫ 𝑐

and so only the tangent of the angle subtended by the cloud at the mirror matters. With this, we formulate

the mirror design as one of designing the profile 𝑓 (·) such that the effective sky to sensor mapping is

a scaling operation over the desired field of view. Effectively, we are scaling the FOV of the camera—

which is 𝜃𝑐𝑎𝑚 = 3.58◦—by a constant spatial factor to achieve a target FOV 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 = 170◦ and focal length

𝑓𝑡 = 546.8𝑚𝑚. The detailed derivation of the hyperboloidal solution starts by modeling rays coming from

the world. Every incident ray coming from the world hits the mirror at an angle

𝜃𝑜 = 𝑎𝑡𝑎𝑛

(
𝜌𝑣𝑒𝑐 ·

𝑤𝑐

𝑓𝑡

)
, (4.11)

with the desired outgoing ray being reflected at the mirror surface at a point 𝑃 and reaching the pinhole

of the camera at an angle

𝜃𝑖 = 𝑎𝑡𝑎𝑛

(
𝜌𝑣𝑒𝑐 ·

𝑤𝑐

𝑓𝑐

)
. (4.12)

As a result,
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Figure 4.5: Simulated hyperboloidal imaging setup. Simulated case visualizing the uniform resolution

of our hyperboloidal mirror. (Left) The same parameters as Figure 4.1 with the proposed mirror replacing

the hemispherical mirror. (Right) Observe how the checkerboard resolution is spatially uniform—a con-

sequence of the system acting as overall scaling operation.

𝜃𝑛 =
(𝜃𝑜 − 𝜃𝑖 )

2
, (4.13)

where 𝜌𝑣𝑒𝑐 is the radial distance along the 𝜌-axis to the point at which the reflected ray reaches the

sensor. Now, we can combine the equations to formulate the desired results. The point 𝑃 at the intersection

of a ray and the mirror surface can be represented as the 2D parameter:[
−𝑧 (𝜌) ·

(
𝜌𝑣𝑒𝑐 ·𝑤𝑐

𝑓𝑐

)
, 𝑧 (𝜌)

]
. (4.14)

The gradient at this point can be represented as the 2D parameter:[
−∇𝑧 (𝜌) ·

(
𝜌𝑣𝑒𝑐 ·𝑤𝑐

𝑓𝑐

)
− 𝑧 (𝜌) ·

(
𝑤𝑐

𝑓𝑐

)
,∇𝑧 (𝜌)

]
. (4.15)

With these points, we can set

tan𝜃𝑛 =
−∇𝑧 (𝜌)

−𝑧 (𝜌) ·
(
𝜌𝑣𝑒𝑐 ·𝑤𝑐

𝑓𝑐

)
− 𝑧 (𝜌) ·

(
𝑤𝑐

𝑓𝑐

) , (4.16)

which can be simplified to reach,



4.3. MIRROR DESIGN 41

0 0.2 0.4 0.6 0.8 1
radial displacement / max. radius

0

1

2

3

4

5

6

ta
n 

( 
ha

lf 
F

O
V

 )

45°

63°

72°

76°

79°

81°hemisphere
hyperboloid

Figure 4.6: FOV of real setup. (Top) By placing a light source at various heights along the frame

of our real setup, we are able to measure the FoV that the hyperboloidal (left) and hemispherical (right)

mirror sees. Within the legend, the left column represents the height of the light source from the base of

the system and the right column represents each FOV. (Bottom) Field of view of the sky (in tangent of

angle) as a function of radial distance from center for the hyperboloidal and hemispherical mirrors in our

deployed system.
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∇𝑧
𝑧

= −

(
𝑤𝑐

𝑓𝑐

)
· tan𝜃𝑛(

𝜌𝑣𝑒𝑐 ·𝑤𝑐

𝑓𝑐

)
· tan𝜃𝑛 − 1

. (4.17)

We can integrate the right hand side of the equation (4.17) such that

ln 𝑧 (𝜌) − ln 𝑧 (0) =
∫ 𝜌

0
(·) 𝑑𝜌. (4.18)

This equation can be solved using the cumulative sum of all values. With this, we can formulate the

range for 𝜌 as [
min

(
−𝜌𝑣𝑒𝑐 · 𝑧0

(
𝑤𝑐

𝑓𝑐

))
,max

(
−𝜌𝑣𝑒𝑐 · 𝑧0

(
𝑤𝑐

𝑓𝑐

))]
. (4.19)

𝑧0 = 𝐻 · exp
(∫ 𝜌

0
(·) 𝑑𝜌

)
, (4.20)

where 𝐻 = 1, the camera height in meters. To determine the mirror shape, we use a numerical

procedure where we solve for the axial profile 𝑓 (·) by densely ray tracing over the image plane. With

this, we also have the constraint that the ray — after mirror reflection — behaves like a pinhole camera

with the target field of view. This provides a constraint on the derivative of 𝑓 (since the surface normal is

determined by the normal). Integrating this derivative provides us with the desired shape. A visualization

of the resulting mirror shape is shown in Figure 4.4.

In Figure 4.5, we use Blender to render an identical setup as Figure 4.1, but with the hyperboloidal

shaped mirror. Our mirror achieves a uniform image of the checkerboard while maintaining a large FOV,

showing that we are able to image the sky with uniform resolution. As is to be expected, this design also

enables uniform motion estimates throughout the whole FOV of the imager.

For the real setup, we measure the FOV by placing a light source at various distances from both

mirrors. We show the comparison between the hemispherical and hyperboloidal mirror in Figure 4.6.

4.4 Testbed

We now describe our imaging setup in the context of our hyperboloidal-based mirror.

4.4.1 Simulation Setup and Dataset

We initially evaluate and report results of our setup and methods on simulated data which achieves the ide-

alized scenario of a real-world setup with known parameters. The platform used to develop our simulated
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Figure 4.7: Simulated dataset samples. Various images captures from the synthetic dataset. (Top)

Captures from hemispherical setup. (Bottom) Captures from hyperboloidal setup. Each column is cap-

tured at the same time instant

data is Blender which uses the same catadioptric setup as in our real-world data. In Blender, the Pure-Sky

Pro package which simulates an array of cloud formations inspired by [lin, [n.d.]] is used. Although not

modeled as mathematically in-depth as a large-eddy simulation [Mason, 1994], Pure-Sky Pro is accurate

to the scale of this simplified simulated application. The package does allow for the modification of cloud

dynamics such as how warm/cold air affects cloud evolution.

Using the computer generated hyperboloidal-mirror shape, as shown in Figure 4.5 placed with a reflec-

tive mirror material property, we capture simulated data on various cloud scenes with a sampling period

of 𝑇0 = 30 seconds. We also capture the same data using a hemispherical mirror, as in Figure 4.1, with

the same parameters. These cloud scenes include randomized cloud parameters across a 28 day period

from 8AM to 5PM based on real-world factors such as wind, hot/cold air patterns, and sunlight. Images

of simulated data for both mirror setups are shown in Figure 4.7. Even in the simulated case, the benefits

of our hyperboloidal imaging setup are clearly shown compared to traditional hemispherical imagers.

Physical prototype. To develop a physical prototype for our mirror, we began by computationally plotting

the equation of a line for the mirror shape as described in Section 4.3 and visualized in Figure 4.3. Due

to rotational symmetry, a surface of revolution can be formed about the vertical 𝑧-𝑎𝑥𝑖𝑠 to create the 3D
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Figure 4.8: Deployed testbed. Our deployed test bed with a detailed visualization of mirror placement

of the hyperboloidal mirror and hemispherical mirror.

shape of the hyperboloidal mirror. Now, armed with the mirror shape as a 3D surface, we can export the

3D shape to a format suitable G-code that can be used to fabricate metal using a Computer Numerical

Control (CNC) machine. We experimented with 2 types of metal – aluminum and steel – and nylon

polymer (plastic). The choice of material affected how obtainable it would be to get the surface reflective

enough to be used in a catadioptric imaging setup. Steel is harder than aluminum which makes obtaining

a reflective surface via polishing, grinding, or material subtraction more difficult than aluminum.

We initially attempted to obtain a reflective surface for the metal pieces by manually grinding the

surface using sandpaper ranging form coarse-to-fine grit. After, we applied a polishing agent to buff

the surface and reach the desired result. This method allowed us to obtain a reflective surface on the

aluminum piece, but when placed in direct sunlight for image acquisition, the resulting image displayed

severe artifacts which made it difficult for any inference. We deduced that grinding the surface of the

metal using sand paper created micro-grooves within the surface. When imaged under bright scenes such

as sunlight, this created a diffraction grating affect that oversaturated the whole image. We were then

tasked with going back and figuring out another method of obtaining a reflective surface on the metal

without any material subtraction methods such as sanding.

After much research, we found a solution that obtained a reflective mirror surface via a chemical
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Figure 4.9: Sample failed mirrors. Examples of failed attempts when applying the reflective chemical

deposition on the surface of steel, aluminum, and plastic pieces.

deposition process that is commonly used to coat diffuse plastic and metallic surfaces [sil, [n.d.]]. This

process was very tedious and required precise mixing of numerous chemicals to obtain the desired results.

Figure 4.9 shows failure cases on aluminum, steel, and plastic which was a cause of incorrect application.

After many trials, we were able to coat the aluminum mirror with this chemical process and proceeded

with our proposed imaging setup.

For image acquisition in our proposed solution, we utilize an RGB camera mounted on a cuboidal

frame above the mirror. The mirror itself lies on the horizontal axis of the frame and coupled with a

mini PC, captures sky images with a sampling period 𝑇0 = 30 seconds. To minimize any nearby building

occlusion, our imaging device is placed on a building roof and captures data continuously during daylight

with a frequency of 𝑇0. We also included a second-connected system with a hemispherical mirror for

evaluating improvements of our proposed method. To handle the large dynamic range of the sky, due to

the sun, we capture images using exposure bracketing and fuse them to get a single HDR image. The top

of our system also includes a pyranometer that captures solar irradiance in the form of global horizontal

irradiance (GHI) with the same 𝑇0 interval. This setup is shown in Figure 4.8.

Comparison To Other Sky Imager Systems To highlight the benefits of our single-viewpoint catadiop-

tric system with our mirror shape, we note the key differences of other possible solutions. In terms of
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imaging setup - one could utilize a multiple camera system that images the sky in different directions and

composites the individual images together [Brown and Lowe, 2007, Dong et al., 2022, Nghonda Tchinda

et al., 2023]. This, in theory, should limit the distortion caused by a fisheye lens. However, this increases

costs due to multiple cameras being involved, another step needed to stitch images together, and the lack

of mobility due to recalibration of the camera clusters if moved. Our system overcomes the challenges

faced by other solutions by utilizing a simple and inexpensive single camera approach.

4.4.2 Dataset Collection

Figure 4.10 shows a gallery of real images captured from our setup. These images are captured from our

hyperboloidal mirror and a hemispherical mirror at the same time instant. Similar to the simulated data,

the real images achieve the benefits of using the hyperboloidal shaped mirror. We are able to see more

clouds within a single capture and the motion is more translational through time. Imagery from October

20th, 2023 to March 5th, 2024 is collected for this dataset. We excluded days that were entirely cloudy or

completely clear skied, so as to remove scenarios where GHI is nearly constant over the entire day. This

left us with 76 days worth of data with most days having partly cloudy conditions.

4.4.3 Pre-processing

Before we can apply learning-based techniques on this dataset, we need to perform certain operations

on it. In particular, knowledge of the sun as well as the wind velocity at each frame is helpful for the

algorithms we describe in the subsequent chapter.

Sun localization. As a crude pre-processing step, we use the shortest exposure in our HDR stack to

estimate the location of the sun. This makes identification easier as the sun is most likely the brightest

object within the scene at a low exposure. However, this technique fails when the sun is occluded by

clouds or when there are other bright reflections from other objects in the scene. To get a robust estimate,

we pool the data across multiple days of maximal saturation and reject outliers using RANSAC. This

provides a sun estimate as a function of daytime where occluded sun estimates are filled by fitting a

polynomial function over sun locations identified by maximal saturation. Of course this will fail for

incorrect predictions; therefore manual identification is required for some cases.

On an aside, the location of the sun in absolute angular coordinates with respect to the zenith of the sky

can be analytically computed given the latitude and longitude of the testbed. We can in principle map such

elevation and azimuthal position of the sun to the image plane coordinates via a calibration procedure. We
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Figure 4.10: Real dataset gallery. Real images captured from various dates and weather conditions.

(Odd-rows) Images from the proposed hyperboloidal setup. (Even-rows) Images from the hemispherical

setup. Each column is captured at the same time instant. The cropped cloud in the red box in both images

show the benefit of our mirror being able to image a cloud much further out.
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opted for a simpler approach which does not require what we felt was a complicated calibration problem

that had to account for the mirror shape.

Wind velocity estimation. Another useful information for the learning-based formulation that we will

present next is the direction of wind velocity. A challenge here is that clouds are largely featureless, which

makes traditional optical flow techniques fragile. Further, there are features in our field of view which

are constant, for example buildings at the periphery and the frame used to hold the cameras. These static

features bias the optical flow estimates especially since they are also high contrast ones.

To overcome these effects we use the mask to suppress the static regions and run the optical flow

technique proposed by Liu [Liu, 2009] with very a strong weight associated with the spatial regularization

term. Finally we use an aggressive temporal median filter on the estimated optical flow across frames to

ensure a smooth flow field.

4.5 Discussion

Leveraging the benefits of our hyperboloidal-shaped mirror in a catadioptric imaging system, we are

able to image the sky with uniform spatial resolution over the wide FOV of the imager. Now, we can

exploit these benefits by discussing algorithms that can make accurate predictions over longer forecasting

windows compared to traditional hemispherical imagers. We present these algorithms and results in the

subsequent chapter.
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In the previous chapter, we presented the design and deployment of a hyperboloidal-shaped mirror in a

catadioptric sky imaging setup to optically redistribute pixels over the FOV. In this chapter, we present

algorithms that exploit the benefits of this optimal setup for accurate long-term irradiance forecasting.

By using our mirror design, we show that we can see further out clouds, maintain resolution, and limit

non-linear apparent motion which therefore improves predictions over the traditional hemispherical setup.

The sudden rise and fall of received solar irradiance at the ground within a short period of time is

crucial information for electricity grid operators to mitigate disruptions in power output. This event, also

called a ramp event (RE) [CUI, 2017, Godfrey et al., 2010], is influenced by the occlusion state of the

sun by a cloud. This is necessary to forecast and can be achieved through prediction of cloud trajectory.

Thus, we show the benefits of utilizing our hyperboloidal-based imaging system and focus on a suite of

algorithms that can exploit these benefits to better predict RE’s.

5.1 Space-Time-Slice Image

The key benefit of having uniform apparent motion of clouds when using our system is that we are able

to linearly back-trace the trajectory of clouds through time to attenuate a cloud’s projected path toward

the sun. We can interestingly use this fact and state that the only part of the image that is important is

the sun and clouds that are moving towards it. We can disregard other parts of the image and simplify

this problem. This will be done through the use of space-time-slices which summarizes cloud patterns

throughout a day by simply using a single image (see Figure 5.1). A space-time-slice image takes a

narrow-band slice of a full sky image and horizontally stacks the slices through time to form a single

image. Each slice is taken from a distinct image at time instance 𝑡 where the horizontal x-axis of the final

space-time image represents time and the vertical y-axis represents space. We briefly describe how we

create the space-time image.
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Figure 5.1: Simulated space-time-slice. We show that a cloud at time instance 𝜏 will occlude the sun

at time instance T based on some angle 𝜃 . If we take use this fact, we can take this cloud at 𝜏 and warp it

to where it will be in the future at T+N. This is the intuition behind our non-learning approach and how

we warp the images as input to our learning-based models.

For each time instant for a single day, the x and y coordinate of the sun is initially identified. Next,

the general direction of cloud motion (𝜃 ) through time is obtained. We take a sun-centered slice of the

image in the direction of cloud motion for each time instant and horizontally concatenate these images

through time to formulate the space-time image. Figure 5.3 visualizes each described state and shows the

resulting space-time images.

For the case of the simulated sky images, we are benefited by having the ground truth sun location,

direction of cloud motion, along with the binary sun occlusion state. Therefore, we have the necessary

parameters for an ideal space-time-slice image. Figure 5.3 shows this space-time image and compares

the image obtained from our system to the hemispherical-based system. Our system clearly achieves the

desired linear apparent motion and is the ideal case for predicting sun occlusion discussed in section 5.2.1.

For the real images, however, ground-truth parameters are not given and are estimated. Sun location

and general cloud direction is identified using the methods described in sub-section 4.4.3. In the real-

world environment, cloud motion direction and velocity is not static and changes through time. We use

an aggressive temporal median filter on the estimated optical flow across frames to ensure a smooth flow

field and select a single (𝜃 ) for the whole day. We present sample space-time slice images for the real

case in Figure 5.9.
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Figure 5.2: Simulated space-time-slice comparison. (Top) Space-time-slice image produced from

hyperboloidal setup. (Bottom) Space-time-slice image produced from hemispherical setup. Notice the

linear streaks present in the hyperboloidal case which can be exploited via our algorithms in Section 5.2

for accurate occlusion and irradiance prediction.

5.2 Real Setup

We now present non-learning and learning based algorithms that exploit the advantages of our optimal

mirror setup.

5.2.1 Non-Learning Occlusion Prediction

Given that the ground-truth parameters for the simulated images are available, we are able to perform

non-learning based sun occlusion and show the benefits of our setup.

Back Projected Sun Occlusion Prediction

Looking at the space-time image produced by our hyperboloidal shaped mirror, the linear streaks of clouds

whose trajectory through time occludes the sun at the center of the space-time image, can easily be seen.

Due to the non-linearity of the apparent motion within the hemispherical images, these space-time images

do not have the same effect (Figure 5.2). We can use this and make the assumption that a cloud that

occluded the sun at a time instant 𝑇 is the same cloud that is at a location 𝑣 on the image such that:

𝑣 = 𝜏 tan𝜃 (5.1)
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Figure 5.3: Space-time-slice image creation. (Top) Space-time image. (Middle-left-to-right) We

visualize the non-learning steps for occlusion prediction. We take some window out of the original space-

time image, warp it based on the optimal 𝜃 , convert it to a new color space based on [Li et al., 2011] and

plot the mean through time. Red points show ground truth occlusion states. (Bottom-left-to-right) We

show how space-time-slices are extracted based on the wind direction. The bottom far right shows the

space-time image produced by the hyperboloidal mirror on the top and the hemispherical mirror on the

bottom.
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Figure 5.4: Forecasting results. We compare learning and non-learning based approaches for binary

sun occlusion states on the simulated data. Using 90% as an AUC value for confident predictions, this plot

clearly visualizes the stark difference in prediction that we are able to obtain. Looking at the learning-

based approaches, for the hemispherical-based mirror, we are limited to a confident forecasting window of

around 3 minutes. Compared to hyperboloidal mirror which is able to achieve confident forecasts around

18 minutes into the future.

Where 𝜏 = (𝑇 − 𝑡) is the time displacement from 𝑇 along the horizontal x-axis. If we sweep over a

range of 𝜏 and obtain the slice warped to the current location of the sun at 𝑇 based on Equation 5.1, this

results in a new image which, although seemingly meaningless, actually obtains information about the

future sun occlusion states.

We take this warped image, and then convert it to a new color space that can easily contrast cloud

versus non-cloud pixels [Li et al., 2011]. The mean of this image along the y-axis is computed and used

to identify the binary sun occlusion state. As shown in Figure 5.3, dips in the plotted mean relate to sun

occlusion states.
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Figure 5.5: Summary of proposed method. We present a computational imaging system based on

a catadioptric combination of mirrors and cameras. We initially capture a set of sky images and corre-

sponding irradiance values, extract spatio-temporal slices from each image (reference section 5.1) and

forecast future irradiance values via a 2-part learning pipeline that pre-trains on reconstruction followed

by fine-tuning for irradiance forecasting. The benefit of our hyperboloidal-based mirror which delivers

wide-angle imagery with uniform spatial resolution of the sky over its field of view enables more accurate

prediction over a longer time horizon than traditional hemispherical imagers.
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It should be noted that to find the optimal 𝜃 , we sweep over a range of empirically chosen 𝜃 =

[60◦, 85◦]. Instead of computing the mean, we use the standard deviation and attribute the lowest value of

the standard deviation to the optimal 𝜃 and warp the image by that value using equation 5.1.

To obtain metrics in terms of accuracy of the sun occlusion state, we employ the receiver operating

characteristic (ROC) curve to obtain the optimal threshold for deciding the occlusion state. We then look

at accuracy through time for future time steps using the area under the curve (AUC) which provides an

accumulated measurement of performance across all classification thresholds.

5.2.2 Learning-Based Occlusion Prediction

We believe that tasking a learning-based system to learn the dependencies of the space-time image to

predict a future sun occlusion state will yield better results than a non-learning approach.

Neural Occlusion For Simulated Images

Non-learning based prediction of sun occlusion is limited by the dimensionality of the space-time image.

As a result, the time prediction to 𝑇 + 𝑁 of a sun occlusion is capped at a certain value of 𝑁 which is

based on 𝜃 . Using a simple CNN-MLP, we are able show that a learning-based method can learn the

dependency between spatial cloud locations at 𝜏 along with 𝜃 to predict the sun occlusions state for a

future time instant. Our model is fed the warped image consisting of 𝜏 space-time-slices and produces a

(1 ×𝑇 + 𝑁 ) vector which are the binary occlusion state predictions from 𝑇 + 1 to 𝑇 + 𝑁 . Our model is

trained end-to-end using binary cross entropy as the loss function. We present comparable results to the

non-learning approach for both mirrors in Figure 5.4.

Neural Occlusion Prediction For Real Images

For the real images, we utilize a different approach. Instead of directly predicting the binary occlusion

state of the sun, we predict the solar irradiance at a future time instant which directly correlates to sun

occlusion. Global Horizontal Irradiance (GHI), the total amount of solar irradiance received at a location

horizontal to the Earth’s surface is measured using a pyranometer in the units of watts per meters-squared(
𝑊 /𝑚2) . As shown in Figure 5.10 a decrease in GHI directly correlates to the occlusion of the sun by a

cloud and therefore can be used as a prediction method for real images. GHI is predicted as opposed to

the direct sun occlusion state due to the fact that we do not have the ground truth occlusion state for the

real images. Overall, GHI is a better value to predict than occlusion state due to the fact binary occlusion

state has no notion of how occluded the sun is by a cloud. GHI provides this quantifiable intensity value.
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Our learning pipeline for forecasting GHI is 2-fold and very similar to [Goswami et al., 2024] being

that we first pre-train our model on masked-input reconstruction followed by fine-tuning for prediction.

Our model architecture uses a transformer encoder [Raffel et al., 2019] and instead of a transformer-based

decoder, we use a simple lightweight reconstruction head for pre-training and a forecasting head for fine-

tuning. Both of these heads are small multi-layer perceptrons (MLPs) consisting of linear and dropout

layers.

Pre-training. During pre-training, we use information from our space-time slices along with their as-

sociated GHI values as input {𝜏 ; 𝐺𝜏 . . . 𝐺𝑇 }. The input space-time slice image is sent to a small image

encoder consisting of 5 convolution layers where each layer is followed by a ReLU and 2D Maxpool;

except for the last layer. This results in a latent embedding (𝐾) consisting of 2-channels that encapsulates

the information from the space-time slice image. Concurrently, for the associated GHI values, we employ

masked-input reconstruction where, during training, 25% of the input is masked-out and replaced with a

learnable mask embedding. Theoretically, we treat this input GHI as a time series data where information

about the current cloud conditions are added via the space-time slice images. The masked GHI is fed into

a patch embedding layer similar to [Dosovitskiy et al., 2021] and the resulting latent embedding (𝐼 ) is

concatenated with 𝐾 and passed into the transformer encoder. The encoder passes its learned output to

the reconstruction head which reconstructs the original masked input.

Overall, the goal of this pre-training is to allow the model to learn a representation of the original GHI

with cloud information present in the space-time slice image. Figure 5.5 presents a visual of the described

steps.

Fine-tune forecasting. The goal of fine-tune the model to the task of forecasting is to use the pre-trained

learned representation of a space-time slice image and its associated GHI value. During fine-tune training

for forecasting, we replace the reconstruction head with a forecasting head. The forecasting head is again

a lightweight MLP consisting of a dropout and linear layer. Every other weight parameter of the model is

frozen during fine-tuning except for the forecasting head. The model takes the same input of the space-

time slice image and its associated GHI values {𝜏 ; 𝐺𝜏 . . . 𝐺𝑇 }. However, instead of reconstructing the

original input, the model predicts the GHI at future time instances: [𝐺𝑇+1 . . . 𝐺𝑇+𝑁 ]. The goal of this is to

limit the amount of trainable parameters for the task of forecasting all while using the high-level features

and learned weights from the encoder. Both pre-trained and fine-tuned models utilize mean-squared error

(MSE) as loss functions.
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Figure 5.6: Real forecasting comparison. This figure shows the outperformance of the hyperboloidal

mirror. Our mirror is able to achieve lower forecasting error longer into the future compared to the

traditional hemispherical mirror. Both models are trained using the model described in section 5.3.2

which is fed 30 minutes of past data to predict 30 minutes of GHI. As a baseline comparison, we compare

both imaging setups to the persistence model which states that the irradiance value will remain unchanged

over the forecasting horizon (𝐺𝐻𝐼 𝑡+Δ𝑡 = 𝐺𝐻𝐼𝑡 ). Our model still outperforms the persistence model longer

into the future.

5.3 Evaluation

In this section, we present results from the above algorithms for both the simulated and real data.

5.3.1 Simulations

For experiments on the non-learning based sun occlusion prediction for the simulated data, we use 100

minutes (𝜏 = 200) of past data to predict 30 minutes (𝑁 = 60) of sun occlusion state values, in 30 second

intervals. Using the algorithms expressed in section 5.2, we achieve promising results.

As seen in Figure 5.4 we able to obtain reliable occlusion predictions up to ≈ 18 minutes into the
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future compared to the hemispherical mirror that is only able to maintain solidified predictions to ≈ 3

minutes. Learning-based methods for occlusion prediction provide the best results, providing greater

improvement over the back projected method. For the hyperboloidal mirror we benefit with even greater

accuracy, longer through time, all while still substantially outperforming predictions obtained using the

hemispherical mirror. For comparison, we experimented using a Transformer-based architecture on the

simulated data with the same inputs. Simulated results clearly show the benefit of using a hyperboloidal

mirror setup coupled with a learning-based system for long-term prediction of sun occlusion by a cloud.

We now present real-world results and show the benefits of using our system.

5.3.2 Real Data

For experiments using real data, we pass 30 minutes (𝜏 = 60) of data to predict 30 minutes (𝑁 = 60) of

GHI, in 30 second intervals. Although as not ideal as in the simulated case, results from the real case still

achieve GHI prediction performance over the hemispherical mirror. For our accuracy metric, we use the

normalized root mean-squared error (nRMSE):

𝑅𝑀𝑆𝐸 =

√︄∑𝑁
𝑛=1 (𝑦𝑛 − 𝑦𝑛)2

𝑁
. (5.2)

𝑛𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸/

√︄∑𝑁
𝑛=1 𝑦

2
𝑛

𝑁
, (5.3)

where𝑦𝑛 , 𝑦𝑛 is the predicted GHI and true GHI, respectfully. A lower value equates to a more accurate

prediction.

We present results of prediction values in Figure 5.6 which shows that we are able to predict GHI

longer into the future with lower error compared to the hemispherical mirror. We also present sample

GHI predictions in Figure 5.7.

As a baseline comparison, we compare results from our hyperboloidal mirror and hemispherical mir-

ror to the naive persistence model. Persistence says the current value will remain the same for future

values, i.e.:

𝐺𝐻𝐼 𝑡+Δ𝑡 = 𝐺𝐻𝐼𝑡 . (5.4)
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Figure 5.7: Sample GHI Predictions. We present sample GHI predictions for the hyperboloidal mirror

and the hemispherical mirror. (Left) we input 8 minutes of data into the model to predict 10 minutes of

GHI. (Right) We input 30 minutes of data to predict 30 minutes of GHI. For the hyperboloidal mirror, we

not only predict the GHI trend close to the ground truth but we are also able to predict the sharp event of

when GHI decreases.

5.4 Model Ablation

In Table 5.1, we present a brief ablation study that shows how different model architectures and variations

to the input affect prediction results. The Transformer model is the proposed architecture in this Chapter.

We wanted to feed the model the prediction information and exploit the benefits of our hyperboloidal

setup. "Combined" concatenates the space-time-slice image from the hyperboloidal and the hemispher-

ical mirror in the channel dimension. ”Combined” concatenates the space-time-slice image from the

hyperboloidal and the hemispherical mirror in the channel dimension. The hyperboloidal imager captures

long-term predictions compared to the hemispherical imager. What information can be learned if we com-

bined both images in an attempt to improve prediction results? That is what this input variation attempted

to understand. The Seq2Seq model exploits recurrence in the form of gated recurrent units (GRUs) to

model the sequential aspect of the space-time-slice images along with the associated GHI. When com-
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Model Data 1 min 5 min 10 min 15 min 20 min 30 min

Persistence GHI alone 0.191 0.267 0.300 0.323 0.340 0.336

Seq2Seq GHI alone 0.169 0.233 0.265 0.287 0.304 0.307

Seq2Seq Hyperboloidal + GHI 0.179 0.227 0.248 0.260 0.277 0.277

Seq2Seq Hemispherical + GHI 0.185 0.227 0.239 0.255 0.271 0.270

Transformer Hyperboloidal + GHI 0.191 0.227 0.230 0.246 0.266 0.289

Transformer Hemispherical + GHI 0.192 0.236 0.250 0.258 0.273 0.284

Transformer Combined + GHI 0.183 0.223 0.239 0.252 0.259 0.268

Transformer Hyperboloidal Warped + GHI 0.189 0.233 0.266 0.294 0.303 0.319

Transformer Hemispherical Warped + GHI 0.190 0.236 0.253 0.294 0.310 0.341

Table 5.1: Model ablation. We present comparison results on various models trained and tested on

the same datasets. The Transformer model is the proposed architecture in Chapter 5. "Combined" con-

catenates the space-time-slice image from the hyperboloidal and the hemispherical mirror in the channel

dimension. The Seq2Seq model exploits recurrence in the form of gated recurrent units (GRUs) to model

the sequential aspect of the space-time-slice images along with the associated GHI.

paring these models using nRMSE as a prediction metric, no architecture clearly stands out. This could

be due to each model learning and focusing on different aspects of the input, leading to variations of the

predicted outputs. In Figure 5.8, we question if pre-training is necessary. Therefore, we skip pre-training

the model on masked-input reconstruction and only train our model end-to-end on the task of forecasting

future GHI. The input is the same space-time-slice image along with the associated GHI values with the

goal of now predicting future GHI values.

5.5 Discussion

This chapter argues for a novel system that brings core computational imaging techniques to a compelling

problem in renewable energy. This chapter provides a pathway to improve the time horizon over which we

can reliably forecast solar irradiance; specifically, over conventional wide FOV systems, we can improve

predictions from minutes to tens of minutes. We expect such a prediction framework to be of wide interest

in the solar photovoltaics community, where resource allocation and energy dispatch is often done in the

absence of such predictive analytics. Finally, on a broader scale, we hope the techniques suggested in this
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Figure 5.8: No pre-training forecasting comparison. This figure presents results from our learning

pipeline without pre-training i.e. we only train end-to-end on forecasting future GHI values given a space-

time-slice image and associated past GHI values as input. Our hyperboloidal mirror is still able to achieve

lower forecasting error longer into the future compared to the traditional hemispherical mirror and the

persistence model.

chapter continue to incite the interest in applications that lie at the intersection of imaging and climate

change.

Cloud formation and disappearance. One of the factors that we fail to consider in this chapter is that

clouds form and disappear based on changes in humidity, temperature, and pressure. This violates the

slicing model used in this chapter, in part because clouds can appear in the middle of the field of view, or

disappear as it traverses the field. In our testbed, this happens frequently at a particular spot that is over a

water body, a few miles from the deployed system. The spatial consistency of the cloud formation suggests

that statistical models that have a better understanding of how clouds form and terminate, augmented with

other sources of data such as weather, humidity and the geographic layout of the surrounding regions,

might have a better chance in handling the effects.
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Figure 5.9: Real space-time-slice images. We show resulting space-time-slice images from captured

from our real setup. (Top) a result of selecting 𝜃 = 65◦ while the bottom is 𝜃 = 85◦. To forecast GHI, we

select 𝜃 [65◦, 85◦] in +5◦ increments.

Self-occlusion by clouds. Another factor that we fail to consider is that clouds have vertical extent, and

hence a cloud closer to the camera may block one that is further away. This shows itself in the form of

radial streaks in Figures 4.7 and 4.10. This is a hard problem to resolve in the absence of additional view

points. It is likely that a multi-camera version of our system with a baseline in kilometers will be able to

reason such occlusions and handle them effectively.

Incorporating other data sources. The techniques proposed in this chapter will also benefit from other

richer sources of data such as satellite imagery, weather prediction, and humidity measurements. Such

sources of data are often publicly available; however, each of them have unique features that need to be

accounted for. For example, satellite data that provides very large spatial extent, has very poor temporal

resolution, often in minutes, if not hours. Further, the ground spatial resolution of such data is in meters,

which may not be sufficient for the kind of prediction we envision. Wind velocity, which is often available

from weather data, is something we can benefit from. However such measurements are often made at

ground level, and at very sparse locations, which limits their utility, since atmospheric wind velocities

differ from ground measurements. Yet the role that temperature, humidity, and more broadly the weather

play in forecasting cannot be denied. Translating such models to near-future time horizons and higher

precision that is demanded for solar forecasting is an interesting approach for subsequent research.
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Figure 5.10: GH with images. We show sample GHI values based on cloud conditions

Figure 5.11: Adverse weather conditions. We show examples of adverse weather conditions captured

from our real setup of rain (top) and snow (bottom).





6Conclusion

6.1 Thesis Contribution

Solar irradiance forecasting is they key to increasing the penetration of solar energy into the electricity

grid at all scales. By framing this forecasting challenge as an imaging problem, we can directly observe

the primary factor limiting solar irradiance—cloud occlusion of the sun—and make accurate forecasts

of future conditions. The information within these images provide us with rich information necessary

to understand how the influence of cloud cover affects the amount of irradiance received at the ground.

By leveraging learning-based algorithms and novel imaging systems we can increase this prediction even

further

Overall, we have contributed to solar irradiance forecasting by applying a computational imaging

approach. Through the work of this thesis:

• We achieved longer forecasting times when modeling cloud evolution in sky images by initially

spatially-warping sky images during training; facilitating to longer-forecasting of cloud evolution.

We showed that warping these images countered the adverse affects of resolution loss near the

horizon in traditional sky imagers. We also learned a deep neural network that took multiple sky

images in as input and predicted the next frame accurately. With this, we were able to demonstrate

the ability to accurately forecast sky image frames with higher resolution metrics than previous

cloud forecasting methods.

• We presented a different approach of tackling the problem of non-linear apparent motion present

in traditional hemispherical sky imagers. By optically redistributing the pixels in a wide FOV

catadioptric imaging system, we were able to image the sky such that we maintained uniform spatial

resolution over the entire FOV of the device. As a result, the motion of the clouds are equally

perceptible, be it at the zenith or the horizon.
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• Using our deployed catadioptric imaging system, we were able to capture months of data which

enabled us to create a large testbed for inference. With our dataset of real and simulated sky images

captured from our hyperboloidal setup, we show that our ability to estimate cloud trajectory is im-

proved over traditional methods even when a cloud is farther away. Via learning and non-learning

algorithms, we show that our system provides precise prediction of sun occlusion and solar irradi-

ance over a time horizon of tens of minutes ( 30 minutes for the simulated data, and 10-20 mins for

the real system).

6.2 Future Work

The work of this thesis provides a fundamental advance to solar irradiance forecasting using core compu-

tational imaging. Further work in this space can build upon the presented ideas in the following areas.

6.2.1 Improved Mirror Fabrication

It is necessary to develop a catadioptric imaging system in which the mirror that is used is highly reflective

and free from imperfections on the surface. Within this thesis, I attempted to achieve these goals using 2

methods: material subtraction and a chemical addition process. Material subtraction attempts to make the

diffuse metallic surface as reflective as possible by polishing until the desired reflection is obtained. This

can be done through sanding by hand or with a machine such as a lathe or grinder. A major limitation when

using these methods is that they leave scratches and imperfections on the surface of the mirror. Utilizing

this in an imaging setup in which the sun is very bright creates strong artifacts in the resulting image

which limits inference tasks. Also, removing too much material from the surface is a problem which could

overall alter the shape of the mirror; removing the tight tolerances required during fabrication. Therefore,

more advanced material subtraction methods are necessary. One promising process that can meet the

requirements of obtaining a reflective surface without imperfections is diamond turning. Diamond turning

is a machining technique that using a single crystal of diamond to produce mirror surfaces on metals of

complex geometries.

Another option is applying complex chemical deposition to the surface of the material which will

remove the need for any material subtraction. There are various processes depending on the surface

type of the mirror. Future work can streamline the mirror fabrication process and pave the way to the

deployment of multiple distributed catadioptric sky imaging systems.
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6.2.2 Emphasis On Horizon Resolution

In our catadioptric mirror design that utilized a hyperboloidal shaped mirror, we chose a mirror design

that prioritized resolution everywhere within the FOV. This ensured that we did not lose prediction over

small time forecasts. The question arises – why not place a larger emphasis on the periphery? If the

clouds that are further out at the horizon better determine what its evolution will lead to right above you,

we should put a larger emphasis on that location. Future work could develop imaging systems that focus

on clouds at the horizon in an effort to increase forecasting times even greater.

6.2.3 Expanded Sources of Data

Forecasting solar irradiance can further be improved by incorporating a larger gamut of data values in-

stead of solely using sky images and previous GHI values. The amount of irradiance that reaches the

ground is influenced by complex global interactions that include water vapor, pollution, elevation, wind,

temperature, air pressure, etc. Also, incorporating other streams of visual data such as satellite imagery,

would allow knowledge over a larger spatial context of cloud information. Coupled with ground-based

imagery, for a fine spatial context, the addition could lead to coarse-to-fine representation of cloud patterns

over a region. For example, The National Weather Service (NWS) provides publicly accessible real-time

satellite feeds of visible and radar imagery useful for this task. Infrared, polarized, and hyper-spectral

imagery can also be used to image the sky in a larger wavelength spectrum. All-in-all incorporating a

larger stream of data into the forecasting pipeline, especially for learning-based models, will lead to more

accurate predictions across a longer time range.

6.2.4 Distributed Imaging Systems

By itself, a single viewpoint does not provide sufficient information to reason about the 3D structure of

the clouds that is required to forecast over a larger area. 2D images treat clouds as planar objects and

disregard their 3D and volumetric scattering-tomographic nature. Having multiple sky imaging systems

deployed with a ground baseline of many miles can provide a multi-view imaging system for accurate

3D reconstructions of clouds and sky model. With this, we could image over a larger spatial context

while maintaining localized information, model the clouds to measure the appearance of absorption and

scattering, and reconstruct the cloud as a four dimensional field using implicit neural networks.

Another interesting way to scale the sensing platform to large spatial regions is to exploit publicly-

available video streams. Most cities today have a rich set of real-time web feeds for monitoring traffic and

city streets. Many of them capture a small portion of the sky with nearly half of these videos having viable
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information about the sky. We can expand the imaging baseline to many tens of miles without having to

deploy new cameras. Even cameras that have no sky information have value in the form of providing

a measurement of solar irradiance simply by their relative brightness, which can be used for evaluation.

These camera streams also provide a scalable solution to other cities that might not have dedicated sky

imaging systems deployed. Distributed sky imaging systems are a necessary future step to take; allowing

for multiple views and enhanced inference of the atmosphere.

6.2.5 Solar Irradiance Forecasting For Downstream Tasks

The impact of solar irradiance forecasting on downstream tasks is an interesting future direction of re-

search to consider. For example, one could study the role that forecasting plays in energy management

for buildings equipped with PV systems and storage. Forecasting irradiance also has the ability to signif-

icantly enhance home energy management systems to predictively control building loads with respect to

household-level objectives (e.g., optimally scheduling appliances and battery charging to maximize the

use of solar generation) as well as grid-level objectives (e.g., regulating voltage fluctuations at the distri-

bution system or minimizing transformer loading). Incorporating irradiance forecasting is essential for a

closed looped system of energy management incorporating solar.

6.3 Conclusion

We aim that this thesis brings light to the possibilities that imaging and learning can bring to the world of

solar irradiance forecasting. 2D imaging is just a single modality to improve forecasting. 3D reconstruc-

tion to understand their radiative transfer and distributed imaging systems to understand their trajectory

over large scales can open up to the full understanding of clouds and how they traverse our atmosphere.

Overall, the world needs more renewables for energy generation and, by bridging the gap between the

unknown future of cloud states and solar generation, full and efficient integration is possible.
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