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(a) Conventional photo and its confined focal plane (b) All-In-Focus photo and its spatially-varying autofocused focal surface (ours)
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Figure 1. Spatially-varying autofocus to produce an optical all-in-focus image. Left: A conventional photo with a regular lens, where

objects at a single focal plane appear sharp. Right: An all-in-focus photo captured through spatially-varying autofocusing. To achieve this,

we combine (i) a programmable lens with spatially-varying control over focus, and (ii) a spatially-varying autofocus algorithm to drive the

focus of this lens. Note that this is an optically-captured image of a real scene with no post-capture processing used.

Abstract

A lens brings a single plane into focus on a planar sensor;

hence, parts of the scene that are outside this planar fo-

cus plane are resolved under defocus. Can we break this

precept by enabling a “lens” that can change its depth of

field arbitrarily? This work investigates the design and im-

plementation of such a computational lens with spatially-

selective focusing. Our design uses an optical arrangement

of a Lohmann lens and a phase-only spatial light modulator

to allow each pixel to focus at a different depth. We extend

classical autofocusing techniques to the spatially-varying

scenario where the depth map is iteratively estimated using

contrast and disparity cues, enabling the camera to pro-

gressively shape its depth-of-field to the scene’s depth. By

obtaining an all-in-focus image optically, our technique ad-

vances upon prior work in two key aspects: the ability to

bring an entire scene in focus simultaneously, and the abil-

ity to maintain the highest possible spatial resolution.

1. Introduction

Core to any imaging system is the lens: an optical com-

ponent designed to gather rays of light from a scene and

form a focused image on a sensor. The focusing ability of

a lens, however, only applies to a single plane in the scene.

To form a focused image, the subject should be positioned

at the focal plane, i.e., at a fixed depth from the camera.

Points that do not lie on this focal plane appear blurry, and

the amount of defocus increases progressively as the points

move further away from the plane.

Reducing the size of a lens’ aperture decreases the

amount of defocus and increases the depth of field (i.e.,

the region near the focal plane where points appear to be

in sharp focus). However, this comes at the cost of reduced

light throughput. Furthermore, smaller apertures increase

diffractive blur [8], making content within the depth of field

less sharp. These restrictions on focus are attributed to the

traditional design of a lens, which offers the ability to move

the focal plane (e.g., by adjusting a focus ring) but main-

tains its shape. Hence, we raise the question: in placeof a

single focal plane, is it possible to optically program a focal

surface that can adapt to any scene geometry?

This paper advances the design and implementation of

a computational lens capable of spatially-varying focus—

one that allows a scene in its entirety to be simultaneously

in focus on an image sensor even when the scene is highly

non-planar. Our approach relies on adapting the so-called

Lohmann lens [21], which is a focus-tunable lens produced



optical sharpness # of images required all-in-focus generation outputs depth

small aperture low one optical no

cubic phase plate [9] low one deconvolution no

focal sweep [16, 22] low one deconvolution no

focal stack [23, 35] high many contrast metric yes

coded aperture [7, 11, 17, 18, 26, 27, 37, 41] low one depth-dependent deconv. yes

light field cameras [4, 10, 19, 24, 40] low one contrast metric yes

dual-pixel image deblurring [1, 2, 38, 42] low one hard inverse problem yes

spatially-varying autofocus (ours) high two optical yes

Table 1. Comparison of all-in-focus imaging techniques. Optical sharpness: Most methods either use a small effective aperture (increasing

the amount of diffraction blur), or intentionally blur the photos (e.g., to create depth-invariant blur). Our approach forms all-in-focus images

by bringing each scene point into focus optically, while maintaining a large aperture. # of images required: Our method requires at least

one image to approximate the scene geometry, and a second image to form the all-in-focus image. Moreover, our method is well suited

for dynamic settings, where each frame determines the focus for the next frame. All-in-focus generation: Unlike most techniques, our

approach forms images using an all-optical process; no additional computational post-processing is required. Outputs depth: A useful

byproduct of several methods is the ability recover a scene’s depth map.

by relative movement between two cubic lenses. Prior work

by Qin et al. [28], in the context of near-eye virtual real-

ity (VR) displays, has shown that a rearrangement of the

Lohmann lens, along with the use of a phase-only spatial

light modulator (SLM), can control the perceived depth of

pixels on a display. Our work extends this concept to the

imaging scenario to provide unprecedented control over a

camera’s focusing capabilities, and introduces a novel cate-

gory to the solution space for all-in-focus imaging.

Contributions. This paper proposes a programmable,

spatially-varying lens for optical all-in-focus imaging and

flexible depth-of-field manipulation.

Optical all-in-focus (AIF) image. The centerpiece of our

contribution is the ability to acquire an optical AIF image

given knowledge of the scene depth, i.e., our technique uses

knowledge of the depth to resolve all scene points in sharp

focus on the sensor. A hallmark of this result is that, un-

like prior work in all-in-focus imaging, our imaging process

does not require computational post-processing.

Spatially-varying autofocusing. To recover the depth map

of the scene, we extend traditional ideas in contrast- and

phase-based autofocus to their spatially-varying counter-

parts. We show that our system can progressively bring the

entire scene into focus using as few as two images. This has

the benefit of matching the quality and depth resolution of

the focus stacking without requiring a large image set.

Code, datasets, and real-time video demonstrations

of dynamic scenes are available on our project website:

https://imaging.cs.cmu.edu/svaf [29].

Limitation. Our current optical prototype is light ineffi-

cient due to the use of polarization-based phase modulation

and a beamsplitter; note that at most one-eighth of the inci-

dent light reaches the sensor, due to light passing through a

polarizer once and through a 50/50 beamsplitter twice.

2. Related Work

We briefly discuss techniques used for extended depth-of-

field imaging, with a focus on key differences from our pro-

posed approach, as summarized in Tab. 1.

Coded aperture systems. One of the classic problems in

computer vision is that of depth from defocus. For a tradi-

tional lens, this problem is ill-conditioned since the circular

shape of the defocus kernel is not sufficiently discrimina-

tive. To resolve this, coded-aperture systems reshape the

aperture of the lens using amplitude or phase masks. A

seminal work in this space is that of Dowski and Cathey [9],

who show that a cubic phase mask has a depth-invariant blur

kernel that can be used to deblur and obtain the AIF image.

More recent work have concentrated on enabling better dis-

criminability of depth, either by using amplitude apertures

[17, 37] or phase-based ones [7, 11, 18, 26, 27, 41].

Also loosely falling under the broad umbrella of coded

aperture system are dual-pixel (DP) sensors, where each

pixel has two sub-pixels under a single microlenslet. The

resulting system acquires two images simultaneously, each

from different halves of the lens aperture, thereby emulat-

ing a small baseline stereo setup. DP sensors have found

extensive use in autofocusing systems [13]; however, their

ability to provide stereo pairs has also enabled their use in

AIF image and depth estimation [1, 2, 38, 42].

The proposed work differs from this class of techniques

in two distinct ways. First, we do not need any compu-

tational post-processing since we optically form an all-in-

focus image on the sensor. Second, since we optically fo-

cus on scene points, our images are sharper, modulo non-

idealities of the optics.

Focus stacking. One of the ways to regularize the depth-

from-defocus problem is to capture a dense focal stack—

that is, a collection of images obtained by sweeping the fo-

cus plane through the scene. Using local contrast as a cue,



we can estimate depth and construct an all-in-focus image

of the scene [23, 35]. However, this technique is slow, due

to the need to capture a collection of images, and does not

handle scene dynamics well.

Focal sweep and flexible depth-of-field imaging. Naga-

hara et al. [22] explore the idea of capturing a single im-

age, where the focal plane changes throughout its exposure.

One of their results is the construction of a near-invariant

defocus kernel by sweeping focus, linearly in diopter space,

within the exposure; similar to Dowski and Cathey’s work,

this creates a depth-invariant blur that can be computation-

ally removed. A different result enables a flexible and non-

planar depth of field by synchronizing the focus plane to

a rolling shutter [16]. Our work goes beyond these results

by avoiding post-process computation, as well as enabling

a freeform shape for the depth of field. Such control of

the depth of field was previously only possible via post-

processing, for example, a focal stack [12, 31, 44].

Light fields. Light field cameras [4, 10, 19] sample the

incident 4D space of light rays, and enables refocusing and

AIF image synthesis to be done as a post-processing oper-

ation. Light fields can be measured by placing a microlens

array in front of a sensor [24], or using a camera array [40],

both of which sacrifice the spatial resolution of the sensors

to increase angular resolution. A high angular resolution is

critical for better depth selectivity, but this comes at a com-

mensurate loss in spatial resolution for the reconstructed

images.

Autofocusing systems. Our spatially-selective focusing

technique revisits classical ideas in passive autofocusing

to estimate the depth map of the scene, in order to obtain

an all-in-focus image. Specifically, we develop spatially-

varying counterparts to the traditional contrast and phase

detection autofocusing techniques.

Contrast detection autofocus (CDAF) is one of the pri-

mary methods used by digital cameras to focus a lens. The

approach involves adjusting the focus settings of the lens

until the camera detects the highest contrast (usually at a

few select locations). CDAF techniques can be sped up us-

ing various hill-climbing techniques [15, 33, 36] to estimate

the peak contrast using a sparser set of photographs.

Phase detection autofocus (PDAF) is an alternate tech-

nique that is commonly available in cameras with a DP sen-

sor. When a scene point is in focus, the two images cap-

tured by the corresponding sub-pixels match. Otherwise,

disparity is introduced between the two views. The signed

disparity determines the lens focus for the scene point.

In this work, we extend both techniques to our spatially-

selective framework, where we apply them to bring all re-

gions of the scene into focus simultaneously.

= =

spatially-varying 

phase ramp

image sensor spatially-varying 

focal plane

(a) Removing mechanical motion from Lohmann lens

(b) Enabling spatial-selectivity in focusing

cubic plate phase ramp cubic plate

Figure 2. Split-Lohmann computational lens expands upon the

Lohmann lens in two key steps. (a) First, it achieves a pro-

grammable focus-tunable lens by collocating the two cubic phase

plates of the Lohmann lens using a 4f relay and placing a phase

ramp at the Fourier plane whose slope controls the effective focal

length. (b) We can optically collocate an image sensor with the

SLM. Since each pixel on the sensor is resolved on the SLM, dis-

palying a spatially-varying phase ramp allows local focus control.

3. The Split-Lohmann Computational Lens

The ideas of this paper are inspired by a recent result on

the design of a VR display [28], which proposes the Split-

Lohmann lens, a computational lens that can spatially vary

the focal length. For completeness, we briefly discuss this

prior work before delineating our specific contributions.

The Split-Lohmann design relies on a specific kind of

focus-tunable lens called a Lohmann or Alvarez lens [5, 21]

consisting of two translating cubic phase plates. Suppose

that the optical profiles of the two cubic plates are given by

h1(x) = x3 and h2(x) = �x3, where  is a curvature-

related parameter. When stacked together with a lateral off-

set �, the resulting phase modulation is given as

h1(x+�) + h2(x��) = 
�

6�x2 + 2�3
�

(1)

Ignoring the constant term that is independent of x, we get

a phase modulation that is quadratic in x, i.e., a lens whose

focal length is inversely proportional to �. Hence, lenses

of different focal lengths can be obtained by changing the

amount of translation between the cubic phase plates (see

Fig. 2). The Split-Lohmann display advances the Lohmann

lens by first removing the mechanical translation required,

and second, achieving independent local control of focal

length for different regions on an OLED display.

We propose inverting the function of this optical sys-

tem, by replacing the OLED display with a camera sensor

and adding a camera lens. The result is a Split-Lohmann

computational lens that now offers a camera the ability to

spatially-vary its focus.



4. Spatially-Varying Autofocus

Programming a Split-Lohmann computational lens to form

all-in-focus images requires solving a spatially-varying aut-

ofocusing problem. While we can use a second device de-

voted to depth estimation—either in the form of a passive

stereo camera, a structured light 3D scanner, or a time-of-

flight device—we consider a self-contained autofocus loop

where our device progressively estimates depth and revises

its focus setting. We take inspiration from existing AF so-

lutions used in conventional cameras to drive lens focus:

Contrast Detection Autofocus (CDAF) and Phase Detection

Autofocus (PDAF). Our goal here is to design the spatially-

varying counterparts to these techniques, where we recover

a depth image that is used to compute the necessary SLM

pattern to perform simultaneous local autofocus and bring

the entire field of view in focus simultaneously.

4.1. Contrast Detection Autofocus (CDAF)

Contrast is a popular focus metric for driving focus, as it

can be readily implemented on most imaging systems. The

basic premise of this approach relies on the observation that

contrast of a local region (say, a patch) is maximized when

it is in focus. CDAF techniques, hence, search for the fo-

cus setting that maximizes the contrast of a pre-determined

patch. We extend CDAF to its spatially-varying counterpart

by identifying an independent focus parameter for every re-

gion that maximizes its image contrast.

Our approach relies on the insight that contrast of a patch

as a function of depth is often smooth and, more impor-

tantly, unimodal. This property allows us to design an effi-

cient search strategy by progressively narrowing down the

focus/depth range where the mode can lie. Suppose that the

total working range of focus, as measured in diopters (the

reciprocal of depth), is from 0 to W diopters. We obtain

three images that correspond to the focus at W

4
, W

2
, and 3W

4

diopters. We can estimate the contrast at each local patch

across these three images, and the focus which has the max-

imum contrast (across the three images) allows us to reduce

the range centering the contrast maxima. For example, if the

maximum value occurs at W

4
, then the true maxima must be

between the 0 and W

2
diopters. In each iteration, the search

range reduces by half, and we can repeat the technique over

the refined focus range. Note that, this procedure happens

in parallel and independently at each patch or region in the

image, enabled by the spatially-selective focusing capabil-

ity of our device. Since each iteration comprises of taking

three images1 spanning a reduced search range, we obtain

the same performance of linear search, but with a number

of images that is logarithmic in comparison.

1In reality, two images suffice as the center focus in an iteration is one

of the three focus settings used in a previous iteration; however, the spe-

cific patching strategy that we adopted complicates the reuse of previously

captured images, thereby requiring a recapture of the center focus.
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Figure 3. Contrast-based autofocusing pipeline. (a) The objective

is to identify a per-superpixel focus (or depth) setting that max-

imizes contrast. At step K, we capture three measurements and

identify the focus setting that maximizes contrast. We then refine

the search around the next best candidate focus. (b) Example focus

searches from the first two iterations. (c) Focus (or depth) maps

and corresponding images captured after K iterations.

Patching strategy. A key challenge in the technique de-

scribed above is the definition of the local region or patch

where the search technique maximizes contrast. In partic-

ular, we would like each patch to have minimal depth vari-

ations and especially avoid depth discontinuities, so that a

single focus setting suffices for all pixels in the patch. We

achieve this by performing superpixel segmentation; since

depth edges invariably align with texture edges, this strat-

egy of patching based on superpixels allows us to avoid

having large depth variations or discontinuities inside a su-

perpixel. We compute the superpixels using the k-means

clustering-based SLIC method [3]. We update the super-

pixels after each autofocus iteration to benefit from the im-

proved sharpness in the captured photographs, which in turn

allows for finer segmentation of depth boundaries. When

the updated superpixel contains pixels previously assigned

to different depths, we assign the new depth to the most

common (contrast-maximizing) depth in the superpixel.

We illustrate our spatially-varying CDAF algorithm in

Fig. 3. We also provide pseudocode in the supplemen-

tal pdf. Contrast-based autofocusing often requires mul-

tiple captures to identify the focus plane with the highest

contrast. After establishing focus, one can then refine the

existing focal surface over time to accommodate dynamic

scenes, which is far less expensive than recapturing a full fo-

cal stack. In contrast, the technique we present next, PDAF,

offers a single-shot approach to determining focus, at the

cost of requiring a specialized sensor that uses dual pixel

autofocus technology.



4.2. Phase Detection Autofocus (PDAF)

Recent advancements in DP sensors enabled Phase Detec-

tion Autofocus (PDAF) in consumer cameras and smart-

phones. A DP sensor consists of an array of microlenses,

with two (or more) photodiodes under each lens. These pho-

todiodes capture the light traveling through different parts

of the aperture, producing a stereo image pair. The dispar-

ity observed across the two images determines the (signed)

distance of the scene point from the focal plane (see Fig. 14

in supplemental pdf). When a scene point is sharply focused

on the sensor, there is no disparity. When a scene point is

out of focus, i.e., focused onto a plane in front of or behind

the sensor, the disparity appears directionally proportional

to the direction and depth of the focused plane. To solve for

the signed disparity, we adapt the conjugate gradient-based

optical flow solver by Liu [20]. From the magnitude and di-

rection of optical flow, we can calculate the focus correction

needed to bring each region into focus, thereby enabling a

single-shot approach to autofocus the entire field of view.

Challenges at depth boundaries. Since disparity in a

stereo configuration is always horizontal, this suggests that

much of our disparity estimation is driven by pixels with

strong vertical gradients. However, in the context of focus-

ing, we would also need to associate this disparity to the

two regions on either side of the vertical gradient. As an

example, suppose that we observe an edge that exhibits a

disparity of a few pixels. When this edge corresponds to

a depth boundary (which often have strong texture gradi-

ents), all we can observe is the relative shifts between the

patches on either side of the boundary, and we cannot—

just with local context—identify the exact shifts for each.

To resolve this, we resort to segmenting the scene into se-

mantically meaningful regions, and computing disparity for

each region in isolation. In particular, we segment the total

DP image using SegmentAnything [14] into masked labeled

regions (layers), independently compute the masked optical

flow for each layer, and sum all layers into a result flow map.

The result flow map is used to drive the next autofocus. We

illustrate this layered optical flow algorithm in Fig. 4 and

detail the pseudocode in the supplemental pdf.

PDAF has many desirable properties. Unlike CDAF,

which requires a search procedure to identify the sharpest

focus setting, PDAF requires a single image to identify the

spatially-varying focus map; this allows it to adapt to scene

dynamics and is less likely to get stuck in local minima.

When the working range is large, we can expect significant

defocus in regions with larger disparity, which degrades the

quality of the disparity estimate; even in this case, as long

as the sign of the disparity is accurate, the technique con-

verges within a few steps. All of these benefits come with

the requirement of a specialized sensor that has dual pixels.
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Figure 4. Phase-based autofocusing pipeline. (a) Example 1st

and 4th captures from phase-based autofocus. (b) The algorithm

starts by capturing an initial DP image, and segments the result

into semantically meaningful layers. For each layer, we use optical

flow to compute a smooth flow map, that indicates how to adjust

the focus settings. After updating focus, we capture another DP

image and repeat the process.

5. Results

Prototype. We show our prototype in Fig. 5. The Point

Spread Function (PSF) of the prototype, shown in Fig. 6,

is captured for a dot placed at varying distances span-

ning the entire tilting range we use of the SLM. To obtain

DP images, we use the Canon R10 camera sensor with a

6000⇥ 4000 resolution and a 3.72 µm pixel pitch. The sen-

sor is a dual-pixel sensor which we use for our spatially-

varying PDAF algorithm. We use gphoto2 commands to

programmatically acquire raw images and the LibRaw li-

brary to extract the DP views from the raw image. To per-

form spatially-varying autofocusing, we use the Holoeye

GAEA-2 Phase-Only SLM for phase modulation, which

has a pixel pitch of �SLM =3.74 µm and a resolution of

4160 ⇥ 2464. The cubic phase plate is custom fabricated

using subtractive laser etching. The relay lenses consist of

three Samyang 85mm f/1.4 AS lenses. Our objective lens

is a AF-S DX Micro NIKKOR 40mm f/2.8G.

Freeform depth-of-field photography. The ability to

spatially-vary focus opens up a lot of composition capa-

bilities beyond all-in-focus photography. After obtaining a

depth map, our system can also intentionally add freeform

defocus to the scene. For example, we can perform tilt-shift

photography without requiring a Scheimpflug adapter to tilt

the plane of focus, as seen in Fig. 7. We also show in Fig. 7

the ability to selectively focus on isolated regions at differ-

ent depths, while the rest of the scene remains defocused.
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Imaging lens: variable

Relay lens: Samyang 85mm f/1.4 AS

Beam Splitter Thorlabs CCM1-BS013

Cubic phase plate

SLM: Holoeye GAEA2

Sensor: Canon EOS R10

All-in-focus image

Figure 5. Our prototype camera (see supplemental pdf for details).

Conventional photo Spatially-Varying Autofocus

0.89D 1.78D 2.67D 5.34D

11.57D 14.24D 15.13D 16.02D

v=-0.200 v=-0.167 v=-0.125 v=-0.090

v=0.090 v=0.125 v=0.167 v=0.200

Off-axis focused dots spanning the horizontal FOV

Figure 6. Point-spread functions of our prototype camera. Left:

Images of a point placed at different distances from the cam-

era, created by puncturing black paper with a needle and back-

illuminating it with full-spectrum white light. The dot is 10-by-10

pixels, or 37.2 µm-by-37.2 µm on the sensor. We label the dis-

tance of each dot in diopters. Right: Focused images of the dot,

captured with an SLM spatial frequency v. Bottom: Focused im-

ages of multiple dots at v = 0.09 spanning the camera’s FOV (see

supplement for zoom-ins).

Another application of our freeform depth-of-field selec-

tion can be seen in Fig. 8, where we suppress the presence

of thin structures from a photo by optically defocusing only

those particular pixels. We achieve this by selecting a focus

that is far from its depth.

All-in-focus (AIF) imaging. We capture AIF results for

six scenes: Adventure, Planes, Flowers, Bunny, Ship, and

Rainbow. The full results gallery is in the supplemental pdf.

For Adventure and Rainbow, we provide a quantitative

analysis of AIF methods in Fig. 11 using PSNR and SSIM

[39] as metrics. To obtain the ground truth target, we cap-

ture a dense focal stack with 69 depth planes, with each

focus setting having 2 repeated captures averaged to reduce

noise. We then combine these images to form a compu-

tational AIF image from this focal stack to serve as our

ground truth. Given the recovered depth map, we also pro-

gram our lens to capture an AIF image optically, shown

in our qualitative comparisons. When evaluating all-in-

focus results with respect to number of photos captured,

we observe phase-based autofocusing having the best per-

formance, followed by both contrast-based autofocus and

capturing a focal stack. For focal sweep, we search for the

Conventional Capture Optical AIF Capture

Horizontal DoF Capture Selective DoF Capture

Focus Map

Focus Map Focus Map

Figure 7. Example freeform depth-of-field captures of Arc de Tri-

omphe displayed on a vertically tilted OLED. We show the capa-

bility of capturing an optical AIF image (top right), Scheimpflug-

focusing to scale the defocus horizontally (bottom left), and se-

lective focusing where a user specifies select regions to be in focus

while all other regions are defocused (bottom right).

Focus Map

Conventional Capture Flexible DoF Capture

Figure 8. A thin structure removal example using freeform depth-

of-field. The character stands in front of a thin wire mesh, far away

from the lions print background. Left: A conventional capture

shows the character in focus but with a visible wire mesh over the

background. Right: Our proposed prototype optically removes

the wire mesh by focusing on the background. The large defocus

blur of the wire mesh, therefore, makes it hardly visible.

regularization parameter that produces the best result.

For all scenes, we show qualitative results for contrast-

based after 3 steps (10 photos) and phase-based after 3 steps

(4 photos). We also perform focal sweep (1 photo) and re-

construct AIF images via focus stacking both computation-

ally and optically (20 photos). For the Planes scene, we also

capture a small aperture photo with a separate camera and a

long exposure (f/36 with a 55mm lens on Nikon Z5).

Spatial resolution. We assess the spatial resolution of

our imaging prototype, and the difference in performance

across autofocus methods. Fig. 12 compares the modulation

transfer function (MTF) of our spatially-varying autofocus

methods to focal stack techniques and focal sweep. Both

of our phase- and contrast-based autofocus methods show



Initial photo Contrast-based result (ours) Phase-based result (ours)

Small aperture (f/36) Focal stack (computational) Focal stack (optical)

Figure 9. Qualitative comparison for the Planes scene. Each recovered depth map is shown in the top-left corner. All insets are blurrier for

small aperture (f/36) when compared to our results due to diffraction (orange inset) and extreme depth range (green and blue insets).

Initial photo Contrast-based result (ours) Phase-based result (ours)

Focal sweep Focal stack (computational) Focal stack (optical)

Figure 10. Qualitative comparison for the Flowers scene. We include a focal sweep photo (does not output depth) for additional comparison.



Figure 11. Quantitative analysis of all-in-focus imaging methods,

evaluated as a function of number of photos. These plots represent

the average performance over the Adventure and Rainbow scenes.

comparable performance with focal stack techniques, while

focal sweep has consistently lower performance.

6. Discussion

Aperture. We estimate that our prototype imaging system

has a rest state f number of f/6.8 (i.e., the slope of the phase

ramp is 0). When a phase ramp is applied to the SLM, the

cubic phase plates are optically translated relative to one

another, resulting in a smaller effective aperture. In other

words, as our system moves the focus away from the nom-

inal plane, this changes the shape of the effective aperture

(impacting the bokeh) and reduces its area (limiting the to-

tal amount of light transmitted through the system). At the

most extreme focus settings, we calculate that light through-

put is 76% when compared to the system in the rest state.

See the supplemental materials for additional details.

It is important to note that the f-number depends on both

the diameter and curvature of the cubic phase plate, among

other optics. In principle, we can increase the light through-

put by using a cubic phase plate with a large diameter.

Aberration correction. As with the continual evolution

of optical systems from singlets to achromatic doublets,

apochromatic designs, and modern computer-optimized

multi-element systems, the optical design of our proposed

system can be improved to correct for aberrations. This

includes the following: (i) redesign the lenses used in our

system in an end-to-end fashion, and (ii) optimize the cu-

bic phase plate profile. For the former, Sitzmann et al. [32]

and Sun et al. [34] have shown that end-to-end optical sys-

tem design allows aberrations to be fixed with a higher de-

gree of freedom. Such methods suggest that lenses can

be jointly optimized with parametric SLM patterns to im-

prove all axes of performance of the imaging system: chro-

(b) MTF curves comparing different AIF methods

far depth far focusedmid depth near depth mid focused near focused

focal stack 

comp. AIF

focal stack 

optical AIF

PDAF AIF CDAF AIF focal sweep 

captured AIF

inset inset inset inset inset

initial 

photo

inset

(a) Images captured using different AIF methods

nominal capture phase-based autofocus AIF capture

Figure 12. MTF of our prototype. (a) We arranged printed

USAF targets at three different depths and illuminated them with

full-spectrum white light, and computed AIF images for differ-

ent methods. (b) Each MTF is computed and averaged from both

horizontal and vertical line pairs across the three depths. We ob-

serve that our methods, including phase-based, contrast-based, and

focus stack optical, perform consistently comparable to the focus

stack computational AIF method, while focal sweep performs con-

sistently worse than all of them.

matic focal shift, artifacts at depth discontinuities, and f-

number. For the latter, one can potentially optimize for a

hybrid refractive-diffractive phase plate using the fully dif-

ferentiable hybrid ray-tracing and wave-propagation (ray-

wave) model recently proposed by Yang et al. [43], which

significantly improved aberration correction.

7. Conclusion

This paper introduces a first-of-its-kind imaging technique,

one that provides spatially-varying autofocusing capabili-

ties. The proposed imaging system and the autofocusing

algorithms can be interpreted as an optical optimizer of

image contrast; we show that standard autofocusing tech-

niques based on contrast and phase can be readily adopted

to the spatially-varying setting. In general, we believe that

this novel approach to imaging has widespread applications

where focus is of paramount importance, such as long-range

surveillance, machine vision, and microscopy.
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