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Figure 1. Spatially-varying autofocus to produce an optical all-in-focus image. Left: A conventional photo with a regular lens, where
objects at a single focal plane appear sharp. Right: An all-in-focus photo captured through spatially-varying autofocusing. To achieve this,
we combine (i) a programmable lens with spatially-varying control over focus, and (ii) a spatially-varying autofocus algorithm to drive the

focus of this lens. Note that this is an optically-captured image of a real scene with no post-capture processing used.

Abstract

A lens brings a single plane into focus on a planar sensor;
hence, parts of the scene that are outside this planar fo-
cus plane are resolved under defocus. Can we break this
precept by enabling a “lens” that can change its depth of
field arbitrarily? This work investigates the design and im-
plementation of such a computational lens with spatially-
selective focusing. Our design uses an optical arrangement
of a Lohmann lens and a phase-only spatial light modulator
to allow each pixel to focus at a different depth. We extend
classical autofocusing techniques to the spatially-varying
scenario where the depth map is iteratively estimated using
contrast and disparity cues, enabling the camera to pro-
gressively shape its depth-of-field to the scene’s depth. By
obtaining an all-in-focus image optically, our technique ad-
vances upon prior work in two key aspects: the ability to
bring an entire scene in focus simultaneously, and the abil-
ity to maintain the highest possible spatial resolution.

1. Introduction

Core to any imaging system is the lens: an optical com-
ponent designed to gather rays of light from a scene and

form a focused image on a sensor. The focusing ability of
a lens, however, only applies to a single plane in the scene.
To form a focused image, the subject should be positioned
at the focal plane, i.e., at a fixed depth from the camera.
Points that do not lie on this focal plane appear blurry, and
the amount of defocus increases progressively as the points
move further away from the plane.

Reducing the size of a lens’ aperture decreases the
amount of defocus and increases the depth of field (i.e.,
the region near the focal plane where points appear to be
in sharp focus). However, this comes at the cost of reduced
light throughput. Furthermore, smaller apertures increase
diffractive blur [8], making content within the depth of field
less sharp. These restrictions on focus are attributed to the
traditional design of a lens, which offers the ability to move
the focal plane (e.g., by adjusting a focus ring) but main-
tains its shape. Hence, we raise the question: in placeof a
single focal plane, is it possible to optically program a focal
surface that can adapt to any scene geometry?

This paper advances the design and implementation of
a computational lens capable of spatially-varying focus—
one that allows a scene in its entirety to be simultaneously
in focus on an image sensor even when the scene is highly
non-planar. Our approach relies on adapting the so-called
Lohmann lens [21], which is a focus-tunable lens produced



optical sharpness

# of images required

all-in-focus generation outputs depth

small aperture low
cubic phase plate [9] low
focal sweep [16, 22] low
focal stack [23, 35] high
coded aperture [7, 11, 17, 18, 26, 27, 37, 41] low
light field cameras [4, 10, 19, 24, 40] low
dual-pixel image deblurring [1, 2, 38, 42] low
spatially-varying autofocus (ours) high

one optical no
one deconvolution no
one deconvolution no
many contrast metric yes
one depth-dependent deconv. yes
one contrast metric yes
one hard inverse problem yes
two optical yes

Table 1. Comparison of all-in-focus imaging techniques. Optical sharpness: Most methods either use a small effective aperture (increasing
the amount of diffraction blur), or intentionally blur the photos (e.g., to create depth-invariant blur). Our approach forms all-in-focus images
by bringing each scene point into focus optically, while maintaining a large aperture. # of images required: Our method requires at least
one image to approximate the scene geometry, and a second image to form the all-in-focus image. Moreover, our method is well suited
for dynamic settings, where each frame determines the focus for the next frame. All-in-focus generation: Unlike most techniques, our
approach forms images using an all-optical process; no additional computational post-processing is required. Outputs depth: A useful

byproduct of several methods is the ability recover a scene’s depth map.

by relative movement between two cubic lenses. Prior work
by Qin et al. [28], in the context of near-eye virtual real-
ity (VR) displays, has shown that a rearrangement of the
Lohmann lens, along with the use of a phase-only spatial
light modulator (SLM), can control the perceived depth of
pixels on a display. Our work extends this concept to the
imaging scenario to provide unprecedented control over a
camera’s focusing capabilities, and introduces a novel cate-
gory to the solution space for all-in-focus imaging.

Contributions. This paper proposes a programmable,
spatially-varying lens for optical all-in-focus imaging and
flexible depth-of-field manipulation.

Optical all-in-focus (AIF) image. The centerpiece of our
contribution is the ability to acquire an optical AIF image
given knowledge of the scene depth, i.e., our technique uses
knowledge of the depth to resolve all scene points in sharp
focus on the sensor. A hallmark of this result is that, un-
like prior work in all-in-focus imaging, our imaging process
does not require computational post-processing.

Spatially-varying autofocusing. To recover the depth map
of the scene, we extend traditional ideas in contrast- and
phase-based autofocus to their spatially-varying counter-
parts. We show that our system can progressively bring the
entire scene into focus using as few as two images. This has
the benefit of matching the quality and depth resolution of
the focus stacking without requiring a large image set.
Code, datasets, and real-time video demonstrations
of dynamic scenes are available on our project website:
https://imaging.cs.cmu.edu/svaf [29].

Limitation. Our current optical prototype is light ineffi-
cient due to the use of polarization-based phase modulation
and a beamsplitter; note that at most one-eighth of the inci-
dent light reaches the sensor, due to light passing through a
polarizer once and through a 50/50 beamsplitter twice.

2. Related Work

We briefly discuss techniques used for extended depth-of-
field imaging, with a focus on key differences from our pro-
posed approach, as summarized in Tab. 1.

Coded aperture systems. One of the classic problems in
computer vision is that of depth from defocus. For a tradi-
tional lens, this problem is ill-conditioned since the circular
shape of the defocus kernel is not sufficiently discrimina-
tive. To resolve this, coded-aperture systems reshape the
aperture of the lens using amplitude or phase masks. A
seminal work in this space is that of Dowski and Cathey [9],
who show that a cubic phase mask has a depth-invariant blur
kernel that can be used to deblur and obtain the AIF image.
More recent work have concentrated on enabling better dis-
criminability of depth, either by using amplitude apertures
[17,37] or phase-based ones [7, 11, 18, 26, 27, 41].

Also loosely falling under the broad umbrella of coded
aperture system are dual-pixel (DP) sensors, where each
pixel has two sub-pixels under a single microlenslet. The
resulting system acquires two images simultaneously, each
from different halves of the lens aperture, thereby emulat-
ing a small baseline stereo setup. DP sensors have found
extensive use in autofocusing systems [13]; however, their
ability to provide stereo pairs has also enabled their use in
AIF image and depth estimation [1, 2, 38, 42].

The proposed work differs from this class of techniques
in two distinct ways. First, we do not need any compu-
tational post-processing since we optically form an all-in-
focus image on the sensor. Second, since we optically fo-
cus on scene points, our images are sharper, modulo non-
idealities of the optics.

Focus stacking. One of the ways to regularize the depth-
from-defocus problem is to capture a dense focal stack—
that is, a collection of images obtained by sweeping the fo-
cus plane through the scene. Using local contrast as a cue,



we can estimate depth and construct an all-in-focus image
of the scene [23, 35]. However, this technique is slow, due
to the need to capture a collection of images, and does not
handle scene dynamics well.

Focal sweep and flexible depth-of-field imaging. Naga-
hara et al. [22] explore the idea of capturing a single im-
age, where the focal plane changes throughout its exposure.
One of their results is the construction of a near-invariant
defocus kernel by sweeping focus, linearly in diopter space,
within the exposure; similar to Dowski and Cathey’s work,
this creates a depth-invariant blur that can be computation-
ally removed. A different result enables a flexible and non-
planar depth of field by synchronizing the focus plane to
a rolling shutter [16]. Our work goes beyond these results
by avoiding post-process computation, as well as enabling
a freeform shape for the depth of field. Such control of
the depth of field was previously only possible via post-
processing, for example, a focal stack [12, 31, 44].

Light fields. Light field cameras [4, 10, 19] sample the
incident 4D space of light rays, and enables refocusing and
AIF image synthesis to be done as a post-processing oper-
ation. Light fields can be measured by placing a microlens
array in front of a sensor [24], or using a camera array [40],
both of which sacrifice the spatial resolution of the sensors
to increase angular resolution. A high angular resolution is
critical for better depth selectivity, but this comes at a com-
mensurate loss in spatial resolution for the reconstructed
images.

Autofocusing systems. Our spatially-selective focusing
technique revisits classical ideas in passive autofocusing
to estimate the depth map of the scene, in order to obtain
an all-in-focus image. Specifically, we develop spatially-
varying counterparts to the traditional contrast and phase
detection autofocusing techniques.

Contrast detection autofocus (CDAF) is one of the pri-
mary methods used by digital cameras to focus a lens. The
approach involves adjusting the focus settings of the lens
until the camera detects the highest contrast (usually at a
few select locations). CDAF techniques can be sped up us-
ing various hill-climbing techniques [15, 33, 36] to estimate
the peak contrast using a sparser set of photographs.

Phase detection autofocus (PDAF) is an alternate tech-
nique that is commonly available in cameras with a DP sen-
sor. When a scene point is in focus, the two images cap-
tured by the corresponding sub-pixels match. Otherwise,
disparity is introduced between the two views. The signed
disparity determines the lens focus for the scene point.

In this work, we extend both techniques to our spatially-
selective framework, where we apply them to bring all re-
gions of the scene into focus simultaneously.
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Figure 2. Split-Lohmann computational lens expands upon the
Lohmann lens in two key steps. (a) First, it achieves a pro-
grammable focus-tunable lens by collocating the two cubic phase
plates of the Lohmann lens using a 4f relay and placing a phase
ramp at the Fourier plane whose slope controls the effective focal
length. (b) We can optically collocate an image sensor with the
SLM. Since each pixel on the sensor is resolved on the SLM, dis-
palying a spatially-varying phase ramp allows local focus control.

3. The Split-Lohmann Computational Lens

The ideas of this paper are inspired by a recent result on
the design of a VR display [28], which proposes the Split-
Lohmann lens, a computational lens that can spatially vary
the focal length. For completeness, we briefly discuss this
prior work before delineating our specific contributions.

The Split-Lohmann design relies on a specific kind of
focus-tunable lens called a Lohmann or Alvarez lens [5, 21]
consisting of two translating cubic phase plates. Suppose
that the optical profiles of the two cubic plates are given by
hi(x) = k2® and hy(z) = —ka®, where & is a curvature-
related parameter. When stacked together with a lateral off-
set A, the resulting phase modulation is given as

hi(z + A) + hao(z — A) = k (6A2% + 2A%) (1)

Ignoring the constant term that is independent of z, we get
a phase modulation that is quadratic in z, i.e., a lens whose
focal length is inversely proportional to A. Hence, lenses
of different focal lengths can be obtained by changing the
amount of translation between the cubic phase plates (see
Fig. 2). The Split-Lohmann display advances the Lohmann
lens by first removing the mechanical translation required,
and second, achieving independent local control of focal
length for different regions on an OLED display.

We propose inverting the function of this optical sys-
tem, by replacing the OLED display with a camera sensor
and adding a camera lens. The result is a Split-Lohmann
computational lens that now offers a camera the ability to
spatially-vary its focus.



4. Spatially-Varying Autofocus

Programming a Split-Lohmann computational lens to form
all-in-focus images requires solving a spatially-varying aut-
ofocusing problem. While we can use a second device de-
voted to depth estimation—either in the form of a passive
stereo camera, a structured light 3D scanner, or a time-of-
flight device—we consider a self-contained autofocus loop
where our device progressively estimates depth and revises
its focus setting. We take inspiration from existing AF so-
lutions used in conventional cameras to drive lens focus:
Contrast Detection Autofocus (CDAF) and Phase Detection
Autofocus (PDAF). Our goal here is to design the spatially-
varying counterparts to these techniques, where we recover
a depth image that is used to compute the necessary SLM
pattern to perform simultaneous local autofocus and bring
the entire field of view in focus simultaneously.

4.1. Contrast Detection Autofocus (CDAF)

Contrast is a popular focus metric for driving focus, as it
can be readily implemented on most imaging systems. The
basic premise of this approach relies on the observation that
contrast of a local region (say, a patch) is maximized when
it is in focus. CDAF techniques, hence, search for the fo-
cus setting that maximizes the contrast of a pre-determined
patch. We extend CDAF to its spatially-varying counterpart
by identifying an independent focus parameter for every re-
gion that maximizes its image contrast.

Our approach relies on the insight that contrast of a patch
as a function of depth is often smooth and, more impor-
tantly, unimodal. This property allows us to design an effi-
cient search strategy by progressively narrowing down the
focus/depth range where the mode can lie. Suppose that the
total working range of focus, as measured in diopters (the
reciprocal of depth), is from 0 to W diopters. We obtain
three images that correspond to the focus at %, %7 and %
diopters. We can estimate the contrast at each local patch
across these three images, and the focus which has the max-
imum contrast (across the three images) allows us to reduce
the range centering the contrast maxima. For example, if the
maximum value occurs at %, then the true maxima must be
between the 0 and % diopters. In each iteration, the search
range reduces by half, and we can repeat the technique over
the refined focus range. Note that, this procedure happens
in parallel and independently at each patch or region in the
image, enabled by the spatially-selective focusing capabil-
ity of our device. Since each iteration comprises of taking
three images' spanning a reduced search range, we obtain
the same performance of linear search, but with a number
of images that is logarithmic in comparison.

'In reality, two images suffice as the center focus in an iteration is one
of the three focus settings used in a previous iteration; however, the spe-
cific patching strategy that we adopted complicates the reuse of previously
captured images, thereby requiring a recapture of the center focus.
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Figure 3. Contrast-based autofocusing pipeline. (a) The objective
is to identify a per-superpixel focus (or depth) setting that max-
imizes contrast. At step K, we capture three measurements and
identify the focus setting that maximizes contrast. We then refine
the search around the next best candidate focus. (b) Example focus
searches from the first two iterations. (c) Focus (or depth) maps
and corresponding images captured after K iterations.

Patching strategy. A key challenge in the technique de-
scribed above is the definition of the local region or patch
where the search technique maximizes contrast. In partic-
ular, we would like each patch to have minimal depth vari-
ations and especially avoid depth discontinuities, so that a
single focus setting suffices for all pixels in the patch. We
achieve this by performing superpixel segmentation; since
depth edges invariably align with texture edges, this strat-
egy of patching based on superpixels allows us to avoid
having large depth variations or discontinuities inside a su-
perpixel. We compute the superpixels using the k-means
clustering-based SLIC method [3]. We update the super-
pixels after each autofocus iteration to benefit from the im-
proved sharpness in the captured photographs, which in turn
allows for finer segmentation of depth boundaries. When
the updated superpixel contains pixels previously assigned
to different depths, we assign the new depth to the most
common (contrast-maximizing) depth in the superpixel.

We illustrate our spatially-varying CDAF algorithm in
Fig. 3. We also provide pseudocode in the supplemen-
tal pdf. Contrast-based autofocusing often requires mul-
tiple captures to identify the focus plane with the highest
contrast. After establishing focus, one can then refine the
existing focal surface over time to accommodate dynamic
scenes, which is far less expensive than recapturing a full fo-
cal stack. In contrast, the technique we present next, PDAF,
offers a single-shot approach to determining focus, at the
cost of requiring a specialized sensor that uses dual pixel
autofocus technology.



4.2. Phase Detection Autofocus (PDAF)

Recent advancements in DP sensors enabled Phase Detec-
tion Autofocus (PDAF) in consumer cameras and smart-
phones. A DP sensor consists of an array of microlenses,
with two (or more) photodiodes under each lens. These pho-
todiodes capture the light traveling through different parts
of the aperture, producing a stereo image pair. The dispar-
ity observed across the two images determines the (signed)
distance of the scene point from the focal plane (see Fig. 14
in supplemental pdf). When a scene point is sharply focused
on the sensor, there is no disparity. When a scene point is
out of focus, i.e., focused onto a plane in front of or behind
the sensor, the disparity appears directionally proportional
to the direction and depth of the focused plane. To solve for
the signed disparity, we adapt the conjugate gradient-based
optical flow solver by Liu [20]. From the magnitude and di-
rection of optical flow, we can calculate the focus correction
needed to bring each region into focus, thereby enabling a
single-shot approach to autofocus the entire field of view.

Challenges at depth boundaries. Since disparity in a
stereo configuration is always horizontal, this suggests that
much of our disparity estimation is driven by pixels with
strong vertical gradients. However, in the context of focus-
ing, we would also need to associate this disparity to the
two regions on either side of the vertical gradient. As an
example, suppose that we observe an edge that exhibits a
disparity of a few pixels. When this edge corresponds to
a depth boundary (which often have strong texture gradi-
ents), all we can observe is the relative shifts between the
patches on either side of the boundary, and we cannot—
just with local context—identify the exact shifts for each.
To resolve this, we resort to segmenting the scene into se-
mantically meaningful regions, and computing disparity for
each region in isolation. In particular, we segment the total
DP image using SegmentAnything [14] into masked labeled
regions (layers), independently compute the masked optical
flow for each layer, and sum all layers into a result flow map.
The result flow map is used to drive the next autofocus. We
illustrate this layered optical flow algorithm in Fig. 4 and
detail the pseudocode in the supplemental pdf.

PDAF has many desirable properties. Unlike CDAF,
which requires a search procedure to identify the sharpest
focus setting, PDAF requires a single image to identify the
spatially-varying focus map; this allows it to adapt to scene
dynamics and is less likely to get stuck in local minima.
When the working range is large, we can expect significant
defocus in regions with larger disparity, which degrades the
quality of the disparity estimate; even in this case, as long
as the sign of the disparity is accurate, the technique con-
verges within a few steps. All of these benefits come with
the requirement of a specialized sensor that has dual pixels.
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Figure 4. Phase-based autofocusing pipeline. (a) Example 1st
and 4th captures from phase-based autofocus. (b) The algorithm
starts by capturing an initial DP image, and segments the result
into semantically meaningful layers. For each layer, we use optical
flow to compute a smooth flow map, that indicates how to adjust
the focus settings. After updating focus, we capture another DP
image and repeat the process.

5. Results

Prototype. We show our prototype in Fig. 5. The Point
Spread Function (PSF) of the prototype, shown in Fig. 6,
is captured for a dot placed at varying distances span-
ning the entire tilting range we use of the SLM. To obtain
DP images, we use the Canon R10 camera sensor with a
6000 x 4000 resolution and a 3.72 pm pixel pitch. The sen-
sor is a dual-pixel sensor which we use for our spatially-
varying PDAF algorithm. We use gphoto2 commands to
programmatically acquire raw images and the LibRaw li-
brary to extract the DP views from the raw image. To per-
form spatially-varying autofocusing, we use the Holoeye
GAEA-2 Phase-Only SLM for phase modulation, which
has a pixel pitch of dgim =3.74pm and a resolution of
4160 x 2464. The cubic phase plate is custom fabricated
using subtractive laser etching. The relay lenses consist of
three Samyang 85 mm f/1.4 AS lenses. Our objective lens
is a AF-S DX Micro NIKKOR 40mm £/2.8G.

Freeform depth-of-field photography. The ability to
spatially-vary focus opens up a lot of composition capa-
bilities beyond all-in-focus photography. After obtaining a
depth map, our system can also intentionally add freeform
defocus to the scene. For example, we can perform tilt-shift
photography without requiring a Scheimpflug adapter to tilt
the plane of focus, as seen in Fig. 7. We also show in Fig. 7
the ability to selectively focus on isolated regions at differ-
ent depths, while the rest of the scene remains defocused.
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Figure 5. Our prototype camera (see supplemental pdf for details).
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Off-axis focused dots spanning the horizontal FOV

Figure 6. Point-spread functions of our prototype camera. Left:
Images of a point placed at different distances from the cam-
era, created by puncturing black paper with a needle and back-
illuminating it with full-spectrum white light. The dot is 10-by-10
pixels, or 37.2 um-by-37.2 um on the sensor. We label the dis-
tance of each dot in diopters. Right: Focused images of the dot,
captured with an SLM spatial frequency v. Bottom: Focused im-
ages of multiple dots at v = 0.09 spanning the camera’s FOV (see
supplement for zoom-ins).

Conventional photo Spatially-Varying Autofocus

Another application of our freeform depth-of-field selec-
tion can be seen in Fig. 8, where we suppress the presence
of thin structures from a photo by optically defocusing only
those particular pixels. We achieve this by selecting a focus
that is far from its depth.

All-in-focus (AIF) imaging. We capture AIF results for
six scenes: Adventure, Planes, Flowers, Bunny, Ship, and
Rainbow. The full results gallery is in the supplemental pdf.

For Adventure and Rainbow, we provide a quantitative
analysis of AIF methods in Fig. 11 using PSNR and SSIM
[39] as metrics. To obtain the ground truth target, we cap-
ture a dense focal stack with 69 depth planes, with each
focus setting having 2 repeated captures averaged to reduce
noise. We then combine these images to form a compu-
tational AIF image from this focal stack to serve as our
ground truth. Given the recovered depth map, we also pro-
gram our lens to capture an AIF image optically, shown
in our qualitative comparisons. When evaluating all-in-
focus results with respect to number of photos captured,
we observe phase-based autofocusing having the best per-
formance, followed by both contrast-based autofocus and
capturing a focal stack. For focal sweep, we search for the
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Figure 7. Example freeform depth-of-field captures of Arc de Tri-
omphe displayed on a vertically tilted OLED. We show the capa-
bility of capturing an optical AIF image (top right), Scheimpflug-
focusing to scale the defocus horizontally (bottom left), and se-
lective focusing where a user specifies select regions to be in focus

while all other regions are defocused (bottom right).
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Figure 8. A thin structure removal example using freeform depth-
of-field. The character stands in front of a thin wire mesh, far away
from the lions print background. Left: A conventional capture
shows the character in focus but with a visible wire mesh over the
background. Right: Our proposed prototype optically removes
the wire mesh by focusing on the background. The large defocus
blur of the wire mesh, therefore, makes it hardly visible.

regularization parameter that produces the best result.

For all scenes, we show qualitative results for contrast-
based after 3 steps (10 photos) and phase-based after 3 steps
(4 photos). We also perform focal sweep (1 photo) and re-
construct AIF images via focus stacking both computation-
ally and optically (20 photos). For the Planes scene, we also
capture a small aperture photo with a separate camera and a
long exposure (f /36 with a 55 mm lens on Nikon Z5).

Spatial resolution. We assess the spatial resolution of
our imaging prototype, and the difference in performance
across autofocus methods. Fig. 12 compares the modulation
transfer function (MTF) of our spatially-varying autofocus
methods to focal stack techniques and focal sweep. Both
of our phase- and contrast-based autofocus methods show



Small aperture (f / 36) Focal stack (computational) Focal stack (optical)

Figure 9. Qualitative comparison for the Planes scene. Each recovered depth map is shown in the top-left corner. All insets are blurrier for
small aperture (f/36) when compared to our results due to diffraction (orange inset) and extreme depth range (green and blue insets).

Focal sweep Focal stack (computational) Focal stack (optical)

Figure 10. Qualitative comparison for the Flowers scene. We include a focal sweep photo (does not output depth) for additional comparison.
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Figure 11. Quantitative analysis of all-in-focus imaging methods,
evaluated as a function of number of photos. These plots represent
the average performance over the Adventure and Rainbow scenes.

comparable performance with focal stack techniques, while
focal sweep has consistently lower performance.

6. Discussion

Aperture. We estimate that our prototype imaging system
has a rest state f number of f/6.8 (i.e., the slope of the phase
ramp is 0). When a phase ramp is applied to the SLM, the
cubic phase plates are optically translated relative to one
another, resulting in a smaller effective aperture. In other
words, as our system moves the focus away from the nom-
inal plane, this changes the shape of the effective aperture
(impacting the bokeh) and reduces its area (limiting the to-
tal amount of light transmitted through the system). At the
most extreme focus settings, we calculate that light through-
put is 76% when compared to the system in the rest state.
See the supplemental materials for additional details.

It is important to note that the f-number depends on both
the diameter and curvature of the cubic phase plate, among
other optics. In principle, we can increase the light through-
put by using a cubic phase plate with a large diameter.

Aberration correction. As with the continual evolution
of optical systems from singlets to achromatic doublets,
apochromatic designs, and modern computer-optimized
multi-element systems, the optical design of our proposed
system can be improved to correct for aberrations. This
includes the following: (i) redesign the lenses used in our
system in an end-to-end fashion, and (ii) optimize the cu-
bic phase plate profile. For the former, Sitzmann et al. [32]
and Sun et al. [34] have shown that end-to-end optical sys-
tem design allows aberrations to be fixed with a higher de-
gree of freedom. Such methods suggest that lenses can
be jointly optimized with parametric SLM patterns to im-
prove all axes of performance of the imaging system: chro-
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Figure 12. MTF of our prototype. (a) We arranged printed
USAF targets at three different depths and illuminated them with
full-spectrum white light, and computed AIF images for differ-
ent methods. (b) Each MTF is computed and averaged from both
horizontal and vertical line pairs across the three depths. We ob-
serve that our methods, including phase-based, contrast-based, and
focus stack optical, perform consistently comparable to the focus
stack computational AIF method, while focal sweep performs con-
sistently worse than all of them.

matic focal shift, artifacts at depth discontinuities, and f-
number. For the latter, one can potentially optimize for a
hybrid refractive-diffractive phase plate using the fully dif-
ferentiable hybrid ray-tracing and wave-propagation (ray-
wave) model recently proposed by Yang et al. [43], which
significantly improved aberration correction.

7. Conclusion

This paper introduces a first-of-its-kind imaging technique,
one that provides spatially-varying autofocusing capabili-
ties. The proposed imaging system and the autofocusing
algorithms can be interpreted as an optical optimizer of
image contrast; we show that standard autofocusing tech-
niques based on contrast and phase can be readily adopted
to the spatially-varying setting. In general, we believe that
this novel approach to imaging has widespread applications
where focus is of paramount importance, such as long-range
surveillance, machine vision, and microscopy.
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