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Image deblurring has matured over the last decade; today, there are a wide
range of deblurring algorithms that operate successfully in the wild. Yet,
there are many applications — including telephoto and low-light photogra-
phy — where camera shake produces a blur kernel that is large enough to
cripple state-of-the-art deblurring algorithms. This failure can be attributed
to the decreasing SNR at the higher-frequencies of the latent image with
increasing blur kernel size. As a consequence, resolving the finest details
in the image is often impossible without undesirable artifacts due to noise
amplification. In this paper, we demonstrate that these challenges can be
overcome by obtaining multiple blurred images. We make the following ob-
servations. First, the burst mode in most digital cameras supports the ability
to take a sequence of shots in rapid succession. Second, blur due to camera
shake is largely one-dimensional; hence, just obtaining a few blurry images
opportunistically produces blur orientations that are not aligned with each
other; this produces dramatic improvements in deblurring. Third, an alter-
nating sequence of convex programs can be used to recover both the latent
image and blur kernels effectively. We refer to this multi-image deblurring
algorithm as BlurBurst. We demonstrate applications of BlurBurst in tele-
photo and low-light photography and highlight broader uses in hand-held
high dynamic-range (HDR) imaging.
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General Terms: Multi-image deblurring
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1. INTRODUCTION

One of the striking successes of computational photography has
been in deblurring images. Image deblurring has traditionally been
considered a severely undetermined problem in image processing
and computer vision. Yet, today not only do there exist many ro-
bust algorithms for solving the problem, but there are also multiple
commercial products that successfully operate in the wild.

Behind the success of these solutions lie two fundamental ob-
servations. First, blurring is inherently a lossy process. Blur due to
camera shake typically introduces nulls in the Fourier spectrum of
the images. As a consequence, even when the point spread func-
tion (PSF) of the blur, or equivalently the blur kernel, is known,
traditional inverse or recovery algorithms based on least squares
recovery can fail catastrophically. Second, the loss in information
due to the blurring process can often be undone using signal priors.
While there are a myriad of image priors used in today’s deblur-
ring algorithms, the consistent theme is that of regularization of the
inverse algorithm using such priors.

In spite of the tremendous progress in image deblurring, several
challenges remain unsolved. The first challenge occurs in telephoto
and low-light imaging where the effects of camera shake manifests
itself as large blur kernels. Unfortunately, the performance of state-
of-the-art deblurring algorithms degrade significantly as the size of
the blur kernel increases (see Figure 1(b)). The second challenge
is in deblurring scenes that are noisy or contain saturated regions,
both of which occur in low-light scenes. While there has been re-
search addressing denoising low-light imagery (cf. Chatterjee et al.
[2011]) and telephoto imaging (cf. Joshi and Cohen [2010]), their
treatment does not consider blur due to camera shake.

Solving deblurring under high noise and large motion blur re-
quires us to well-condition an otherwise severely ill-conditioned
system. In this paper, we propose to obtain multiple blurred images
of the same latent image; in this setting, we show that the draw-
backs associated with deblurring in high noise and large bluring
kernels can be overcome. Almost all modern digital cameras, in-
cluding cellphones, point-and-shoots, and SLRs, allow the user to
capture images in a burst mode wherein a series of images can be
quickly acquired. Obtaining multiple images significantly improves
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(a) Single image  
Blur PSF 5 pixels 

(c) Two images 
Blur PSF 25 pixels 

(b) Single image 
Blur PSF 25 pixels 

(d) Six image 
Blur PSF 25 pixels 

(a)     (b)     (c)     (d)   Orig. 

(e) Comparison of select 
patches from (a-d)  

Fig. 1. Deblurring with large blur kernel sizes. (a) Single image deblurring works well for small blur kernel sizes but (b) fails when the kernel size is
increased. (c, d) In this paper, we demonstrate that multi-image deblurring provides dramatic improvement in deblurring even for very large blur kernel sizes.
(e) A comparison of the results in (a-d) along with ground truth. Note the dramatic improvement even at two images. Results shown are in the non-blind
setting. Inset in (a-d) are the kernels used to generate blurry images.

the latent image recovery in two significant ways. First, obtaining
multiple blurred image improves SNR just by virtue of noise sup-
pression. Second, in the case of camera shake, blur kernels tend
to be localized close to one-dimensional (1D) curves; hence, the
blur kernels have nulls in different locations as well as decay along
different orientations while preserving high-frequency information
along perpendicular directions. Together, these observations are a
game changer. Indeed, just two carefully designed blur kernels —
each orthogonal to the other — is sufficient for robust image de-
blurring even when the individual blurs are large (see Figure 1).

Contributions: In this paper, we develop a new methodology
called BlurBurst that recovers a sharp latent image from multiple
blurry input images. We assume that the input images are formed
via a single latent image blurred with each different PSFs. Under
this assumption, we derive an iterative estimation algorithm that
recursively estimates both the unknown blur kernels and the latent
image (Section 3). We empirically demonstrate that obtaining mul-
tiple blurry images significantly improves recovery performance;
specifically, when compared to existing methods with single im-
age input, the proposed method can recover scenes for far greater
amount of blur and measurement noise (Section 4). In addition to
a suite of simulations, we demonstrate applicability in several real
world applications involving large blurs, including telephoto and
low-light imaging (Section 5). Finally, we extend BlurBurst to han-
dle deblurring in the presence of saturation to obtain hand-held high
dynamic range (HDR) images (Section 6).

2. PRIOR WORK

Deblurring algorithms can be categorized into three groups: sin-
gle image-based algorithms, multiple image-based algorithms, and
methods that rely on special hardware to alter the blurring process
in a favorable way.

Single image deblurring: The problem of recovering the la-
tent image from a single blurred image can be reduced to image
deconvolution if the blur kernel1 is shift-invariant. Here, we can
sub-divide image deconvolution into non-blind (known kernel) and
blind (unknown kernel) cases.

1We use the terms “kernel” and “PSF” inter-changeably in this paper. Also,
we define the “size” of the kernel as the width of the smallest square that
encloses the blur kernel.

In non-blind deconvolution, a general trend has been to use im-
age priors to regularize the inverse problem of estimating the la-
tent image given blurred image and kernel. Richardson-Lucy (RL)
deconvolution [Lucy 1974][Richardson 1972], a technique origi-
nally proposed in the 1970s, models pixel intensities of the latent
image as Poisson distributed and derives a computational efficient
algorithm for this specific image model. There are many other pri-
ors that have successfully been used for non-blind deconvolution,
including sparse gradients [Levin et al. 2007], sparse wavelet pri-
ors [Neelamani et al. 2004], minimum total variation [Osher et al.
2005], and bilateral edge regularization [Yuan et al. 2008].

There have been many methods for blind deblurring from single
image toward recovering both a sharp image and the blurring ker-
nel. Seminal work by Fergus et al. [2006] demonstrated that it was
indeed possible to deblur real world images reliably; in particular,
under a sparse kernel prior and a mixture-of-Gaussian prior on the
image gradients, they demonstrated that the expected mean of the
kernel conditioned on the observed blurry image serves as a good
estimate for the unknown blur kernel. Non-blind deblurring using
RL deconvolution is used to obtain the latent image. Cho et al.
[2011] make the observation that shape-profile of a blurred edge
encodes the shape of blur-kernel perpendicular to the edge orienta-
tion. Exploiting this, they use multiple blurred edges to reconstruct
the blur kernel under an inverse Radon transform framework. In
contrast, Shan et al. [2008] use an iterative algorithm that performs
alternating optimization of blur kernel and latent image till conver-
gence; a hallmark of their method is the use higher-order models
on the spatial distribution of noise to provide highly accurate blur
kernel and latent image estimates. Cho and Lee [2009] introduce
inverse-diffusion shock filter to reconstruct sharp edges and fast
Fourier transform to recover the blur kernel in gradient domain.

Multiple image deblurring: There are relatively fewer algorithms
devoted to multi-image deblurring. The idea of using two images of
varying exposures has been explored in Yuan et al. [2007]; the short
exposure image, although noisy, has little blur and is used to as a
guide for deblurring the less-noisy, but blurry long-exposure image.
Agrawal et al. [2009] exploit the idea that blur kernels of different
sizes have nulls at different locations in the frequency spectrum.
They use this in the context of motion deblurring of object moving
in a straight line. Rav-Acha and Peleg [2005] exploit directional
properties of camera shake blur and show thatimages with different
blurring directions can be used for estimating blur kernel. Liu and
Abbas [2003] rely on a high-speed camera to capture multiple im-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



BlurBurst • 3

ages of varying exposures which are fused to recover a motion-free
HDR image; here, the blurred regions in the longer exposures are
replaced with their corresponding regions from the shorter expo-
sure images. Harmeling et al. [2010] use a generalized expectation
maximization framework to propose a single sharp image from a
sequence of blurry images; however, the treatment here is only for
the case of astronomical images.

The closest to the work presented in this paper are the multi-
image deblurring results by Sroubek and Flusser [2003][2005] and
Sroubek and Milanfar [2012]. In particular, we share many of the
modeling and optimization techniques proposed in Sroubek and
Milanfar [2012]. The key differences are the use of a higher-order
noise model and our focus on pre-registration of the blurry images,
both of which enable us to process a larger set of photographs cap-
tured under real-acquisition conditions. Further, in many ways, our
optimization framework is significantly simpler, in that we do not
use robust statistics. In-spite of this, our proposed algorithm out-
performs this algorithm on all datasets that we tested on.

Hardware designs for deblurring: A powerful method for im-
age deblurring is the use of computational optics for actively shap-
ing the blur kernel; this dramatically reduces problems associated
with traditional deblurring such as nulls in the frequency spectrum
and low SNR at higher frequencies. Ben-Ezra and Nayar [2003]
propose a hybrid camera that uses a combination of a high tempo-
ral (but low spatial) resolution camera and a high spatial (but low
temporal) resolution camera. Motion estimates obtained from the
former is used to deblur the high resolution frame from the latter.
Raskar et al. [2006] introduce shutter-coding (or the “shutter flut-
ter”) for the problem of deblurring 1D motion; coding the shutter
shapes the Fourier spectrum of the blur kernel to be as flat while
maximizing the SNR. As a consequence, the linear system asso-
ciated with the blurring process is well-conditioned and invertible.
Joshi et al. [2010] use a combination of gyroscopes and accelerom-
eters in order to estimate a blur function from the camera’s accel-
eration and angular velocity during exposure. Levin et al. [2008]
construct a motion invariant blur by introducing camera motion;
specifically; when the camera is moved on a line with a parabolic
displacement profile, the blur kernel associated all objects moving
at constant speeds along the same line is invariant to the object
speed.

Deblurring in HDR imaging: One of the most widely used tech-
nique for HDR imaging is the exposure bracketing scheme [De-
bevec and Malik 1997], where an HDR image is derived from
a series of images with increasing exposures. While this method
works exceedingly well when the images are acquired using a tri-
pod, hand-held HDR image acquisition is challenging due to mo-
tion blur-induced artifacts in the longer exposures. In addition to
the blur, images with longer exposure often contain large regions
of saturated pixels; unless dealt with carefully, saturation violates
the image formation model underlying most traditional deblurring
methods and produces unacceptable artifacts.

There has been some preliminary work devoted to addressing
hand-held HDR imaging. Yuan et al. [2008] proposed an approach
taking the advantage of having a pair of blurred/noisy images. Lu
et al. [2009] produced a unified probabilistic model for estimat-
ing blur kernels simultaneously with recovering a HDR irradiance
map and camera response curve. Cho et al. [2011] provided detailed
analysis on various types of outliers including around saturated ar-
eas. They also proposed an EM-based deconvolution method which
explicitly detecting and properly handling outliers in the deconvo-
lution process.

3. BLURBURST: A MULTI-IMAGE DEBLURRING
ALGORITHM

In this section, we outline our multi-image deblurring algorithm.
We refer to this algorithm as BlurBurst since we seek to deblur by
taking multiple images in rapid succession or in burst mode.

Problem definition: Given a set of Q blurred images
{y1,y2, . . . ,yQ} satisfying the image generation equation:

yi = ki ∗ x + ωi, i = 1, . . . , Q, (1)

our goal is to estimate the latent image x and the blur kernels
{k1, . . . ,kQ} under a Gaussian noise model on the measurement
noise ωi. Each blurred image yi is assumed to be of the same size
M ×M, pixels and each blur kernel is of size K ×K.

Overview of the solution: We employ the following signal priors
in BlurBurst: a sparse image gradient prior for the latent image x
(obtained using a minimum total-variation (TV) norm) and a sparse
prior on the kernels ki (obtained using a minimum `1 norm). Under
these priors, the deblurring problem can be reduced to solving the
following optimization problem:

arg min
x,ki

∑
i

‖A(yi − ki ∗ x)‖22 + λ1TV(x) + λ2

∑
i

‖ki‖1 (2)

where A(·) is a high-order noise model that we discuss below. The
optimization problem in (2) is bi-convex. We solve it as a sequence
of convex problems — at each step, optimizing over x or ki with
the other variables held fixed at the latest estimates.

Boundary: We handle boundary-related artifacts by optimizing
over a latent image that is larger in size than the blurred im-
age. Given blur kernels of size K × K and blurry observations
of size N × N , the size of the estimated latent image is set as
(N −M + 1) × (N −M + 1). Convolution of the latent image
with a blur kernel as in (1) returns back the central M ×M pixels
that correspond to pixels which are completely determined by the
latent image without zero-padding or any other boundary assump-
tions. This way of handling boundary artifacts can be viewed as a
free boundary condition and helps remove ringing artifacts.

Higher-order noise model: We use a likelihood model, first in-
troduced in Shan et al. [2008], that enforces the Gaussian measure-
ment noise model up to multiple spatial derivatives. Equation (1)
models the noise term ωi = yi−ki ∗x, as i.i.d. Gaussian. Viewing
ωi as an N × N image, Shan et al. [2008] make the observation
that spatial derivatives of ωi are Gaussian as well. Given that spa-
tial derivatives are high-pass filters, adding them to the optimization
framework preferentially penalizes the errors at higher-frequencies.
As a consequence, enforcing this property leads to sharper blur ker-
nel and latent image estimates.

We capture the higher-order noise models via the operator A(·)
in (2). We define A as

A(ω) =

[
ω

ωx√
2

ωy√
2

ωxx

2

ωxy

2

ωyy

2

]
,

where ωx = ∂
∂x
ω, and so on. The scaling term associated with each

partial derivative is to account for the increase in noise variance
upon application of the derivative operator.

Blur kernel estimation: The optimization problem for estimating
the individual blur kernels given an estimate of the latent image x̂
can be reduced to

arg min
ki

‖A(yi − ki ∗ x̂)‖22 + λ2‖ki‖1.
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Here, we use SPG-L1 [Van Den Berg and Friedlander 2008], a fast
solver for a variant of this problem.2

Latent image estimation: Given estimates of the blur kernels
{k̂i; i = 1, . . . , Q}, estimating the latent image reduces to the
following convex problem:

arg min
x

∑
i

‖A(yi − k̂i ∗ x)‖22 + λ1TV(x).

We use M-Fista [Beck and Teboulle 2009] — a fast, second-order
solver for minimum TV-norm problems. For computational speed,
the convolution operations are performed in the Fourier domain.

Handling color: The multi-image deblurring algorithm is run only
on the luminance (or grayscale image). Once it converges, the final
blur kernel estimates are used to perform a non-blind deconvolution
on the individual color channels to obtain a color latent image.

Pre-processing/Registration: The blurred images typically re-
quire some registration before we can deblur them. The need for
registration stems from two factors. First, large displacements be-
tween the first and last image would require using an exception-
ally large blur kernel; this would increase the computational burden
of the recovery algorithm significantly. Second, individual blurry
images might have small camera rotations between them which
would violate the single latent image with spatially invariant blur
model assumed in (1). For these reasons, we introduce a simple
homography-based registration step before multi-image deblurring.

The registration pipeline in BlurBurst is as follows:

—Single-image deblurring: Given the input blurred images, we
first use the single image deblurring algorithm of Shan et al.
[2008] to obtain individual latent images. In practice, this step
is optional. We observe that the next few steps on feature ex-
traction and matching works only slightly worse on the actual
blurry inputs; i.e, in practice, the blurred images can be directly
registered without the need for single-image deblurring.

—Feature extraction and matching: We extract SIFT features
from these deblurred images and match them to a pre-selected
reference image.

—Homography estimation: The feature correspondences ob-
tained from the matching algorithm are used to fit a homogra-
phy transformation using RANSAC [Fischler and Bolles 1981].
RANSAC makes our algorithm robust to mismatches due to out-
liers, poor deblurring, or blurry features.

—Registered blurred images: The blurred images are registered
using the estimated homography parameters to give us the regis-
tered blurred images. At this step, we reject any image that has
very poor registration with the reference image.

Once we have the registered blurred images, we crop them to
eliminate missing information (this is optional. It is a straightfor-
ward extension to incorporate missing data in our framework using
a mask on the observed blurred images).

Initialization: Recall that our multi-image deblurring algorithm
is iterative, alternating between blur kernel estimation and latent
image estimation. To kick-start the alternation, we obtain an ini-
tial estimate of the latent image obtained by one of two processes.
The first initialization strategy is the use of the one of the blurred
images as the latent image. This works well in practice and is a sim-
ple method to obtain the initial estimate, but typically takes many

2We use the basis pursuit denoising (BPDN) version of the problem.
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Fig. 2. Outline of BlurBurst, the proposed multi-image deblurring algo-
rithm, including the pre-preprocessing steps and the deblurring algorithm.

Fig. 3. Example blur kernels simulated as a sub-level set of second-order
polynomials with random coefficients over the spatial axes.

more iterations to converge. An alternate initialization strategy is to
use the output of a single-image deblurring algorithm. We use the
single-image deblurring algorithm of Shan et al. [2008] on all the
observed images to obtain multiple candidates for the latent image.
We pick among these using a image quality metric. The deblurred
image with the best quality metric is used to kick-start the kernel
estimation step. We do note that this is tightly coupled with the
registration process outlined above; typically, the first step of the
registration process provides us with the initial estimate as a by
product.

The multi-image deblurring algorithm is now applied on the reg-
istered blurred images starting with blur kernel estimation. Figure
2 outlines this pipeline.

We do note here that images that do not register well are dis-
carded to avoid artifacts due to model mismatch.

4. ANALYSIS

In this section, we analyze the performance of BlurBurst and con-
trast it to traditional single-image deblurring. We focus both on a
theoretical study, that focuses on “invertibility” of non-blind de-
blurring in single and multi-image settings as well as an empirical
analysis where we compare against state-of-the-art single image
algorithms under varying noise, blur size, and number of blurry
images.

For the simulations in this section, we randomly generated mo-
tion blur kernels as a sub-level set of a conic with random coeffi-
cients. Figure 3 shows several examples of blur kernels that were
generated using this method. Notice that the blur kernels tend to
have 1D features, which effectively simulate camera shake blur ker-
nels.
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Fig. 4. (a) Frequency Analysis of single image deblurring showing that
even in faily small noise level (σ = 1

255 ) high frequency detail informa-
tion is completely swamped by observation noise. (b) The mean-squared
error of a maximum-likelihood estimator under no signal prior assumptions
clearly shows the significant benefits of multiple images over single-image
deblurring.

4.1 Theoretical analysis of multi-image deblurring

Pitfalls of single-image deblurring: Blur destroys high frequency
information selectively. This means that, in the presence of even
minimal observation noise, high frequency details cannot be ro-
bustly recovered. This can be clearly visualized by looking at the
magnitude of the Fourier transform of the blur kernels and compar-
ing them with the noise floor. Figure 4(a) illustrates a comparison
of the frequency spectra of the blur kernels of size 10 and 25 pixels
and white Gaussian noise of standard deviation 1/255, which would
be considered low noise. In the entire paper, we assume image in-
tensity values in [0, 1]. Even under such low noise conditions, no-
tice that the large 25-pixel blur kernel results in a complete loss of
high frequency information; this is the primary obstacle that limits
the performance of single-image deblurring. Traditional methods to
tackle this include PSF engineering to make the blur kernal broad-
band [Raskar et al. 2006; Levin et al. 2008] and incorporating sig-
nal priors to regularize the resulting deblurring problem [Shan et al.
2008; Cho and Lee 2009; Fergus et al. 2006].

Analysis of multi-image deblurring: Here, we analyze the char-
acteristics of multi-image deblurring using a linear algebraic char-
acterization.

The multi-image deblurring problem, as defined in (1), reduces
to a over-determined (but possibly ill-conditioned) linear system
when we have knowledge of the blur kernels. In such a setting,
the non-blind deblurring problem can be succinctly written as
y = Φx + n, where y = (y1, . . . ,yQ) are the observed blurred
images, Φ is the multiplexing matrix encompassing the individual
convolutions due to blurring, and n is i.i.d. Gaussian noise with
standard deviation σ. The maximum likelihood (ML) estimate of
x, x̂ is given by

x̂ = (ΦT Φ)−1ΦTy.

Thus the covariance matrix Σ of the errors x− x̂ in the estimate is
given by [Poor 1988]

Σ = σ2(ΦT Φ)−1ΦT Φ(ΦT Φ) = σ2(ΦT Φ)−1.

Therefore, the per-pixel mean-squared error in the estimate is given
by

MSE = trace(ΦT Φ)−1
σ2

m
, (3)

Cho             Shan        BlurBurst 
Non-blind 

Cho             Shan        BlurBurst 
Blind 
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Fig. 5. Comparison of BlurBurst with state-of-the-art single-image deblur-
ring algorithms in low and high noise. Comparisons with both the blind (i.e.,
psf unknown) and the non-blind (psf known) versions of all algorithms are
shown. In both the blind and non-blind cases, BlurBurst outperforms single-
image algorithms.

where m is the size of the observation vector y. Fortunately, since
both single-image deblurring and multi-image deblurring can be
cast as linear inversion problems with appropriate multiplexing ma-
trices, the MSE performance of both single and multi-image sys-
tems can be analyzed (under the assumption of no signal priors) us-
ing (3). Figure 4(b) shows the predicted PSNR, i.e., 20 log10( 1

MSE ),
for the deblurring problem as a function of the number of images
used in deblurring when the blur kernel is of size 25 pixels and
the noise standard deviation is 1/255 just as in Figure 4(a). Here,
the blur kernels were simulated using the procedure described ear-
lier. Not surprisingly, single-image deblurring produces very poor
reconstructions simply because the high frequency information is
completely over-powered by the noise (compare the red and black
curves in Figure 4(a)). Even adding just one additional blurred im-
age significantly improves the predicted performance, since camera
shake blur kernels tend to be nearly 1D3 and the primary direction
of the blur kernel is likely to be at least slightly different in the
two blurred images. Additional blurred images continue to provide
performance improvements. The analysis presented above assumes
that the blur kernels are known and that there are no registration
errors. In practice, the analysis still serves as a guide on the achiev-
able performance gains in the best case.

4.2 Performance characterization of multi-image
deblurring

In order to study the characteristics of the BlurBurst algorithm and
characterize its limitations and performance improvements we per-
form a series of carefully constructed simulation experiments on a
small database of images commonly used in image processing.

Comparison with state-of-the art methods: We compare our re-
sults with those the single-image deblurring algorithms of Cho and
Lee [2009] and Shan et al. [2008]. In order to make a fair compar-
ison with these single-image algorithms, we adopt the following

3Camera shake blur is still 2D. However, it is localized close to 1D curves
in the 2D image space.
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Fig. 7. Performance comparison of deblurring algorithms as a function of
blur kernel size on Barbara image. Even at large blur kernel sizes, BlurBurst
recovers texture detail lost in other methods.

method. For the single-image algorithms, we perform individual
deblurring with each of the captured images. Naturally, the motion
characteristics in the blurred images are different leading to sig-
nificant differences in the amount of blur in the individual images.
Therefore, some of the images are deblurred better than the others.
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Fig. 8. Performance characterization of BlurBurst as a function of the
number of images used. As the number of blurred images used increases
performance as measured by two perceptual image quality metrics (VIF and
SSIM) increases initially but then saturates indicating that a few images are
sufficient to get high quality deblurring results.

We show only the best deblurred image from the set of single-image
deblurred images for each set.

Effect of image noise: We compare the performance of blind and
non-blind versions of our algorithm with those of Cho and Lee and
Shan et al. on a set of commonly used images like Lena, Barbara
and Baboon. In this comparison, we used 6 blurred images as in-
put and the blur kernel size was approximately 25 pixels. Figure 5
shows a comparison of the deblurred images. Note that BlurBurst
outperforms single image algorithms and recovers texture detail ac-
curately even in high noise scenarios.

Effect of blur kernel size: Figure 6 shows a comparison of deblur-
ring algorithms as a function of the size of blur kernel. We added
noise of standard deviation 4/255 to each of the 6 blurry images be-
fore performing the deblurring. As blur kernel size increases perfor-
mance as measured by two perceptual image quality metrics, VIF
[Sheikh and Bovik 2006] and SSIM [Wang et al. 2004] decrease. In
all cases, our multi-image deblurring algorithm outperforms com-
peting single-image deblurring algorithms, often by a significant
margin. A few zoomed in regions from the deblurred images of
Barbara are shown in Figure 7. Even at large blur kernel sizes Blur-
Burst recovers texture detail lost in other methods.

Effect of number of images: In order to estimate the number of
images required to significantly improve image deblurring perfor-
mance, we performed a series of simulations with increasing num-
ber of blurry images. Each blur kernel was about 25 pixels wide,
and we added noise of standard deviation 4/255 intensity levels.
Figure 8 shows the performance improvement as a function of the
number of images being used. Clearly, using two images provides a
significant benefit over using a single image. Further, multi-image
deblurring performance begins to saturate at about 6 images, in-
dicating that the burst mode in almost all digital still cameras and
SLR cameras can be effectively used to capture the multiple images
required for multi-image deblurring.

5. REAL IMAGE EXPERIMENTS

We focus on our two motivating applications: telephoto imaging
and low-light photography.
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(a) Blurry image (b) Cho and Lee 2009 (e) BlurBurst (c) Shan et al. 2008 (d) Sroubek Milanfar 2012 

Fig. 9. Telephoto imaging with a 300mm lens. Camera shake during telephoto imaging can lead to large amounts of blur. Here, we obtained and processed
6 images at 512 × 512 resolution. (a) One of the 6 blurry input images. (b-c) Deblurred results using single-image deblurring algorithms of Cho and Lee
[2009] and Shan et al. [2008]. In each case, we show the best of the 6 deblurred images. (d) Deblurring results from the state-of-the-art multi-image deblurring
algorithm of Sroubek and Milanfar [2012]. (e) Result obtained using BlurBurst. In each column, the top row corresponds to the image and shown below are
select patches.

Telephoto imaging: In telephoto imaging, the large zoom implies
that each pixel on the camera is associated with a very narrow cone
of light. Here, even the slightest camera shake leads to dramatic
blurring artifacts. We showcase this with multiple examples. Shown
in Figure 9 are deblurring results on a “book” dataset. We collected
images of a book using a Canon camera operating at ISO 400, F/8,
exposure time 1/20 second, and focal length 300mm. The latent im-
age recovered using BlurBurst captures very fine textures (such as
the fence and the tree) faithfully. Figure 10 shows additional details
on intermediate estimates, blur kernel estimates as well as individ-
ual deblurring results from state-of-the-art single image deblurring
algorithms.

Figure 11 shows the performance of BlurBurst and competing
algorithms on a images of a resolution chart. The images were col-
lected with the following parameters: ISO 100, F/20, 1/4 sec expo-
sure and focal length 300mm. The result obtained using BlurBurst
is striking in its ability to reproduce the finest details on the resolu-
tion chart that is as good as that observed in the tripod image. We
invite the reader to use the PDF zoom tool to look at smaller details
on the individual images in the electronic version.

Figures 12, 13, and 14 encapsulate deblurred results of BlurBurst
over many different datasets.

Low-light photography: In low-light photography, the longer-
exposures required to obtain high-quality images also introduce
large blur due to camera shake. Figure 15 shows an example. The
images were captured with a Canon SLR with the following set-
tings: ISO 400, F/5.6, exposure times 1.6 seconds, and focal length
55mm. Note the large blur on the input blurry image; state-of-
the-art single image deblurring algorithms introduce artifacts as a
consequence. BlurBurst recovers all the subtle details faithfully;

specifically, concentrate on the hands and facial features of the
baby. Figure 16 shows additional details on intermediate estimates,
blur kernel estimates as well as individual deblurring results from
state-of-the-art single image deblurring algorithms. Results on a
second dataset obtained in night-light is shown in 17; these were
obtained with ISO100, F/8, and exposure time 0.25 seconds.

6. HAND-HELD HIGH DYNAMIC-RANGE IMAGING

A simple method to increase the dynamic-range of a camera is to
obtain multi-image of varying exposures and fuse them to obtain a
HDR image of the scene. Invariably, this involves obtaining images
with long exposures which, in the absence of tripods, lead to signif-
icant blur due to camera shake. In this section, we extend BlurBurst
to hand-held HDR image acquisition.

Challenges: There are two key challenges in deblurring for HDR
imaging: first, the presence of saturated pixels; and second, signal-
dependent noise due to varying exposures. The presence of satu-
rated pixels has historically been the point of failure for most of the
existing deconvolution algorithms. These are caused when the radi-
ance of the scene exceeds the range of the camera’s sensor, leaving
bright highlights clipped at the maximum output value (e.g. 255 for
an 8-bit image). When we shoot a low-light scene with a long ex-
posure time, this effect should be seen in and around a few bright
spots. Deblurring images without accounting for the non-linearity
induced by saturation leads to severe ringing artifacts. Consider
the example of non-blind deblurring in the presence of saturation
shown in Figure 18. The deblurred image, obtained using Shan
et al. [2008], exhibits heavy ringing artifacts around the saturated
regions. This is a consequence of the violation of the forward blur-
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(a) Input images (b) Shan et al. 2008 

(c) Cho and Lee 2009 (d) Intermediate estimates of BlurBurst 

Iteration #1 Iteration #6 Iteration #10 
(final) 

Iteration #10 
(final) 

Iteration #6 

Iteration #1 
Estimated Blur Kernels	

Iteration #4 

Iteration #4 

Fig. 10. Telephoto imaging result. Shown are (top-left) input blurry images, results using single-image deblurring algorithms of (top-right) Shan et al. and
(bottom-left) Cho and Lee. Finally, (bottom-right) shown are intermediate estimates of latent image and blur kernels from BlurBurst.

(a) An input image	
 (b) Shan et al. 2008	
 (c) Sroubek Milanfar 2012	
 (d) BlurBurst	
 (e)  Tripod	


Fig. 11. Telephoto and low-light imaging result of a resolution chart. Shown are (a) an input blurred image, (b-d) deblurring results from various algorithms,
and (e) a tripod stablized sharp image. For each result, we show the deblurred image on top and two zoomed-in insets below.

ring model due to saturation and the propagation of error due to
model misfit.

Problem definition: Given a set ofQ blurred images (correspond-
ing to increasing exposure durations) {y1,y2, . . . ,yQ}, unsatu-
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Fig. 12. Telephoto imaging result. (Left) Shown are (top) input blurry images, (middle) Shan et al. results, (bottom) blur kernel estimates of Shan et al. and
BlurBurst. The inset in orange shows camera parameters uses. (Right) Zoomed-in versions of the deblurred outputs and a tripod image.
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Fig. 13. Telephoto imaging result. (Left) Shown are (top) input blurry images, (middle) Shan et al. results, (bottom) blur kernel estimates of Shan et al. and
BlurBurst. The inset in orange shows camera parameters uses. (Right) Zoomed-in versions of the deblurred outputs.

rated pixels satisfy the image formation model given by

yNS
i = (ki ∗ x)NS + ωi, i = 1, . . . , Q,

where (.)NS represents the set of all pixels that are not saturated.
On the other hand, saturated pixels satisfy the constraint given by

(yi)
S ≥ (ki ∗ x)S , i = 1, . . . , Q,

where (.)S represents the set of all pixels that are saturated.
Our goal is to estimate the latent image x and the blur kernels
{k1, . . . ,kQ} under a Gaussian noise model on the measurement
noise ωi. All blurred images are assumed to be of the same size
M ×M, pixels. The size of the blur kernels increase proportional
to the exposure duration. In particular, the short-exposure images

will exhibit very little blur, while the longer-exposure images will
exhibit larger blurs. We assume that the blur kernel in the largest ex-
posure image is of sizeK×K and for the shorter exposure images
they are proportionally smaller. Further, as we move from images
of short exposure duration to those of longer exposure duration,
more and more pixels fall into the set of saturated pixels thereby
resulting in an increasing number of inequality constraints.

Overview of the solution: As before, we employ a sparse image-
gradient prior for the latent image x (realized using a minimum
total-variation (TV) norm) and a sparse prior on the kernels ki (re-
alized using a minimum `1 norm). Under these priors, the HDR
deblurring problem can be reduced to solving the following opti-
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(a) Blurry image (b) Cho and Lee 2009 (c) Shan et al. 2008 (d) BlurBurst 

Fig. 14. Telephoto imaging of an animal with a 300mm lens. Camera shake during telephoto imaging can lead to large amounts of blur. Here, we obtained 5

images and processed them at 512 × 512 resolution. (a) One of the 5 blurry input images. (b, c) Deblurred results using single-image deblurring algorithms
of Cho and Lee [2009] and Shan et al. [2008]. Shown is the best of the 5 deblurred images. (d) Result obtained using BlurBurst. In each column, the top row
corresponds to the image and shown below are select patches.

(a) Cho and Lee 2009 (b) Shan et al. 2008 (d) BlurBurst (c) Sroubek Milanfar 2012 

Fig. 15. Low-light imaging with a exposure of 1.6 second. The long exposure required to capture low-light scenes often leads to large blur kernels. Here,
we obtained 6 images and processed them at 512 × 512 resolution. (a-b) Deblurring results of state-of-the-art single image deblurring algorithms. In each
case, shown are the best of the 6 deblurred images. (c) Deblurring results of a state-of-the-art multiple image deblurring algorithm. (d) Result obtained using
BlurBurst. In each column, the top row corresponds to the image and shown below are select patches.

mization problem:

arg min
x,ki

TV(x) + λ
∑
i

‖ki‖1 (4)

subject to (ki ∗ x)S ≥ 1

and
∑
i

‖A(yNS
i − (ki ∗ x)NS)‖2 ≤ ε

where A(·) is the same high-order noise model that we discussed
earlier. The constrained optimization problem, as before, in (4) is
bi-convex. As before, we solve it as a sequence of convex prob-
lems — at each step, optimizing over x or ki with the other vari-
ables held fixed at the latest estimates. The main difference is that at
each step the corresponding unconstrained optimization problem is
turned into a constrained optimization problem with the inequality
constraints in the saturation equations providing the constraints.
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(a) All inputs (b) Shan et al. 2008 

(c) Cho and Lee 2009 

Iteration #1 Iteration #2 Iteration #4 Iteration #6 
(final) 

Iteration #6 
(final) 

Iteration #4 

Iteration #2 

Iteration #1 

Estimated Blur Kernels	

(d) Intermediate estimates of BlurBurst 

Fig. 16. Low-light imaging result. Shown are (top-left) input blurry images, results using single-image deblurring algorithms of (top-right) Shan et al. and
(bottom-left) Cho and Lee. Finally, (bottom-right) shown are intermediate estimates of latent image and blur kernels from BlurBurst.

Fig. 18. Deblurring in the presence of saturation. (Left) A blurred image
with saturated regions. (Right) Deblurred image using the non-blind deblur-
ring algorithm of Shan et al. [2008]. While regions far-away from saturated
regions are well-resolved (blur inset), we observe observe severe ringing
artifacts around saturated regions (red inset).

We follow the same initialization and registration strategies out-
lined in Section 3. There are subtle differences due to the individual
images being of different exposures which require us to ignore sat-

urated regions during image registration. Another subtle difference
is that the blur kernel sizes are chosen differently across images of
different exposure durations.

Simulations: We show multiple examples of HDR imaging using
simulations of hand-help imaging scenarios. Figure 19 showcases
results in a non-blind imaging scenario, and Figure 20 showcases
result in a blind imaging scenario. In both cases, we simulated 7
images, each with a different exposure time with a PSF whose size
is directly proportional to the exposure duration. The blur kernel of
the largest exposure was 15×15 pixels. The point spread functions
were simulated using the procedure described before in Section 4.
The exposure time of each input image was twice the exposure time
of the previous image (e.g. 1/480, 1/240, 1/120, 1/60, 1/30, 1/15,
and 1/7.5 second). Random noises of standard deviation σ =3/255
were added to the captured images. We used BlurBurst — suit-
ably modified to handle saturation — to reconstruct the HDR image
from the multiple exposure stack. As seen in the two Figures, the
modified BlurBurst algorithm is successful in both cases without
exhibiting any of the artifacts in competing methods.
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(a) Blurry image (b) Shan et al. 2009 (c) BlurBurst 

Fig. 17. Low-light imaging with a exposure of 0.25 second. The long exposure required to capture low-light scenes often leads to large blur kernels. Here,
we obtained and processed 8 images at 512 × 512 resolution. (a) One of the 8 blurry input images. (b-c) Deblurred results using single-image deblurring
algorithm of Shan et al. [2008]. In each case, shown are the best of the 8 deblurred images. (d) Result obtained using BlurBurst. In each column, the top row
corresponds to the image and shown below are select patches.

Real dataset: Shown in Figure 21 is a result of reconstructing the
HDR image from images collected using a hand-help Canon SLR.
We collected multi exposed 9 images using a Canon camera op-
erating at ISO 100, F/6.3 and focal length 100mm. The exposure
times of each image were 1/250, 1/120, 1/60, 1/30, 1/15, 1/8,
1/4, 1/2, 1 second. Their resolution in input and processing were
370×280. It goes without saying that this is blind situation and the
size of blur kernels estimated was 25 × 25 pixels. As before, we
compare our results with other HDR compositions including the
input images without deblurring, and the input images individually
deblurred using the algorithm in Shan et al. The HDR image recov-
ered using BlurBurst restores fine textures with fewer artifacts in
spite of many saturated areas in long exposed images.

7. DISCUSSIONS

In this paper, we have proposed a new multi-image deblurring algo-
rithm called BlurBurst to overcome the limitation of single-image
deblurring, especially in the context of large blurs due to camera
shake. Obtaining a few blurry images opportunistically provides
blur profiles that are not aligned; this makes the deblurring prob-
lem well-conditioned. In addition to a suite of simulation results,
we have demonstrated the benefits of multi-image deblurring for
two real world applications: tele-photo and low-light imaging. Fi-
nally, we have also extended our algorithm to handle deblurring in
the presence of saturation to obtain hand-held HDR images.

Limitations: We discuss three key limitations of the BlurBurst
framework. First, the assumptions of spatially invariant blur do not
hold in all cases, including moving objects in the scene, defocus
blur due to large apertures, and complex camera motion. Second,
the assumption of a single latent image is violated when we have
moving objects; here, background regions are selectively occluded
and revealed in different images. Third, the success of our algo-
rithm is dependent on the initial registration of the blurred images.
The homography model assumed in our framework is violated for

complex camera shake coupled with scenes with complex geome-
try.

Future work: A key finding of this paper is that multi-image non-
blind deblurring is well-conditioned even in the absence of image
priors. A theoretical treatment under various image priors and in the
blind setting is an extremely interesting and fruitful direction for
future research. Finally, inspired from ideas in [Farsiu et al. 2004],
an exciting avenue for future research is towards enabling super-
resolution of the latent image during the process of deblurring. We
look forward to this future work.
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Fig. 19. Simulation of hand-held HDR imaging. (a) Input images taken with different exposure durations. We all processed at 384 × 512 resolution and
blurred with 15× 15 kernel size at most corresponding to simulated exposure durations. In this experiment, we assumed knowledge of the blur kernel. Shown
are (b) HDR ground-truth data, (c) HDR composite image without deblurring, (d) HDR composite image reconstructed from inputs individually deblurred by
non-blind deconvolution of Shan et al. [2008], and (e) result synthesized by non-blind version of BlurBurst.
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Fig. 20. Simulation of hand-held HDR imaging. (a) Input images taken with different exposure durations. We all processed at 512 × 384 resolution and
blurred with 15× 15 kernel size at most corresponding to simulated exposure durations. In this experiment, we assumed that each blur kernels was unknown
and we iteratively estimated them to synthesize our result. Shown are (b) HDR ground-truth data, (c) HDR composite image without deblurring, (d) HDR
composite image reconstructed from inputs individually deblurred by blind deconvolution of Shan et al. [2008], and (e) result synthesized by BlurBurst.
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(a) Input Images 

(c) Shan et al. 2008 (b) Without deblurring  (d) BlurBurst 

Fig. 21. HDR image estimated by deblurring multiple images acquired from a hand-held SLR. (a) Four input images, from a subset of the 9 images. taken
with different exposure durations. We obtained and processed them at 370 × 280 resolution. (b-d) We estimate three different HDR composite images using
different techniques for deblurring. The HDR composite recovered using BlurBurst has very little artifacts handling as compared to composites created without
deblurring and using single-image deblurring method of Shan et al. [2008].
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