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Abstract

Despite the promise of low-dimensional manifold models for image processing,
computer vision, and machine learning tasks, their utility has been hamstrung in
practice by two fundamental challenges. First, practical image manifolds are non-
isometric to their underlying parameter space, while the state-of-the-art manifold
modeling and learning frameworks assume isometry. Second, practical image
manifolds are strongly perturbed by nuisance parameters such as illumination
variations, occlusions, and clutter.

In this paper, we develop new theory and practical algorithms for manifold
modeling, learning, and processing that address these challenges. To address the
isometry challenge, we show that the Earth Movers Distance (EMD) is a more
natural metric for inter-image distances than the standard Euclidean distance, and
use it to establish the isometry of manifolds generated by translations and rotations
of a reference image. To the best of our knowledge, this is the first rigorous
result on establishing manifold isometry for grayscale image families. To address
the nuisance parameter challenge, we advocate an image representation based on
local keypoint features, such as SIFT features, and use it to define a new keypoint
articulation manifold (KAM). We introduce computationally efficient methods to
perform manifold learning of the KAM and demonstrate their robustness.

We employ the KAM framework on a number of real-world image datasets ac-
quired in the wild. As a particular application, we describe the utility of the KAM
framework in the automatic organization of large-scale, unstructured collections
of photographs gathered from the internet. Our intention is to demonstrate that
manifold methods are not just elegant from a mathematical modeling perspective,
but can also be of considerable utility in real applications.
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1. Introduction

A host of problems in computer vision, machine learning, and pattern recog-
nition involve efficient analysis, modeling, and processing of signal and image
ensembles. Effective solutions to many such problems require exploiting the geo-
metric relationships among the data in the ensemble of nterest. In classical signal
processing and statistics, for example, the data form linear subspaces of the ambi-
ent space, which leads to simple, linear processing algorithms.

One important class of image ensembles arises in situations where there exists
a parameter vector ✓ that controls the appearance of the objects within each image
I✓. Examples include: translation, specifying the location of an object in a scene;
orientation, specifying its pose; or illumination, specifying the 3D location of the
light source (or sources) present in a scene. Instead of the more prosaic linear
subspaces, such image families form low-dimensional nonlinear manifolds in the
high-dimensional ambient space. Under certain conditions, such a family forms
an image articulation manifold (IAM). The dimension K of an IAM equals the
number of free parameters in the articulation parameter ✓. For example, the image
translation manifold is two dimensional (2D), corresponding to horizontal and
vertical translations) and can be interpreted very roughly as a two-dimensional
“surface” in the high-dimensional ambient space RN . Hence an IAM can be a
very concise model for the images it comprises.

Manifold-based models have long been used for applications involving data
ensembles that can be described by only a few degrees of freedom. The promise
of such models lies in their ability to potentially break the so-called “curse of
dimensionality”, a common problem in most practical machine learning tasks.
Consequently, the last decade has witnessed great theoretical and algorithmic ad-
vances in this regard, and manifold models have been successfully applied to tasks
such as data visualization, parameter estimation, transductive learning, and com-
pact data representations [1, 2, 3, 4].

However, the significant theoretical advances in manifold-based image pro-
cessing have not led to commensurate success in practice. The reasons for this
stem from two fundamental challenges:

1. Lack of isometry: A common IAM desideratum is that the underlying
manifold is locally isometric to the underlying parameter space, i.e., small
changes in the articulation parameter ✓ generate images that are “nearby”
in terms of Euclidean distance. Unfortunately, this assumption breaks down
for anything except the simplest of IAMs. Donoho and Grimes [5] have
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Figure 1: An image ensemble gathered from the wild. Example images of the Notre Dame
Cathedral gathered from FlickR [6]. Such a real-world image ensemble cannot be easily
modeled via a strictly low-dimensional parametric representation; occlusions are signifi-
cant, illlumination variations are dramatic, and imaging artifacts such as varying field-of-
view, skew, and white balance abound. As a consequence, conventional manifold learning
methods fail when applied to such ensembles.

shown that for anything more complicated than a simple white object mov-
ing over a black background, local isometry does not hold.

2. Nuisance variables: In addition to the small number of degrees of freedom
in the articulations of interest, real-world images ensembles often exhibit
a potentially large number of other, nuisance articulations, such as illumi-
nation variations, changing backgrounds and clutter, and occlusions due to
foreground objects. See Fig. 1 for an illustrative example.

This mismatch between theoretical assumptions and practical realities has dimin-
ished the impact of manifold models for real-world machine learning and vision
problems.

In this paper, we propose a new approach for manifold-based image modeling,
learning, and processing that addresses the two challenges. First, to address the
isometry challenge, we rigorously prove that the classical Earth Mover’s Distance
(EMD) between images can be used to establish isometry for image ensembles
generated by translations and rotations of a reference image. This result makes no
restrictive assumptions and holds even when the images under consideration are
highly textured grayscale images. To the best of our knowledge, this is the first
analytical result proving the isometry of generic image manifolds.

Second, to address the nuisance variable challenge, we advocate a new image
representation for manifold modeling, learning, and processing. Given a set of
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articulating images, we represent each image using a set of local features (or key-
points). Such an approach is ubiquitous in practical computer vision approaches.
A keypoint typically consists of a 2D location in the image domain and a higher-
dimensional descriptor summarizing the local statistics of the grayscale values of
the image. We will require that the keypoint locations and descriptors satisfy cer-
tain stability criteria (explained further in Section 4). Our running example will
be the image features generated by the well-known Scale Invariant Feature Trans-
form (SIFT) [7], but other image features are also possible within this framework.
Under this new representation, we show that the transformed set of images can
be viewed as a low-dimensional manifold that we dub the keypoint articulation
manifold (KAM). In fact we prove that, under a suitable modification of the EMD
metric, the KAM is smooth and isometric to the underlying parameter space. By
moving to this alternate representation, we implicitly promote robustness to vari-
ous nuisance parameters (such as varying illumination, backgrounds, occlusions,
and clutter). Therefore, our proposed KAM modeling approach alleviates both of
the challenges encountered in practical applications.

Third, to mitigate computational complexity concerns related to the EMD, we
propose a fast EMD approximation based on similarity kernels between the key-
point representations. We validate the approximation on several real datasets and
manifold-based learning problems and demonstrate improved manifold embed-
dings, improved parameter estimation on affine articulation manifolds using gra-
dient descent, and a fast, efficient, and automatic organization of large unordered
collections of photographs.

This paper is organized as follows. In Section 2, we review the existing liter-
ature on the nonlinear dimensionality reduction of image manifolds. In particu-
lar, we highlight some efforts geared towards addressing some of the fundamental
challenges towards practical use of image manifolds, and discuss their limitations.
In Section 3, we describe how the EMD ensures isometry of manifolds for sim-
ple classes of articulations. In Section 4, we extend the EMD to be applicable to a
local feature-based image representation that enables robustness to undesirable ar-
ticulations. In Section 5, we illustrate the performance of our approach on a range
of manifold modeling and processing applications, and validate our technique on
a number of image ensembles. In Section 6, we conclude with a discussion and
highlight some directions for future research.
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2. Background

2.1. Image articulation manifolds
In this paper, we are interested in image ensembles that are generated by vary-

ing an articulation parameter ✓ 2 ⇥. If ⇥ is a space of dimension K, then the
ensemble of images forms a K-dimensional nonlinear image articulation mani-
fold (IAM) M ⇢ RN :

M = {I✓ : ✓ 2 ⇥}. (1)

We adopt two complementary representations for images. First, we can model
images as continuous functions on R2, i.e., I : R2 7! R. In such situations, if ⇥
is a space of dimension K, then the ensemble of images forms a K-dimensional
image articulation manifold (IAM) M ⇢ L

2

(R2

). Second, we can model images
as discretized functions defined over a domain of size n ⇥ n. In such situations,
the ensemble of images are modeled as points in RN , where N = n2. We will use
these two representations interchangeably when the context is clear.

Manifold learning is a nonlinear dimensionality reduction technique that aims
to recover a faithful approximation to the underlying parameters {✓

1

, ✓
2

, . . . , ✓M}
given example images I✓1 , I✓1 , . . . , I✓M} ⇢ M. Two common assumptions made
by several practical manifold learning algorithms are that M is smooth, and that
M is isometric to the underlying parameter space.

1. Smoothness: Informally, an IAM M is said to be smooth if a well-defined
notion of tangent space exists at every point I✓ 2 M. Formally, given
an IAM, we can define tangent vectors at the point I✓0 by studying curves
passing through it. Let !✓ : [0, 1] 7! M be a curve on the IAM such that
!✓(0) = I✓0 where ✓ is a K–dimensional parameter vector. The tangent
vector associated with this curve at I✓0 is given by

d

dt
!✓(t)|t=0

= [r✓1I✓0 · · · r✓KI✓0 ] (✓ � ✓
0

). (2)

The tangent space at I✓0 is defined as the linear span of the gradient vectors
r✓I✓0 = [r✓1I✓0 , · · · ,r✓KI✓0 ]. If this linear vector space is invariant to
choice of the curve !, then M is said to be be smooth at I✓0 .

2. Isometry: The mapping I : ✓ 7! I✓ is said to be locally isometric if Eu-
clidean distances between images in a small neighborhood on the manifold
M are proportional to the corresponding distances in the articulation space:

dM(I✓1 , I✓0)
.
= kI✓1 � I✓0k2 = Ck✓

1

� ✓
0

k
2

. (3)
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If this property holds for all local neighborhoods on M, then M is said to
be isometric to Euclidean space.

A host of computational techniques for efficient nonlinear dimensionality re-
duction have been developed. Several of these techniques assume one or both of
the above two assumptions. Some well-known techniques include Locally Linear
Embedding [2], ISOMAP [1], Laplacian Eigenmaps [4], Hessian Eigenmaps [3],
Maximum Variance Unfolding [8], and Diffusion Maps [9].

2.2. Negative results for image manifolds
In spite of the elegance and promise of manifold modeling and learning, it has

been rigorously shown that practical IAMs are neither smooth nor isometric. In
most practical situations, the images under consideration have sharp edges that
transform according to the articulation parameter ✓. [5] show that such transfor-
mations induce a non-Lipschitz relationship between the distance metric dM(·, ·)
and the Euclidean distance defined on vectors in ⇥; specifically,

dM(I✓1 , I✓0) = kI✓1 � I✓2k2 � Ck✓
1

� ✓
2

k1/2
2

, (4)

for a constant C independent of ✓
1

, ✓
2

. Due to the Lipschitz regularity exponent
1/2 (instead of 1), the function ✓ 7! I✓ is non-smooth everywhere. From a geo-
metric perspective, the manifold of images containing moving edges is nowhere
differentiable. This inherent non-smooth nature of image manifolds impedes the
application of standard differential geometry-based tools used in nonlinear mani-
fold modeling.

Efforts have been made to alleviate the non-differentiability of image mani-
folds [5, 10]. The basic approach is to define a smoothing functional that acts on
the individual images I; for instance, this can be a 2D Gaussian kernel �s of scale
s. By applying �s to all images in the manifold M, we obtain a new set of im-
ages that do not contain any sharp edges; this results in a differentiable manifold
Ms that is more amenable to analysis. The parameter s can be viewed as a scale
parameter; computations can be performed at a sequence of different values for
s, paving the way to multiscale numerical methods. This is particularly useful
for common numerical tasks such as manifold-based parameter estimation using
gradient descent [10].

While multiscale smoothing can render a manifold differentiable, it does not
necessary lead to isometry. [5] have shown that isometry is guaranteed only for
manifolds of black-and-white images exhibiting certain types of restrictive sym-
metries. However, for a pair of generic grayscale images I✓1 , I✓2 belonging to M,
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the distance metric dM(✓
1

, ✓
2

) computed between the images smoothed at scale
s is not necessarily proportional to k✓

1

� ✓
2

k for any choice of the parameter
s. This hampers the performance of any and all manifold-based algorithms that
hinge upon the isometry assumption.

2.3. Local image features
Modern image processing and computer vision algorithms often eschew the

pixel intensity representation for a more convenient, feature-based representation.
Such a feature-based image modeling approach has found widespread use in a
multitude of practical applications, including object recognition [11], multi-view
3D scene reconstruction [12], and manipulating and visualizing massive photo
collections [6]. For an introduction to image features and their properties, see [13]
and [14].

Perhaps the most popular feature-based representation of images is obtained
by the Scale Invariant Feature Transform (SIFT) [7]. The core idea underlying
the SIFT technique is the notion of scale space [15]. The scale space of an image
I is the 3D scalar-valued function L : R2⇥R 7! R obtained by convolving I with
an isotropic Gaussian smoothing kernel of scale s so that

L(x, s) = �s ⇤ I. (5)

Rich information about an image can be gleaned by analyzing the Laplacian of
the scale space of the image, or r2L(x, s). Indeed, extensive testing [13] has
shown that the locations of maxima and minima of r2L(x, s) (denoted by a list
of 2D locations and scales S = {xi, si}) are extremely stable to small affine
deformations of the image. The SIFT technique leverages this property of scale
space to extract distinctive features from images.

Numerically, the SIFT technique proceeds as follows. An image I is operated
upon to obtain a set of 2D locations called keypoint locations {xi, i = 1, . . . ,M};
these are precisely the extrema of the Laplacian of the scale space of I . Each
keypoint location x

i is assigned a scale si, and an orientation ✓i. Once the set
of keypoint locations are identified, certain special image statistics around each
keypoint are computed and aggregated in the form of histograms. Such histograms
are stored as high-dimensional vectors known as keypoint descriptors {f i, i =

1, . . . ,M}.
It has been both theoretically and empirically demonstrated that the SIFT key-

point locations are covariant to affine articulations, while the SIFT keypoint de-
scriptors are invariant to a wide range of imaging parameters, including transla-
tions, in-plane rotations, scale, and illumination changes [7, 16]. Let IA and IB
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be two images with keypoints given by S(IA) = {xi
A} and S(IB) = {xj

B}, re-
spectively. If the two images are related by an affine transformation (Z, t), then
the keypoints are related by the same affine transformation (ignoring quantization
and boundary artifacts):

IB(x) = IA(Zx+ t) =) 8i, 9j such that xj
B = Zxi

A + t. (6)

Therefore, by obtaining one-to-one correspondences between the keypoint de-
scriptors of IA and IB, we can solve for the affine transformation (Z, t) linking
the two images.

We have nominally chosen to focus on the SIFT as our flagship approach for
generating image features, but other feature extraction techniques can also be ap-
plied in the framework developed below (for example, see [17, 18, 19]). In gen-
eral, we will require that any such technique should yield image feature keypoints
whose locations are covariant to the articulations of interest, and whose descrip-
tors are invariant to the keypoint location, as well as other nuisance articulations.1
The covariance-invariance properties help mitigate several phenomena such as
unknown illuminations, occlusion, and clutter as detailed in Sections 4 and 5.

The large majority of manifold learning methods do not leverage the feature-
based approach for representing images. To the best of our knowledge, the only
reported manifold learning method that explicitly advocates feature-based image
representations is the Local Features approach [20]. Given a collection of images,
this approach extracts a set of local features from each of the images, and then
learns a low-dimensional parametric embedding of each extracted feature. This
embedding is constrained to preserve the spatial configuration of features. Fur-
ther, similarity kernels are used to construct similarities on the keypoint locations
and descriptors, and embeddings of the keypoints are learnt. This method has
been shown to be robust to illumination, occlusions, and other artifacts, and thus
shares many of the goals of our proposed approach. However, its theoretical de-
velopment is somewhat ad hoc, its computational costs are potentially high, and
the reported applications are mainly restricted to object detection and classifica-
tion. We will discuss and compare our results to the Local Features approach in
detail in Section 5.

1Naturally, the trivial (zero) feature descriptor also satisfies this invariance requirement. Our
theoretical results below will continue to be valid for such degenerate cases; however, a meaningful
feature descriptor that concisely represents local image statistics is obviously the better choice in
practice.
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3. Manifold Isometry via the Earth Mover’s Distance

The central results of [5] advocating the multiscale smoothing approach for
enabling manifold isometry were derived based on the assumption that images are
modeled as functions defined on R2 equipped with the L

2

-norm. However, this
modeling assumption is comes up short in a key respect: L

2

-distances between
images are known to be poorly correlated with perceptual differences between
images. For example, given images of a single translating white dot on a black
background, the L

2

-distance between any pair of images remains constant regard-
less of the translation parameters of the images.

3.1. The Earth Mover’s Distance (EMD)
To address the pitfall caused by L

2

-distances, researchers have proposed a
multitude of alternate, perceptually meaningful distance measures on images. An
important and useful metric used in image retrieval and analysis is the Earth
Mover’s Distance (EMD) [21]. Classically, the EMD is defined between distribu-
tions of mass over a domain, and represents the minimal amount of work needed
to transform one distribution into another. In this context, the amount of work
required to move a unit of mass from a point x

1

2 R2 to a point x
2

2 R2 is equal
to the L

2

-norm between x

1

and x

2

.
For ease of exposition we will assume that images are defined over a discrete

grid in R2, while noting that the results hold mutatis mutandis for continuous do-
main images. Formally, consider images I

1

, I
2

as non-negative functions defined
on a domain of size n⇥n. Define a feasible flow as a function � : [n]2⇥[n]2 ! R

+

that satisfies the mass conservation constraints, i.e., for any pair of pixel locations
xi,yj 2 [n]2,

X

yk2[n]2
�(xi,yk) = I

1

(xi),
X

xk2[n]2
�(xk,yj) = I

2

(yj).

Then, we define

EMD(I
1

, I
2

) = min

�

X

xi,yj2[n]2
�(xi,yj)kxi � yjk2, (7)

as the minimum cost flow from X to Y over all feasible flows. If the sum of the
absolute values of the intensities of X and Y are equal, i.e., if kXk

1

= kY k
1

,
then it can be shown that EMD(X, Y ) is a valid metric on the space of images. In
this section, we will assume the equality of the `

1

norms of X and Y ; however,
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the metric property of the EMD holds even when this assumption is relaxed [21].
Unless otherwise specified we will assume that the EMD is always computed
between images of equal `

1

norm.
The EMD provides a powerful new angle for studying the geometric structure

of image manifolds. As opposed to modeling images as functions in L
2

(R2

), we
instead represent images as elements of the normed space LEMD(R2

). Under this
geometry, we can prove the isometry of a much larger class of image ensembles;
we discuss now some representative examples.

3.2. Case study: Translation manifolds
First, we prove the global isometry of image manifolds in LEMD(R2

) formed
by arbitrary translations of a generic image. Consider an image I

0

, and denote
M

trans

as the IAM generated by 2D translations of I
0

, where ✓ 2 ⇥ ⇢ R2 repre-
sents the translation parameter vector:

M = {I : I(x) = I
0

(x� ✓), ✓ 2 ⇥}.

In order to avoid boundary and digitization effects, we will assume that the space
of translation parameters ⇥ is compact, that the image has been sufficiently zero-
padded, and that the images are of high resolution. It follows that the `

1

norm
of any image belonging to M

trans

remains constant, i.e., kI
0

k
1

is constant and
well-defined.

Proposition 1. For an arbitrary base image I
0

, the translation manifold M
trans

is globally isometric to the parameter space ⇥ under the EMD metric.

Proof: Consider any pair of images

I
1

(x) = I
0

(x� ✓
1

), I
2

(x) = I
0

(x� ✓
2

)

that are elements of M
trans

. We will prove that EMD(I
1

, I
2

) is proportional to
the `

2

distances between the corresponding parameter vectors k✓
1

� ✓
2

k
2

. Let x̌
denote the center of mass of the image I(x):

x̌ =

1

kIk
1

X

xk2[n]2
xkI(xk).
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Then, we have the following relations between the centers of mass of I
1

, I
2

and
any feasible flow f :

kx̌
1

� x̌

2

k
2

=

����

P
i xiI1(xi)

kI
1

k �
P

j yj I2(yj)

kI
2

k
1

����
2

= C

�����
X

i

xiI1(xi)�
X

j

yjI2(yj)

�����
2

= C

�����
X

i

xi

X

k

�(xi,yk)�
X

j

yj

X

k

�(xk,yj)

�����
2

= C

�����
X

i,k

�(xi,yk)xi �
X

j,k

�(xk,yj)yj

�����
2

= C

�����
X

i,j

�(xi,yj)(xi � yj)

�����
2

 C
X

i,j

�(xi,yj)
��
xi � yj

��
2

,

where the last inequality is a consequence of the triangle inequality. Taking the
infimum over all possible feasible flows, we have that

kx̌
1

� x̌

2

k
2

 C · EMD(I
1

, I
2

). (8)

However, in the case of images that are 2D translations of one another, there
always exists a feasible flow that achieves this infimum. This can be represented
by the set of flows parallel to x̌

1

�x̌

2

originating from the pixel xi and terminating
at the corresponding yj . We simply rewrite the vector x̌

1

� x̌

2

as the difference
in translation vectors ✓

1

� ✓
2

, thereby implying that

EMD(I
1

, I
2

) / k✓
1

� ✓
2

k
2

.

Global isometry of M
trans

is an immediate consequence. ⇤
We numerically illustrate the validity of Proposition 1 in Fig. 2. Figure 2(a)

displays several sample images from the manifold formed by translations of the
well-known Cameraman test image. We form 100 example pairs of such images,
record the distance between the translation parameter vectors (the “distance in
articulation space”), and compute the Euclidean (`

2

) distance and EMD between
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Figure 2: (a) Sample images from a translation manifold. (b) Variation of the Euclidean
distance and the EMD as a function of the distance in the articulation space. The EMD
correlates linearly with articulation distance for the entire range of articulations (global
isometry).

the corresponding images. We compute the EMD using the FastEMD solver [22].
Figure 2(b) clearly indicates that the `

2

distance is largely uninformative with re-
spect to the articulation distance, while the EMD almost perfectly correlates with
the articulation distance over the entire range of translations (global isometry).

3.3. Case study: Rotation manifolds
Next, we prove the local isometry of image manifolds formed by rotations of

a generic image. The IAM M
rot

is generated by pivoting an image I
0

by an angle
✓ 2 ⇥ ⇢ [�⇡, ⇡], around a fixed point in R2. We assume for simplicity that the
pivot point is the origin. Then, the manifold M

rot

is given by

M = {I : I(x) = I
0

(R✓x), ✓ 2 ⇥}, where

R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�
,

i.e., R✓ is a orthonormal rotation matrix. Once again, we assume that the images
are sufficiently zero padded and that their `

1

norms remain constant.

Proposition 2. For an arbitrary base image I
0

, the rotation manifold M
rot

is
locally isometric to the parameter space ⇥ under the EMD metric.
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Proof: Consider any pair of images

I
1

(x) = I
0

(R✓1x), I
2

= I
0

(R✓2x)

that are elements of M
rot

. Since the set of rotations in R2 forms a group (called
the special orthogonal group SO(2)), we have the relation

I
2

(x) = I
1

(R✓1�✓2x) = I
1

(R
�✓x). (9)

Once again, we denote the locations of the centers of mass of I
1

and I
2

as x̌

1

and x̌

2

respectively. Observe that the centers of mass of I
1

and I
2

also obey the
relation x̌

2

= R
�✓x̌1

. Hence, we have

kx̌
2

� x̌

1

k
2

= kR
�✓x̌1

� x̌

1

k
2

=

����

✓
cos�✓ � sin�✓
sin�✓ cos�✓

�
� I

2⇥2

◆
x̌

1

����
2

.

To establish local isometry, we need to show that the EMD between a pair of
images exhibits a linear relationship with the magnitude of the distance in artic-
ulation space �✓ in the regime where �✓ is small. In such a regime, we can
perform a first-order Taylor series expansion to obtain

kx̌
2

� x̌

1

k
2

⇡
����

✓
1 ��✓
�✓ 1

�
� I

2⇥2

◆
x̌

1

����
2

=

����


0 ��✓
�✓ 0

�
x̌

1

����
2

= |�✓| kx̌
1

k
2

.

However, the quantity kx̌
1

k represents the distance of the center of mass of image
I
1

from the origin, which is constant for images belonging to M
rot

. Further,
we established in (8) that the distance between the centers of a pair of images
is upper bounded by a constant times the EMD between the images. Hence, for
some constant ↵ > 0, we have the following lower bound:

EMD(I
1

, I
2

) � ↵|�✓|. (10)

We now prove a similar upper bound on the EMD. By definition, the EMD
is calculated by considering the minimum over all feasible flows from I

1

to I
2

.
Consider the (feasible) flow f corresponding to the bijective mapping between
I
1

(x)

.
= I

1

(R
�✓y) and I

2

(y), i.e.,

�(xi,yj) =

(
I
1

(xi), xi = R
�✓yj

0, otherwise.
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For small values of �✓, the magnitude of the displacement of the pixel xi

induced by this flow can be approximated as

kxi � yjk2 ⇡ |�✓| kxik2,
and hence the cost of the flow f can be computed by evaluating the right hand
side of (7). This quantity provides an upper bound for the EMD between images
I
1

and I
2

as follows:

EMD(I
1

, I
2

) 
X

i,j

�(xi,yj)kxi � yjk2

=

X

i

I(xi) |�✓| kxik2.

The `
2

-norm of x is invariant with respect to rotation, and hence the quantityP
i I(xj) kxjk2 is constant across all images I belonging to M

rot

. Therefore, for
some constant � > 0, we have the following upper bound:

EMD(I
1

, I
2

)  �|�✓|. (11)

Combining (10) and (11), we obtain that the manifold M
rot

is approximately
isometric to ⇥ under the EMD metric. ⇤

We numerically illustrate the validity of Proposition 2 in Fig. 3. Figure 3(a)
displays several sample example images formed by rotations of the Cameraman
test image. As above, we form 100 example pairs of such images, record the dis-
tance between the rotation parameter vectors (the “distance in articulation space”),
and compute the Euclidean (`

2

) distance and EMD between the corresponding
images. Figure 2(b) clearly indicates that the `

2

distance is largely uninformative
with respect to the articulation distance, while the EMD closely correlates with
the articulation distance (local isometry).

4. Keypoint Articulation Manifolds

Thus far, we have formally proved — for arbitrary translation and rotation
manifolds containing images with sharp edges and complex textures — that re-
placing the `

2

with the EMD surmounts the non-isometry challenge that has plagued
manifold frameworks to date. 2 We now turn to the second challenge of nuisance

2A natural question arises whether we can extend the results of the preceding two sections to
general affine articulations. However, since the EMD is technically defined on pairs of images
of equal mass, a similar (local) isometry argument does not seem to apply to the case where the
images undergo non-uniform scaling.
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Figure 3: (a) Sample images from a rotation manifold. (b) Variation of the Euclidean
distance and the EMD as a function of the distance in the articulation space. The EMD
correlates nearly linearly with articulation distance for the entire range of articulations
(local isometry).

variables caused by real-world artifacts in the imaging enterprise, such as varying
illumination, non-stationary noise, unknown backgrounds, and occlusions.

Consider the set of images generated by a translating a white disk in front of a
black background under an unknown, spatially varying illumination. Because of
the varying illumination, the pixel intensities of the disk will not be constant across
the images. In this case, the minimum-cost flow in (7) will not be mass-preserving,
and the EMD will not be isometric to the translation parameter distance. The
standard practical approach to handling illumination variations is to transform the
image into a feature-based representation that is robust to such variations. In this
section, we propose a systematic framework for analyzing families of articulating
images not in terms of their pixel intensities but rather in terms of their local
features). As we will see, a number of theoretical and practical advantages result.

4.1. Feature-based representations for images
We consider local feature representations that consist of a set of image key-

points and a corresponding set of descriptors. Given an image I defined as a
real-valued function over a domain ⌦ ⇢ R2, we compute the set of keypoint
locations X(I) = {xi, i = 1, . . . , N} ⇢ ⌦ using a local feature extraction algo-
rithm A. At the computed keypoint locations, we compute keypoint descriptors
F (I) = {f i, i = 1, . . . , N}; each f i 2 F typically can be described as a vector
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in high-dimensional space RD. Thus, instead of representing an N -pixel image
I as a vector in RN , we represent it as a set of keypoint location-descriptor pairs
I ⇠ {(xi,f i), i = 1, . . . , N}, or informally, a “bag of keypoints.” Each keypoint
location-descriptor pair is an element of an abstract space X that can be identified
with R2 ⇥ RD. Note that X in itself does not constitute a normed vector space,
primarily because the space F is typically not closed under the usual operations
of addition and scalar multiplication.

We require that the local feature extraction algorithm A possess the following
properties:
(P1) The keypoint locations are covariant to the articulation parameters of inter-
est. For example, in the case of translation, a global translation applied to an
image must induce an equivalent, global translation in every computed keypoint
location.
(P2) The keypoint descriptors are invariant to the image articulation parameters
of interest.
(P3) The keypoint extraction is stable, i.e., no spurious keypoints are detected or
missed across different images on the manifold.

Of course, a keypoint extraction algorithm A exactly satisfying these three
properties is hypothetical and may not exist in practice. However, several efficient
feature extraction methods have been extensively explored and shown to possess
(P1)–(P3) to a close approximation. The most celebrated is the Scale Invariant
Feature Transform (SIFT) [7], which approximately possesses (P1)–(P3) for the
case of affine articulations [16] . We will focus on this technique in our computa-
tions below without loss of generality.

Definition 1. Given a keypoint extraction algorithm A that satisfies properties
(P1)–(P3) and an IAM M = {I✓ : ✓ 2 ⇥}, the keypoint articulation manifold
(KAM) is defined as K = {I✓ ⇠ {(xi,f i)}Mi=1

: I✓ 2 M} .

We seek an appropriate metric on the set K. Consider a grayscale image
I
0

(x) ⇠ {(xi,f i)}Mi=1

. Define the keypoint location image as

K
0

(x) =

MX

i=1

�(x� xi),

where �(·) is the Kronecker delta function. The keypoint location image can be
viewed as a non-negative function over the discrete domain, i.e., K 2 RN

+

. There-
fore, it is possible to define the EMD between any pair of keypoint location im-
ages, which induces a metric on the KAM K. That is, for any pair of images
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I✓1 , I✓2 2 M, we define the keypoint distance d as the EMD between their cor-
responding keypoint location images:

d(I✓1 , I✓2) = EMD(K✓1 , K✓2).

It should be obvious from the properties (P1)–(P3) that the KAM generated by
an ideal keypoint extraction algorithm A is smooth and globally isometric to any
parameter space for which the covariance property (P1) holds. We now showcase
the power of the invariance property (P2).

4.2. Case study: Illumination variations
We prove the following proposition about the geometry of the KAM generated

by applying an idealized SIFT-like transformation.

Proposition 3. Consider an IAM M generated by images of an arbitrary object
as it undergoes 2D translations and in-plane rotations and is then illuminated
by an unknown spatially varying illumination. Let K be the KAM generated by
applying a keypoint extraction algorithm A that is covariant to translation and in-
plane rotation, and invariant to illumination. Then K, endowed with the keypoint
distance d, is globally isometric to the parameter space ⇥.

Proof: We will describe the case where the articulations comprise 2D translations;
the extension to in-plane rotations is straightforward and mirrors the derivation in
Proposition 2. Any image I 2 M corresponding to the translation parameter ✓
can be expressed in terms of a base image I

0

as

I(x) = L✓I0(x� ✓),

where L✓ represents an unknown linear operator representing the illumination cor-
responding to ✓. Consider any pair of images

I
1

(x) = L✓1I0(x� ✓
1

), I
2

(x) = L✓2I0(x� ✓
2

),

that are elements of M. Denote the keypoint location image of I
0

as K
0

(x) =PM
i=1

�(x � xi). By assumption, the algorithm A stably extracts keypoint lo-
cations in a covariant manner, and also is invariant to the illumination operators
L✓1 , L✓2 . Therefore,

K
1

(x) = K
0

(x� ✓
1

), K
2

(x) = K
0

(x� ✓
2

),
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where K
1

, K
2

are the corresponding keypoint location images of I
1

, I
2

. The key-
point distance d(I1, I2) is equal to the EMD between K

1

and K
2

, computed using
(7). However, in this case the minimum cost flow � is nothing but a permutation
(since K

1

, K
2

are the superposition of an identical number M of Kronecker delta
functions). Denote ⇡ : X(I✓1) ! X(I✓2) as a feasible permutation. Therefore,

EMD(K
1

, K
2

) = min

�

X

xi,yj2[n]2
�(xi,yj)kxi � yjk2 (12)

= min

⇡

MX

i=1

kxi � ⇡(xi)k2. (13)

The optimization (13) can be calculated, for example, via the Hungarian algo-
rithm [23]. However, note that, for any permutation ⇡,

X

i

kxi � ⇡(xi)k �
�����
X

i

xi �
X

i

⇡(xi)

�����
2

= M

����

P
i xi

M
�

P
i ⇡(xi)

M

����
2

= Mkx̌
1

� x̌

2

k
2

,

where x̌

1

, x̌
2

are the centers of mass of the keypoint location images K
1

, K
2

.
Repeating the argument in the proof of Proposition 1, we have that this minimum
cost permutation is achieved by mapping the keypoint in K

1

at location xi to the
corresponding keypoint in K

2

at location yi ⇠ xi+ ✓
1

� ✓
2

(due to the covariance
property, this correspondence always exists).

Therefore, EMD(K
1

, K
2

) is proportional to the distance between the centers
of mass of K

1

and K
2

, which equals ✓
1

� ✓
2

. The isometry of the KAM is an
immediate consequence. ⇤

4.3. Practical computation of the keypoint distance
In order to realize the promise of Proposition 3 in practice, we must address

three practical concerns:
1. Noise and numerical errors will render properties (P1)–(P3) approxima-

tions, at best.
2. Real-world phenomena such as occlusions and clutters will also invalidate

(P1)–(P3). Indeed, accurate detection and filtering of spurious keypoints
reduces to establishing exact correspondences between the keypoints, which
remains a highly challenging problem in machine vision.

18



3. The computational complexity of the EMD computation (12) is cubic in the
number of extracted keypoints M , and real-world high-resolution images
typically yield several hundreds or even thousands of keypoints [7].

In order to address these challenges, we now propose a computationally effi-
cient approximation to the EMD-based keypoint distance d in (12) between any
pair of images. We leverage the fact that the keypoint descriptors, {f i}Mi=1

⇢ RD,
calculated from an image I✓ are (approximately) invariant to the articulation pa-
rameter ✓ (recall property (P2)). By evaluating a suitably defined similarity kernel,
S : RD⇥RD ! R, on every pair of keypoint descriptors, we can rapidly establish
approximate correspondences between the keypoints. A weighted average of the
distances between the corresponding keypoint locations yields the EMD approxi-
mation.

The full calculation proceeds as follows. Given images I
1

⇠ {(xi,f i), i =

1, . . . ,M
1

} and I
2

⇠ {(yj, gj), j = 1, . . . ,M
2

}, we define the approximate key-
point distance between I

1

and I
2

as:

ed(I1, I2) = ↵�1

M1,M2X

i,j=1

S(f i, gj)kxi � yjk2, where (14)

↵ =

X

i,j

S(f i, gj).

The normalization factor ↵ ensures that the approximate keypoint distance does
not depend on the number of detected keypoint pairs M

1

⇥ M
2

. The ideal sim-
ilarity kernel would yield a value of 1 for every pair of corresponding keypoint
locations and zero for all other pairs. In the case when all the keypoint descrip-
tors of the reference image I

0

are distinct, the similarity kernel S(f i, gj) would
be nonzero only when f i ⇡ gj , thereby efficiently approximating the minimum
cost flow �(xi,yj) in (12) without an explicit minimization. Consequently, the
complexity of evaluating the approximate keypoint distance can be reduced from
O (M3

) to O (M2

), a significant advantage for practical real-world calculations.
We demonstrate this computational advantage numerically in Section 5.

The choice of similarity kernel S(·, ·) is somewhat flexible. However, to ac-
count for numerical discrepancies in the descriptors extracted by the algorithm A,
we will focus on the Gaussian radial-basis kernel for S(·, ·). For any descriptor
pair (f , g) and bandwidth parameter � > 0, the similarity kernel S(·, ·) is given
by

S(f , g) = e�

����f�g
����
2

�2 . (15)
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(a) Duncan Hall (b) McNair Hall (c) VIVID

(d) Notre Dame

Dataset # Pairs Correlation
Duncan Hall 24,964 0.91
McNair Hall 32,041 0.92

VIVID 360,000 0.97
Notre Dame 511,225 0.72

(e) Statistics

Figure 4: Empirical comparisons between the EMD in (13) and the kernel-based approx-
imate keypoint distance in (14) for image-pairs sampled from several datasets. (a-d) We
plot the the corresponding pair/tuple of EMD and keypoint distance for all image-pairs
from each dataset. (e) Statistics showing the size of the dataset in terms of number of
image pairs and the correlation between the EMD and the approximate keypoint distance
(14).

The optimal value of � in (15) depends on the numerical stability of the algorithm
A used to extract feature keypoints from the images. In practice (and for all the
experiments below) with SIFT feature keypoints, the value � = 150 gave excellent
numerical results; moreover, performance is stable to small changes around this
value for �.

How accurate is the quality of approximation achieved by the approximate
keypoint distance (14) with respect to the (ideal) EMD keypoint distance (13)?
We do not provide a rigorous analytical characterization, and instead experimen-
tally justify that the approximation is faithful. Figure 4 displays the results of
comparing the calculated pairwise distances (13) and (14) between thousands of
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image pairs, sampled from several real-world datasets that we discuss in Section
5. Each panel in Fig. 4 corresponds to a particular dataset, and each blue dot in
the scatter plot represents the calculated distances for a specific pair of images in
the dataset. We also report correlation coefficients for the different plots (a per-
fectly linear relationship would correspond to a coefficient of 1.) We observe a
very close correlation, both qualitatively and quantitatively, between the distances
for three of the four datasets. The obvious outlier is the Notre Dame Cathedral
dataset (refer to the example images in Fig. 1), which is challenging for several
reasons; we discuss it in detail below in our experiments). Therefore, the approxi-
mate keypoint distance closely represents the ideal keypoint distance (while being
significantly easier to compute.)

Before concluding this section, we observe that other choices of similarity
kernels S(·, ·) in (14) are also possible. There exist several extensive surveys in
the literature on the efficient design of similarity kernels based on local image
features [24, 25]. We touch on this topic further in Section 6.

5. Experiments

This experimental section has dual aims. First, we back up the theoretical
results on KAM smoothness and isometry using several real-world datasets. Sec-
ond, we push the KAM technique out of its theoretical comfort zone with new,
challenging applications involving a number of real-world datasets acquired “in
the wild.” Our intention is to convincingly demonstrate that manifold methods are
not just elegant but also of considerable practical utility in real applications.

For all experiments that follow, we use the fast approximation to the EMD pro-
posed in (14). We use SIFT as the keypoint extraction algorithm A, the Gaussian
radial basis function with � = 150 for the similarity kernel S, and ISOMAP [1]
with k = 8 neighbors for obtaining the low-dimensional embeddings from the
distances computed from (14). We will call this procedure the “KAM approach”.

5.1. Confirming isometry
Figure 5 extends the synthetic experiment in Fig. 2 by using both the approx-

imate EMD from (14) and real data. We extracted 400 patches of size 80 ⇥ 80

centered at points of a grid of uniformly-spaced locations in the highly textured
photograph in Fig. 5(a) and replicated the experimental steps of Fig. 2. Figure 5(b)
clearly indicates that the Euclidean (`

2

) inter-image distance is largely uninforma-
tive with respect to the articulation distance, while the approximate EMD almost
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(a) Images (b) Distances

Figure 5: Confirmation of the results of Fig. 2 using both the approximate EMD from
(14) and real data. (a) Sample images from a translation manifold. (b) Variation of the
Euclidean distance and the approximate EMD as a function of the distance in the articu-
lation space. The approximate EMD correlates linearly with articulation distance for the
entire range of articulations (practically confirming global isometry).

(a) ISOMAP (b) Lap. Eigenmaps (c) Local Features (d) KAM

Figure 6: Continuation of the experiment in Fig. 5, plotting 2D embeddings of the trans-
lated images using various state-of-the-art manifold learning methods. The KAM ap-
proach recovers the underlying parametrization perfectly (modulo a rotation).

perfectly correlates with the articulation distance over the entire range of transla-
tions (practically confirming global isometry).

5.2. Manifold embedding
We now showcase the invariance and stability properties of the KAM approach

with a number of challenging manifold learning (nonlinear dimensionality reduc-
tion) examples.

5.2.1. Highly textured translation manifold
Figure 6 continues the example of Fig. 5 from Section 5.1. Given the sam-

pling of 400 highly textured, translated test images, we ran three state-of-the-art
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(a) Example images (b) Camera orientations (c) Ground truth embedding
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Figure 7: Manifold learning in the wild I: Duncan Hall indoor scene. (a) Samples from
a set of 160 images obtained from an approximately static hand-held camera that span
a 360� panorama of an indoor scene. (b) Camera orientation vectors obtained from a
state-of-the-art SfM algorithm [6] to provide precise camera orientation vectors (grey
arrows) for each of the images; these can be considered as the “ground truth” values of
the underlying parameter space. (c) 2D ISOMAP embedding of the ground truth camera
orientation vectors. (d) 2D ISOMAP embedding of the IAM using the `

2

metric. (e) 2D
KAM embedding; it is virtually equivalent to the optimal embedding using the ground
truth (up to an arbitrary rotation). (f) Embedding SNR vs. fraction of available images,
indicating that the performance of the KAM approach degrades gracefully with manifold
subsampling.

manifold learning algorithms (ISOMAP, LLE, and Local Features). None of them
is able to recover the nonlinear projection into the 2D parameter space as well as
our KAM-based ISOMAP.

5.2.2. Duncan Hall indoor scene
Using a static handheld camera, we collected a set of 160 high-resolution in-

door photographs that formed a 360

� panoramic view of the walls and ceiling
of a large atrium in Rice University’s Duncan Hall (see Fig. 7). The images are
governed not only by an underlying dominant articulation parameter (the view-
ing angle of the camera), but also by several other degrees of freedom (camera
shake and significant lighting variations, including bright sunlight glints). We ap-
plied the state-of-the-art structure-from-motion (SfM) Bundler algorithm [6] to
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(a) Diffusion Maps (b) LLE (c) Lap. Eigenmaps (d) Local Features

Figure 8: Manifold learning in the wild I: Duncan Hall indoor scene. Additional results
for the dataset in Figure 7. (a, b, c) State-of-the-art manifold learning algorithms based on
`

2

-distances between images perform poorly. (d) The Local Features (LF) approach fares
better. However, the KAM approach (Fig. 7(e)) still significantly outperforms the Local
Features approach in terms of fidelity to the parameter space.

estimate, up to an arbitrary rotation, the 3D camera orientation vector for each
sample image. We will regard these vectors as the “ground truth” articulation
parameters for each image.

Figure 7 displays the low-dimensional (2D) embeddings obtained by ISOMAP
using both the classical IAM (using the Euclidean inter-image distance) and the
proposed KAM approach (using the approximate EMD inter-image distance). We
note that the KAM embedding recovers a near-perfect approximation (modulo
a rotation) of the underlying parametrization, whereas the IAM approach yields
poor quality results. Figure 8 displays additional embeddings produced by four
other maninfold learning algorithms, including the Local Features approach [20].
Clearly the KAM approach is much improved over all of these techniques. This
demonstrates that the KAM approach is robust to camera jitter and changing light-
ing conditions.

We now demonstrate that the KAM approach is robust to the sampling of
the manifold. Define the embedding signal-to-noise-ratio (SNR) as the negative
logarithm of the L

2

-error of the 2D KAM embedding measured with respect to
the ground truth. Figure 7(f) shows that the embedding SNR degrades gracefully
even when the KAM-based manifold learning algorithm is presented with only a
random fraction of the 160 available images.

5.2.3. McNair Hall outdoor scene
We collected a set of 180 images of the front facade of Rice University’s Mc-

Nair Hall by walking with a handheld camera in an approximately straight tra-
jectory; therefore, the underlying parameter space is topologically equivalent to
a subset of the real line R1. Several sample images are shown in Fig. 9(a). We

24



(a) Sample images

(b) Bundler estimates (c) Bundler (d) IAM (e) KAM

Figure 9: Manifold learning in the wild II: McNair Hall outdoor scene. (a) Samples from
a set of 180 images obtained by moving a hand-held camera in an approximately straight
trajectory. The image ensemble is topologically equivalent to a 1D manifold. (b) Camera
location ground truth obtained from the SfM Bundler algorithm ([6]). Camera locations
are noted in red and their orientations with grey arrows. (c) 2D ISOMAP embedding
of the ground truth camera orientation vectors. (d) 2D ISOMAP embedding of the IAM
using the `

2

metric. (e) 2D KAM embedding is a close approximation to the ground truth
embedding.

used the SfM Bundler software to estimate the camera locations and orientations;
the results are displayed in Fig. 9(b). As above, we computed low-dimensional
embeddings of the images using ISOMAP on the set of pairwise Euclidean and
approximate EMD image distances. The embedding obtained using the KAM ap-
proach closely resembles the “ground truth” embedding and successfully recovers
the 1D topology of the image dataset.

5.3. Parameter estimation
We study the effectiveness of the KAM approach for articulation parameter

estimation. Given a sample image I✓ 2 M, ✓ 2 ⇥, our aim is to estimate the
underlying vector ✓. The non-differentiability of IAMs of images with sharp edges
renders IAM-based approaches ineffective for this problem. However, limited
progress to date has been made using multiscale smoothing and gradient descent
[10]; our goal here is to demonstrate the robust performance of a simple and direct
KAM-based estimate.

We consider the 400-image translation manifold dataset from Section 5.1 and
Fig. 5 as a “training set”. Then, we select a target image patch at random and
attempt to estimate its 2D translation parameters by finding the closest among
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Figure 10: Parameter estimation performance for the translation manifold in Fig. 5. The x

axis corresponds to the 2D Euclidean distance between the initial translation parameters
of the gradient descent and those of the target image. The y axis corresponds to the
magnitude of the error between the estimated and target articulations. Gradient descent
on the KAM converges accurately for a wide range of initial displacement magnitudes,
while gradient descent on the IAM does not yield accurate results for even small values
of initial displacement.

the training set images via a multiscale gradient descent method; the technique
used is similar to the method proposed in Section 6.4.1 of [10]. The articulation
parameters of the retrieved training image serve as the estimate. We repeat this
procedure using both the Euclidean (IAM) and approximate EMD (KAM) dis-
tances and record the magnitude of the error between the true and estimated target
translation parameters.

Figure 10 displays the results of a Monte-Carlo simulation over 40 indepen-
dent trials. Thanks to the smooth and isometric structure of the KAM, we obtain
accurate estimation results even when initializing the gradient descent method far
from the target translation value (over 70 pixels, which is significant considering
that the images are of size 80⇥ 80 pixels). In contrast, the IAM approach suffers
from large estimation errors even then starting relatively close to the target value.

We stress that we do not claim our method of estimating the translation pa-
rameters via gradient descent on the KAM as constituting a state-of-the-art image
registration algorithm. Rather, our aim is merely to show that the smoothness and
isometry of the KAM support even naı̈ve information extraction algorithms, in
contrast to IAMs.

5.4. Organizing photo collections
We now explore how KAMs can be used to automatically organize large col-

lections of images, particularly collections that can be well-modeled by an essen-
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tially small number of parameters. An example is the set of photos of a tourist
landmark captured by different individuals at different times. The intrinsic vari-
ability of this set of photos might be extremely high, owing to occlusions (trees,
vehicles, people), variable lighting, and clutter. However, the essential parame-
ters governing the images can be roughly identifed with the 3D camera position,
orientation, and zoom. We postulate that the KAM approach will help enforce
this intrinsic low-dimensionality of the photos and thus provide a meaningful or-
ganization. In colloquial terms, we are organizing the photographs by solving a
complicated “image jigsaw puzzle” in high-dimensional space by exploiting its
low-dimensional geometry

One approach to organize photo colections is the Photo Tourism method [6],
which runs the SfM Bundler algorithm to accurately estimate the position of each
3D point in the scene and then infers the 3D camera locations and orientations
corresponding to each photograph. Unfortunately, while powerful, this algorithm
is computationally very demanding and takes several days to execute for a dataset
comprising even just a few hundred images.

As an alternative, we propose a far simpler approach: simply extract the key-
points from each of the images, compute the keypoint distances between all pairs
of images, and then estimate the geodesics along the KAM. If the low-dimensional
manifold assumption holds, then the images corresponding to the nearest neigh-
bors along the geodesics will be semantically meaningful.

5.4.1. Notre Dame Cathedral
We test our hypothesis on the well-known Notre Dame Cathedral dataset, a

collection of 715 high-resolution images of the popular Parisian tourist trap cho-
sen randomly from FlickR. From each photo, we extract SIFT keypoint locations
and descriptors. Using the approximate keypoint distance (14), we construct the
matrix of pairwise keypoint distances. As in the ISOMAP algorithm, we use this
matrix to construct a k = 12-nearest neighbor graph, which we use to estimate
the geodesic between any given pair of query images.

Figure 11(a) demonstrates the promise of this proposed technique. We display
the seven (geodesic) nearest neighbors for four different query images, and it is vi-
sually clear that the retrieved nearest neighbors are closely semantically related to
the query image. For comparison purposes, we performed an identical experiment
by computing pairwise image distances using the Local Features method [20] and
display the results in Fig. 11(b). Evidently, the KAM approach results in more
semantically meaningful groupings than the Local Features method. In the sup-
plementary material, we include a much larger gallery of (geodesic) nearest neigh-
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bors for a diverse set of query images. These experimental comparisons are meant
to demonstrate that the performance of the approximate keypoint distance seems
to be fairly robust in practice, despite the fact that the correlation between the ex-
act and approximate distances for this dataset is not perfect (as discussed in Fig.
4).

Going a step further, given a pair of starting and ending images, we display
the intermediate images along the estimated KAM geodesic in Fig. 12. Once
again, we observe that the estimated “path” between the photos is both intuitive
and interpretable. For example, the images in the bottom row of Fig. 12 can be
interpreted as zooming out from the inset sculpture to the cathedral facade. Our
method took less than 3 hours to execute in MATLAB.

5.4.2. Statue of Liberty
We repeat the Notre Dame experiment on a database of 2000 images compris-

ing the Statue of Liberty [29] chosen randomly from FlickR. Once again, we ex-
tract local image features from each photo and estimate a nearest-neighbor graph
using the approximate keypoint distance. Figure 13 illustrates that the estimated
geodesics between starting and ending images are again semantically meaningful.
For example, the images in the top row of Fig. 13 can be interpreted as zooming
in and panning around the face of the monument.

Of course, our manifold-based method does not produce a full 3D recon-
struction of the scene and thus cannot be considered as an alternative to the full
3D modeling technique employed in Photo Tourism [6]. Nevertheless, it can be
viewed as a new and efficient way to discover intuitive relationships among pho-
tographs. These relationships can potentially be used to improve the performance
of algorithms for applications like camera localization and multi-view 3D recon-
struction.

6. Discussion

Image manifolds have largely been studied from a theoretical standpoint. In
this paper, we have taken some initial steps to bridge the chasm between theory
and applications. We have advocated the need for improved distance measures
that provide meaningful distances between image pairs, and improved image rep-
resentations that are robust to nuisance variations. To this end, we have proposed
an EMD-based metric on local image features that yields a smooth and isometric
mapping from the articulation parameter space to the image feature space.
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A first key aspect of our approach is its simplicity. In contrast with the cur-
rent state-of-the-art methods in SfM, calculating distances in our framework does
not involve complicated physics-based modeling of relationships between images,
such as epipolar geometry or multi-view stereo. Instead, we merely exploit the
low-dimensional manifold geometry inherent in large image ensembles.

A second key aspect of our approach is its computational efficiency. By avoid-
ing explicit correspondence computations between keypoints and image registra-
tion, we save significantly on computational complexity. This is reflected in a
number of our experiments. The SfM bundler approach [6] greedily establishes
correspondences and extracts considerable 3D geometric information from the
input images. Yet, it takes several hours, or even days, to produce meaningful
results. In contrast, our KAM-based method runs in the order of minutes for data
sets of about 150 images and a few hours for a larger dataset of 700+ images.

The ideas we have developed here can be immediately extended to more gen-
eral settings. For example, the pyramid match kernel [25] is an efficient, robust
similarity measure between image pairs that is tailored to object detection. Such
a kernel can conceivably be used to induce interesting geometrical structures on
IAMs in the same manner as our EMD-based approach. We have largely focused
on affine articulations in the object or camera, hence motivating our choice of
SIFT [7] as the feature extraction algorithm A. But this choice can be flexible;
for example, a problem involving the manifold of all possible illuminations of an
object would likely involve a pose-invariant descriptor. The KAM approach could
be extended to such problems in a principled manner, including proving analytical
results along the lines of Propositions 1–3.

We have chosen to demonstrate via extensive numerical experiments that the
KAM approach offers practical robustness to nuisance phenomena such as back-
ground clutter and foreground occlusions. However, modeling such phenomena in
a theoretically principled fashion is a very difficult task. Particularly challenging
scenarios arise in the adversarial setting, where the nuisance clutter and occlusions
are deliberately chosen to be perceptually similar to the actual scene of interest.
In such a scenario, large, unpredictable errors in the distance computation (14) are
possible. We defer the precise characterization of the performance of the KAM
approach in such challenging circumstances to future work.

The primary computational bottleneck in our framework is the calculation of
pairwise keypoint distances between images, which scales as O (M2

), where M is
the number of images. To enable M to scale to tens, or hundreds, of thousands of
images or more, we plan to explore the Nyström method [26, 27], which approxi-
mates the unknown pairwise distance matrix as low rank and attempts to recover
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it from a small set of rows and columns of the matrix. Under the same low-rank
assumption, a host of techniques from the matrix completion literature [28] can
also potentially be applied to recover the pairwise distance matrix from randomly
sampled entries. Recently, adaptive selection schemes have been proposed [30]
that show improved performance over random selection strategies. All of these
schemes can potentially be deployed in conjunction with our proposed frame-
work.
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(a) KAM nearest neighbors

(b) Local Features nearest neighbors

Figure 11: Automatic photo organization using (a) our proposed KAM embedding ap-
proach and (b) an approached based on Local Features [20]. The leftmost image in each
row (marked in red) indicates the query image, and we retrieve the seven geodesic nearest
neighbor images for each query image. In contrast to the Local Features approach, the
KAM approach provides more semantically meaningful nearest neighbors.
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Figure 12: Geodesic paths between images in the Notre Dame dataset. Shown are images
along the estimated geodesic for four different choices of start images (marked in blue)
and end images (marked in orange).

Figure 13: Geodesic paths between images in the Statue of Liberty dataset. Shown are
images along the estimated geodesics for four different choices of start images (marked
in blue) and end images (marked in orange).
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