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Abstract

The ubiquity of mobile devices has made mobile photography an indispensable part of our daily life.

Unlike standalone cameras, mobile device cameras have to adhere to unique design constraints imposed

by the compact form factors and multi-functionality of these devices. In this thesis, we investigate two

distinct challenges arising from current mobile device design trend and propose novel camera and sensor

designs to address them.

First, the conflict between screen size and camera placement has never been more severe than it

is now, driven by the demand for full-screen devices. The prevalence of organic light-emitting diode

(OLED) displays, with their partial transparency, offers an exciting opportunity to place a conventional

camera beneath the screen, allowing the simultaneous operation of both components.

We study under-display cameras (UDCs), an emerging type of camera that captures a scene through

the micron-scale openings of an OLED display panel. Their image quality is hindered by poor signal-to-

noise ratio and severe diffractive blur due to the presence of the display. Canwe redesign the hardware to

improve the overall image quality of UDCs? Based on Fourier optics, we find that the diffractive blur of

a UDC is fundamentally determined by the shape of the display opening. Therefore, we propose a suite

of modifications to the display layout, including using a random pixel tiling and optimizing the open-

ing shape of each pixel. The proposed method significantly advances image quality by improving the

invertibility of the diffractive blur. However, this requires nontrivial display redesign. As a complemen-

tary solution, we propose to optically modify the display opening shape by adding two phase masks,

one in front of and one behind the display. The first phase mask concentrates light onto the display

openings, and the other phase mask restores the original wavefront, effectively rendering the display

invisible to the camera under certain assumptions. This approach improves UDCs light throughput and

the conditioning of the blur, and maintains display quality.

Second, the continuous shrinking of image sensor pixels, with the potential to increase image reso-

lution under a constrained sensor die size, presents challenges. Since small pixels collect less light, they

are more susceptible to noise degradation in low-light conditions. Can we design novel computational

techniques to combat noise and expand dynamic range of these sensors?

We propose two spatially varying readout techniques that adapt to local scene brightness. The first

technique involves spatially varying gain. The key insight is that a larger gain or ISO setting can over-

come read noise by amplifying the signal level. Conventional sensors apply a constant gain across the

entire frame, limiting the use of a large gain when the scene has a wide dynamic range. In contrast, our

v
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approach adjusts gain at small regions of interest or even individual pixels, allowing a much larger gain

for dark regions while avoiding saturation in bright regions, thus effectively expanding the sensor’s dy-

namic range. The second technique is spatially-varying binning. We investigate the optimal pixel size in

terms of noise and resolution, and show that the optimal size is tightly coupled with the scene light level.

We develop a simple theory that maps scene brightness to optimal pixel size, and implement this vary-

ing pixel size through binning. We demonstrate the proposed spatially varying techniques in various

applications, including high dynamic range imaging, vignetting, and lens blur, and show consistently

improved noise performance and effective resolution.

This thesis takes a leap forward by innovating optics and sensors to address the unique challenges

in mobile photography. Interestingly, many of these challenges are fundamentally linked to classic

problems in computer vision, such as mitigating blur and noise, and enhancing resolution and dynamic

range. We hope that the techniques presented in this work will not only open new avenues for mobile

photography but also inspire broader innovation in the field of computational imaging.
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1Introduction
Camera design has been extensively studied for over a hundred years. Nowadays, cameras have been an

essential tool for diverse fields, ranging from biology, medical imaging, astronomy, to everyday photog-

raphy. One particularly significant applications is the integration of cameras into mobile devices, such

as smartphones, tablets, and augmented reality or virtual reality (AR/VR) headsets. Unlike standalone

cameras, the design of mobile device cameras must adhere to the unique form factor constraints due to

the emphasis on portability and multi-functionality. The rapid evolution of mobile device form factors

necessitates innovative camera designs. In this thesis, we look at two emerging trends in mobile devices,

and presents novel camera optics and sensor designs to tackle the challenges presented by these trends.

The first trend is the increasing screen-to-body ratio. As the screen gets larger, the conflict between

screen and front-facing camera placement becomes more severe. Most mobile devices punch a hole

or use a notch on the top edge of a screen to accommodate the cameras, compromising the aesthetics

and functionality of the display. Is there a way to jointly design the display and camera to achieve

high quality display and photography at the same time? Previous research has explored display-camera

systems. One exciting example is BiDiScreen [Hirsch et al., 2009] that interlaces photodiodes into LCD

displays to form a lensless imager and captures images by using the display as an attenuationmask. Since

the display has to switch between imaging mode and display mode, the refresh rate is decreased. And

the image quality of the lensless camera is significantly inferior to a conventional front-facing camera.

The widespread use of organic light-emitting diode (OLED) displays in the mobile devices offers a

new opportunity. As OLED displays do not require a backlit panel and can bemade partially transparent,

we can place a conventional lens-based camera beneath the display screen and image the scene through

the openings of the OLED panel. In the first half of this thesis, we focus on the design of under-display

cameras (UDCs). Despite their potential, building high-quality UDCs comes with two significant tech-

nical challenges: diffraction and low signal-to-noise ratio. The micron-scale openings on the display

diffract light and produce severe diffractive blur in the captured image. We show that it is the shape of
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the display openings that determines the diffractive blur, and unfortunately, the diffractive blur from off-

the-shelf OLED displays are usually not conducive to invertibility. Moreover, the display panel blocks

most of the light and causes extremely low signal to noise ratio, further complicating the deblurring. Can

we jointly design the shape of OLED display opening and the camera post-processing algorithms (deblurring

and denoising), such that the restored image quality is better?

To answer this question, we explore two solutions of redesigning the opening pattern of the displays,

one that directly modifies the display layout, and one that optically modifies the displays’ opening shape

by placing phase masks tightly around the display.

First, we demonstrate that innovating the display opening layout can significantly improve the image

quality of UDCs. Based on Fourier optics, we find that the diffractive blur of a UDC is fundamentally

determined by the shape of the display opening. Therefore, we propose a suite of modifications to the

display layout. First, instead of using a repetitive pixel tiling as in conventional displays, we show that

a random pixel tiling improves the symmetry and invertibility of point spread functions. Second, we

optimize the per-pixel opening pattern to make the point spread function more robust to deblurring.

The proposed method achieves better performance than common on-the-market displays. However,

changing the display opening would necessitate redesigning RGB display pixels and circuit placement,

which requires significant engineering effort.

Second, to avoid directly modifying the display layout, we propose a complementary solution that

optically modifies the display opening shape by adding two phase masks, one in front of and one behind

the display. The phase mask in front of the display concentrates light onto the opening regions of the

display. After light passes through the display, the other phase mask reverses this effect by recovering

the original wavefront. Under certain assumptions, the display is rendered invisible from the perspective

of the camera. We further show that a polarization-dependent implementation of the phase masks can

leave light emitted from the display unmodulated. This approach can increase the light throughput of

UDCs, improve the conditioning of the blur kernel, and maintain display quality.

In the second half of the thesis, we turn our focus to another design trend in mobile devices — con-

tinuous shrinking of pixel sizes enabled by the advancement in CMOS manufacturing capability. When

the sensor die size is constrained, smaller pixels are promising to produce higher resolutional imagery.

However, they are more susceptible to noise degradation when light condition is poor as smaller pixels

collect less light. The increasing degradation from photon, read noise, and dynamic range are tightly

coupled with the small pixel area and tackling these degradations has become an open challenge.

There is a rich literature in suppressing noise and expanding the dynamic range of an image sensor.

One typical category of work tackles such problems with exposure and gain bracketing. These methods
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propose computational methods to merge long exposure frame that suppresses the noise in the dark

region and short exposure frame that captures bright regions without saturation. However, they tend to

produce ghosting artifacts for dynamic scenes unless using algorithms with heavy computation over-

head. Anothermajor category of works look into spatial multiplexing, such as exposure or ISO encoding.

Due to fixed multiplexing patterns, these methods trade the spatial resolution for higher dynamic range.

More recently, there are computational sensors that adapts per-pixel exposure to the previous frame and

captures high dynamic range videos. But these methods require a long exposure time to accommodate

the dark regions. Can we design other spatially-varying techniques that adapts to the brightness of the

scene to improve the image quality of these sensors?

We introduce two novel adaptive readout techniques for image sensors — spatially varying gain and

binning. Essentially, all sensor pixels are exposed uniformly, but during readout, we adjust the analog

signal of each pixel differently according to the local brightness of the scene. This adjustment is achieved

by applying a different ISO settings or combining the signals from varying number of neighbouring pix-

els. The idea of varying gain is inspired by a key observation that a large ISO setting or gain suppresses

read noise by enhancing the signal level. A conventionaly sensor applys a constant gain over the entire

sensor, and using a large ISO would risk saturating bright regions of a scene. To address this issue, we

adjust ISO settings based on the signals within small regions of interest or even individual pixels. This

spatially varying gain technique avoids saturation while allowing a significant larger gain for dark re-

gions of a scene. The motivation behind spatially varying binning is straightforward. Combining signals

from neighboring pixels, or binning, improves the noise performance by equivalently creating a large

pixel. However, excessive binning leads to pixellation artifacts. We show that the optimal binning size

is closely related to scene light levels and develop a simple theory that maps scene brightness to optimal

bin size. This theory informs our spatially-varying binning technique, which adapts pixel sizes to the

scene local brightness. Both techniques enhance the signal-to-noise ratio of sensors with small pixels

and effectively expand the dynamic range by approximately one magnitude.

We summarize the key challenges and contributions of this thesis in the following sections.

1.1 Key Challenges

This thesis looks into novel camera designs pertaining to two form factor constraints in mobile devices.

We discuss the technical challenges for these two constraints separately.
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Challenges for UDCs. Firstly, to accommodate the conflict between high-quality displays and cam-

eras, we look into under-display camera design. There are two particular challenges in designing UDCs,

both of which comes from the fact that the display screen acts as the aperture of the camera. When

passing through the openings on the OLED display, incident light are diffracted and a large portion of

light are blocked by the display. We elaborate the two challenges in UDCs as below.

• Diffractive blur. As the openings on OLED display is often at micron-scale, incident light is diffracted

and creates non-negligible blur on the sensor. The smaller the opening is, the larger the diffractive

blur is. Pixels with a size of tens of microns will result in a blur that spans hundreds of pixels on

the display. And this diffractive blur is challenging to remove. Many state-of-the-art works design

advanced neural networks to remove such diffractive blur [Feng et al., 2021, Koh et al., 2022, Kwon

et al., 2021, Zhou et al., 2021]. These algorithms perform better than conventional algorithms such as

Wiener deconvolution and iterative optimization with traditional priors, however, their performance

is still fundamentally decided by the quality of the captured image. Re-designing the hardware of

UDCs to improve the conditioning of its blur kernel becomes an open challenge.

• Low light transmission. Most on-the-market OLED displays block a large portion of light. For

example, 80% of light are blocked after passing through Transparent-OLED and around 92% Pentile-

OLED [Zhou et al., 2020a]. The extremely low light transmission rate leaves the signal-to-noise ratio

low in UDCs. The extreme amount of noise, coupledwith large diffractive blur, make image restoration

particularly challenging for UDCs.

Challenges for small sensor pitches. Secondly, mobile devices cameras with small sensors pitches

tends to be noisy in low light conditions. This degradation becomes evident in scenarios such as high-

dynamic range imaging, pixels towards sensor edges due to vignetting and etc. The degradations are

specifically low signal-to-noise ratio and small dynamic range that comes with it.

• Low SNR. While small pixel size offer higher image resolution, its signal to noise ratio is worse,

producing undesired image quality in dim or low light conditions. The major degradation comes from

photon noise and read noise. When the overall noise is photon noise-limited, the signal-to-noise ratio

(SNR) decreases with photon counts, and since smaller pixel areas receive fewer photons within a

fixed exposure time, they have worse SNR. Although the read noise level stays the same across pixel

sizes as it is decided by the read-out circuits’ quality, the SNR of small pixels still decreases as the

signal level decreases.
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• Small dynamic range. Dynamic range of an image sensor is typically decided by the ratio between

its max well capacity and read noise floor, and since smaller pixels often come with a smaller well

capacity, their dynamic range is smaller compared to large pixels.

1.2 Thesis Contributions

Thesis statement. The compact form factor of smartphones poses unique challenges to the design of

cameras. This thesis advances mobile photography by tackling two such challenges: (1) To alleviate the

conflict between increasing screen space and placing front-facing cameras, we re-design the hardware of

under-display cameras by directly and optically modifying the display pixel layouts; (2) To improve the

excess noise that comes with small pixel pitches and small dynamic range, we propose spatially-varying

readout techniques that adapts ISO and binning to local scene brightness.

• Designing display layouts for UDCs. The pattern of openings commonly found in current OLED

displays are not conducive to high-quality deblurring. We redesign the layout of openings in the

display to engineer a blur kernel that is robustly invertible in the presence of noise. We first provide

a basic analysis using Fourier optics that indicates that the nature of the blur is critically affected by

the periodicity of the display openings as well as the shape of the opening at each individual display

pixel. Armed with this insight, we provide a suite of modifications to the pixel layout that promote the

invertibility of the blur kernels. We evaluate the proposed layouts with photomasks placed in front of

a cellphone camera, thereby emulating an under-display camera. A key takeaway is that optimizing

the display layout does indeed produce significant improvements.

• Designing phase masks for UDCs. We incorporate phase masks on display panels to tackle both

large diffractive blur and low signal-to-noise ratio in UDCs. Our design inserts two phase masks,

specifically two microlens arrays, in front of and behind a display panel. The first phase mask con-

centrates light on the locations where the display is transparent so that more light passes throughthe

display, and the second phase mask reverts the effect ofthe first phase mask. We further optimize

the folding height of each microlens to improve the quality of PSFs and suppress chromatic aber-

ration. We evaluate our design using a physically-accurate simulator based on Fourier optics. The

proposed design is able to double the light throughput whileimproving the invertibility of the PSFs.

Lastly, we discuss the effect of our design on the display quality and show that implementation with

polarization-dependent phase maskscan leave the display quality uncompromised.
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• Spatially-varying sensor gain. This innovation is based on the key insight that a large gain over-

come readout noise by magnifying signal level. While applying a large gain uniformly across the

entire image sensor would risk saturating the bright regions, we apply varying gain at each pixel lo-

cation based on local scene brightness. To achieve this, we propose Region-of-Interest (ROI) based

and per-pixel based implementation. ROI-based method utilizes a snapshot noisy frame to decided

the optimal gain for each region, and apply the gain map in the subsequent capture and readout. Per-

pixel implementation only captures and reads out an image once. It estimates the optimal gain of a

subsequent pixel based on the readout of the current pixel. Both methods significantly improves the

noise performance for dark regions while avoids saturating the bright regions, therefore, effectively

expands the dynamic range of a sensor.

• Spatially-varying sensor binning. We argue that there exists an optimal binning size that best

trades-off image resolution and noise performance, and the optimal binnning is tightly coupled with

scene light levels. We develop a theory that maps scene brightness to the optimal pixel binning. We

apply this theory to decide pixel size according to local scene brightness and implement this spatially-

varying binning using ROI-based method. We analyze three common binning modes, analog average,

analog additive, and digital binning. Interestingly, when a larger gain is allowed, digital binning out-

performs both analog binning modes.

1.3 Organization

The thesis is organized as the following. In chapter 2, we go over prior research effort that tries to

solve the two challenges in mobile photography. To accommodate the conflict between display and

cameras, we explore interesting works that integrates cameras into displays, and some early works in

the space of under-display cameras. To improve sensor noise performance, we look into computational

sensors, that are very relevant to the techniques proposed in this thesis. In chapter 3, we introduce

the formal image model of under-display cameras, and show a suite of modifications to the display

layouts that improves the imaging quality of UDCs. To avoid the engineering efforts in redesigning

the display pixels, in chapter 4, we propose a complementary approach to optically modify the display

opening shapes. This is achieved by carefully designing phase masks and tightly place them in front

of and behind the display panels. In chapter 5, we turn our attention to computational sensor designs.

We introduce two spatially varying readout techniques — varying gain and binning — that improve the

noise performance of sensors with small pitches. Finally, chapter 6 concludes this thesis and discuss

potential future directions for mobile photography.



2Background
In this chapter, we go over priors works that are closely related to the technical challenges we laid out

in the introduction. We first look into various display-camera systems, which integrates cameras into

displays without taking dedicated screen space. One of the most promising display-camera systems is

under-display camras, and we explore recent works that design deep-learning based restoration algo-

rithms to recover high-quality photographs from those captured under UDCs. We then explore prior

works on computational sensors that can adapt to the content of each scene.

2.1 Display-Camera Systems

There is a rich literature on designs that seek to enhance the capabilities of a display [Masia et al.,

2013]; we focus on those that integrate a display with a camera. Early work in this space focuses on

camera-projector systems that capture images from behind semi-transparent projection screens. Touch-

Light [Wilson, 2004] uses stereo cameras to track gestures and DepthTouch [Benko and Wilson, 2009]

places a depth camera behind a projection screen to sense objects at different depths. BiDiScreen [Hirsch

et al., 2009] instead interlaces image diodes into a thin liquid-crystal display and utilizes the display as

a pinhole array to form a lensless imager. However, their design requires displays that have low pixel

densities and, further, the imaging quality is significantly worse than webcams and cellphone cameras.

2.2 Advances in Under-Display Cameras

Design of LED displays and under-panel cameras. OLED displays do not require a backlight panel

and can transmit light through their transparent substrates and cathodes [Tsujimura, 2017]; this raises

the potential for acquiring high-resolution photographs by placing cameras “under” the display panel

without sacrificing the quality of displays [Cheng et al., 2019, Emerton et al., 2020, Zhou et al., 2020b]. In

particular, there has been a focus on using Transparent-OLED (T-OLED) and Pentile-OLED (P-OLED),
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displays that are commonly used in commercial televisions and cellphones. Cheng et al. [2019] place a

camera behind a T-OLED screen, simulating the point spread function (PSF), and demonstrate that the

image quality is significantly worsened due to the diffractive blur introduced by the screen.

Image restoration for under-panel cameras. Recent interest in deploying under-panel cameras in

smartphones has spurred interest in techniques that can restore images captured with them. In partic-

ular, many recent techniques [Feng et al., 2021, Gao et al., 2021, Koh et al., 2022, Kwon et al., 2021, Lim

et al., 2020, Nie et al., 2020, Oh et al., 2021, Sundar et al., 2020, Yang et al., 2020, Zhang, 2020, Zhou et al.,

2020a, 2021] use deep neural networks to handle the large blur and low SNR in under-panel imagery.

To recover high-quality images, Zhou et al. [Zhou et al., 2020b] exploit convolutional neural networks

to deblur and denoise the images captured under both T-OLED and P-OLED; they demonstrate that a

deep neural network, with a UNet architecture [Ronneberger et al., 2015] model, produces deblurred

photographs that are significantly better than simple techniques like Wiener deconvolution. Emerton

et al. [Emerton et al., 2020] propose to tackle degradations from diffraction using structured light with

specialized frequencies to illuminate the target scenes; the need for control of scene illumination, un-

fortunately, places significant constraints on the use of the device. Sundar et al. [Sundar et al., 2020]

deblur on low-resolutional images and uses a guided filter network to restore high-resolutioinal images.

Puthussery et al. [2020] use an encoder-decoder network and adds to each block multiple densely con-

nected convolutional layers with different dilations. Similarly, the best-performing methods in [Zhou

et al., 2020a] use a UNet architecture with dense residual blocks [Zhang et al., 2018c] added to each

encoding and decoding unit. We refer to the network architecture as UNet-RDB, and train a model

based on it for deblurring our captured photographs. Kwon et al. [2021] proposed a CNN that takes

the degraded images, noise level, and spatially-varying blur kernels as input, and reconstructs sharp

images. Feng et al. [2021] take into account high dynamic range and saturation, and propose a Dynamic

Skip Connection Network to remove diffraction artifacts. These techniques achieve impressive image

reconstruction performance for UDCs.

2.3 Computational Sensors

Focal plane sensor processors [Carey et al., 2013, Nguyen et al., 2022, Zarándy, 2011] have become more

prevalent recently. Each pixel, containing a processing element next to the photodiode, can take in dig-

ital instructions and carry out on-chip analog and digital computation. However, due to the additional

circuits at each photosite, these sensors have large pixel pitches and are typically of low resolution and

not suitable for high-quality photography. Another type of computational sensor is a programmable
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coded exposure sensor [Luo et al., 2017, Sarhangnejad et al., 2019], which adapts the pixelwise exposure

time to input control signal. Ke et al. [2019] realize scene-adaptive coded exposure by generating expo-

sure codes from the readout of the previous frame. To improve the SNR of the dark regions, these sensors

require a longer exposure time. In contrast, our techniques fall into the category of programming gain

and binning to increase noise performance, without the need of using a longer exposure time, and only

involve modification to the sensor readout.

Another class of techniques work on innovating the analog to digital conversion. For example, Gulve

et al. [2023] propose a regression-based Flux-to-Digital Conversion in place of conventional analog-to-

digital conversion, a new readout strategy that occurs concurrently with exposure and avoids saturat-

ing high flux, thereby extending the dynamic range of the sensor. These works provide alternative

approaches to the proposed innovation in this paper.





3Designing Display Pixel Layouts for Under-Display

Cameras

Under-display cameras provide an intriguing way to maximize the display area for a mobile device. An

under-display camera images a scene via the openings in the display panel; hence, a captured photograph

is noisy as well as endowed with a large diffractive blur as the display acts as an aperture on the lens.

Unfortunately, the pattern of openings commonly found in current LED displays are not conducive to

high-quality deblurring. This chapter redesigns the layout of openings in the display to engineer a

blur kernel that is robustly invertible in the presence of noise. We first provide a basic analysis using

Fourier optics that indicates that the nature of the blur is critically affected by the periodicity of the

display openings as well as the shape of the opening at each individual display pixel. Armed with this

insight, we provide a suite of modifications to the pixel layout that promote the invertibility of the blur

kernels. We evaluate the proposed layouts with photomasks placed in front of a cellphone camera,

thereby emulating an under-display camera. A key takeaway is that optimizing the display layout does

indeed produce significant improvements.

3.1 Introduction

Under-display cameras provide a way to maximize the display area on a cellphone. This provides a

seamless displaywithout thewastage associatedwith the bezel or potential distractions such as a “notch”

and a “hole punch”, thereby enhancing the aesthetics of the device.

The aesthetics achieved by placing the camera beneath the display, however, also degrades the qual-

ity of the captured photographs in two distinct ways. First, a significant portion of the incident light

from a scene is blocked by the display. In many existing devices, as much as three-fourth of the light

is blocked [Tsujimura, 2017] and so the signal to noise ratio (SNR) of the captured photograph can be

quite low, except perhaps for the brightest of scenes. Second, in addition to reducing the light levels, the

display also acts as an aperture and induces a diffractive blur on the captured measurements. For the
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OLED displays used currently in mobile devices, this blur can have a significant spread in hundreds of

pixels. Deblurring under such a large blur, especially at low SNRs, is extremely challenging.

This chapter aims to redesign the display layout and, in particular, the pattern of openings through

which the under-display camera images the scene. Our goal is to shape the blur point spread function

(PSF) so as to improve the conditioning of the ensuing deblurring problem. A basic result from Fourier

optics suggests that the PSF observed is the squared magnitude of the scaled Fourier transform of the

aperture pattern. Specializing this result to under-display cameras, we show that the periodicity of the

pixel layout as well as the specific opening at each display pixel are important factors that determine

the robustness of the blur PSF to inversion.

Armed with the insights gleaned from Fourier analysis of under-display cameras, we introduce two

key variations in the display layout. First, we argue that avoiding the periodic tiling of the display

pixels, and replacing it with a random tiling, whose specifics we describe later, has the effect of reducing

anisotropy of the blur. Second, optimizing the shape of the display opening found at a single display

pixel can further improve the invertibility of the blur PSF; this optimized pattern is randomly tiled to

create the display layout. Together, these innovations provide a rich design space for engineering PSFs

that are superior to popularly used P-OLED and T-OLED displays.

Contributions. This chapter advances under-display camera technology by providing optimized dis-

play patterns that improve the quality of restored photographs. In this regard, we make the following

contributions.

• Analysis of the PSF. Using Fourier optics, we analyze the properties of PSF of a camera under a typical

OLED display, and connect its spread, periodicity and falloff to the repetitiveness as well as shape of

the display openings.

• Improving PSF conditioning via random tiling. We propose a simple modification to display layout in

the form of a random tiling where each of its pixels is randomly flipped or rotated by 90◦. We provide

detailed theoretical analysis of this random tiling and show that it improves the robustness of the PSF

to inversion.

• Improving PSF conditioning via optimization. Finally, we improve the conditioning of the PSF by op-

timizing the shape of the opening at a pixel, which is kept the same across the display except for

the random tiling. We explore two distinct approaches to achieving this: first, optimizing the invert-

ibility of the PSF, and second, end-to-end optimization based on reconstruction performance over a

collection of images.
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Conventional TOLED display Our optimized display layoutConventional POLED display

Figure 3.1: Improvements gained by redesigning the layout of the display pixels. Shown above

are deblurred images from three lab prototypes of under-panel cameras corresponding to (from left to

right) TOLED, POLED and proposed display layouts. The insets beside each result shows the corre-

sponding input captured photographs as well as zoomed in regions. All results emulate displays with

a resolution of 300 dots per inch. The reader is encouraged to use the zoom tool to explore all three

photographs.

Our proposed layouts are optimized with pre-determined constraints on the display LEDs, in terms of

their size and pitch and hence, in principle, are realizable with appropriate redesign of the power/control

circuitry. The contributions above are analyzed in simulations as well as real results captured from a

lab prototype. The code and dataset for this work is publicly available [Yang and Sankaranarayanan,

2021a]. Figure 3.1 shows an example of the improvements that are achieved with this redesign of the

display layout. We can immediately observe that the quality of the deblurred photograph is significantly

enhanced with the optimized display layout.

Limitations. The contributions above come with certain limitations. Perturbing display layout, es-

pecially breaking the periodicity, is likely to complicate the fabrication of the display and the design

of the power and control wiring; but given the maturity of CMOS fabrication, we expect this to be an

engineering challenge and not a fundamental limitation.

3.2 Related Work

Coded apertures. The idea of using an amplitude mask to code the aperture of a lens has a long history

in computational photography, including early work in lensless X-Ray and Gamma ray imaging [Feni-
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more and Cannon, 1978]. Recent work in such coded aperture cameras has focused on robust estimation

of depth from a single [Levin et al., 2007, Zhou and Nayar, 2009] as well as multiple [Zhou et al., 2009]

images as well as estimating light fields [Veeraraghavan et al., 2007] from a single coded image. Con-

ceptually, the ideas in this chapter fall firmly under this category of coded aperture cameras. The key

difference, however, is in the smallest feature size in the coded aperture. Most prior works operate with

openings where the smallest feature is significantly larger, often in hundreds of microns. This permits

the use of geometric optics for modeling the effect of the aperture, and further, also implies that a scene

that is in focus appears sharp with little or no blur. In contrast, displays have a pixel pitch that is often

smaller than 100 µm and hence, the openings have features in the scale of microns, requiring the use of

tools from wave optics for modeling and analysis. This also results in a large diffractive blur even for

the in-focus scene.

Coded apertures that use phase masks have also found extensive use for similar problems including

extended depth of field imaging [Dowski and Cathey, 1995] as well as depth from defocus [Pavani and

Piestun, 2008, Wu et al., 2019]. The use of phase modulation requires that these techniques operate

under a wave model, and, in this sense, are similar to the techniques used in this chapter. However, the

aperture pattern in an under-display camera has to accommodate the OLED array, which necessarily

blocks light and often in a periodic pattern; hence, we cannot model the resulting aperture as a pure

phase mask.

Hence, both the design of coded apertures as well as the underlying modeling associated with prior

work does not easily translate to under-display cameras.

3.3 Under-display Image Formation

In this section, we present the basics of image formation for an under-display camera, focusing specifi-

cally on the blur PSF and its relationship to the display layout.

3.3.1 Derivation of the Blur PSF

Setup. Figure 3.2 provides the basic setup of our display-camera system. We assume that the camera lens

can be well approximated as a thin lens with focal length 𝑓0 and with an aperture given by 𝑝 (𝑥,𝑦). The

display openings are described using a binary-valued function 𝑜 (𝑥,𝑦), which is assumed to be collocated

with the aperture of the thin lenswithout any separating distance between them; this assumption greatly

simplifies the derivation and is important for analytical reasoning. Finally, the incident light is assumed

to be is spatially and temporally incoherent.
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Sensor Lens 
aperture
𝑝(𝑥, 𝑦)

Blur PSF induced 
by OLED pixels

𝑘(𝑥, 𝑦)

OLED openings
𝑜(𝑥, 𝑦)

Figure 3.2: Layout of the under-panel camera. The overall aperture consists of a collocated OLED display

panel and a finite lens aperture.

Spatially-invariant blur model. Let’s suppose that the camera is focused on a scene at infinity. The

image formed on the sensor can be written as:

𝑖blur (𝑥,𝑦) =
∫
𝜆

[𝑖sharp (𝑥,𝑦; 𝜆) ∗ 𝑘 (𝑥,𝑦; 𝜆)]𝑠 (𝜆)𝑑𝜆,

where ∗ denotes the convolution operator, 𝜆 is the wavelength of light, 𝑠 (𝜆) is the camera spectral

response, and 𝑖sharp (𝑥,𝑦; 𝜆) is the sharp image at wavelength 𝜆 that would be formed on the sensor

with an ideal thin lens, and without the display. The term 𝑘 (𝑥,𝑦; 𝜆) is the blur kernel at wavelength

𝜆, whose expressions we derive next. It is worth pointing out that the shift invariance as well as lack

of interference between scene points is a consequence of the thin lens and the incoherence of light,

respectively. The interested reader is referred to Chapter 3 of Goodman [Goodman, 2005].

From basic Fourier optics, the blur kernel 𝑘 (𝑥,𝑦; 𝜆) can be written as the squared magnitude of the

scaled Fourier transform of the effective aperture function. Specifically, the effective aperture function

𝑎(𝑥,𝑦) is the product of the lens aperture 𝑝 (𝑥,𝑦) and the display openings 𝑜 (𝑥,𝑦), i.e.,

𝑎(𝑥,𝑦) = 𝑝 (𝑥,𝑦)𝑜 (𝑥,𝑦), (3.1)

then the blur PSF is given as

𝑘 (𝑥,𝑦; 𝜆) =
���� 1
𝑗𝜆𝑓0

𝐴

(
𝑥

𝜆𝑓0
,
𝑦

𝜆𝑓0

)����2 , (3.2)

where 𝐴(𝑢, 𝑣) is the Fourier transformation of the 𝑎(𝑥,𝑦).

Specializing to under-display cameras. We now specialize the expression for the blur PSF to features

commonly found in an under-panel camera. In an under-display camera, we expect the display openings

to be periodic since each display pixel is identical. Let 𝑇 µm be the pixel pitch of the display; this pitch
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Figure 3.3: Modeling the effective aperture of an under-display camera

also determines the resolution of the display given as 25400/𝑇 dots per inch (DPI). If we denote𝑚(𝑥,𝑦)

to be the opening pattern as pertaining to a single pixel, the overall display openings 𝑜 (𝑥,𝑦) can be

constructed with copies of𝑚(𝑥,𝑦) repeating at a periodicity of 𝑇 along both axes. As noted in Figure

3.3, we can mathematically express this as follows:

𝑜 (𝑥,𝑦) =𝑚(𝑥,𝑦) ∗
∑︁
𝑟

∑︁
𝑐

𝛿 (𝑥 − 𝑟𝑇 )𝛿 (𝑦 − 𝑐𝑇 ) , (3.3)

where 𝛿 (𝑥) is the Dirac delta function. That is, the display panel is represented as the per-pixel opening

𝑚(𝑥,𝑦) convolved with a delta train of periodicity 𝑇 along both axes.

Noting that the Fourier transform of a delta train with periodicity 𝑇 µm is also a delta train, but

with periodicity 1/𝑇 µm−1 and, further, multiplication in space domain leads to convolution in Fourier

domain, we can write the 𝐴(𝑢, 𝑣), the Fourier transform of the effective aperture, as

𝐴(𝑢, 𝑣) = 𝑃 (𝑢, 𝑣) ∗
[
𝑀 (𝑢, 𝑣)

∑︁
𝑘

∑︁
𝑙

𝛿

(
𝑢 − 𝑘

𝑇

)
𝛿

(
𝑣 − 𝑙

𝑇

)]
=

∑︁
𝑘

∑︁
𝑙

𝑀

(
𝑘

𝑇
,
𝑙

𝑇

)
𝑃

(
𝑢 − 𝑘

𝑇
, 𝑣 − 𝑙

𝑇

)
(3.4)

The expression above captures the dependence of the blur PSF on all the key terms that define the

under-display camera; we analyze this dependence next.

3.3.2 Properties of the Blur PSF

We can analyze the blur PSF derived in (3.2) and (3.4) and derive some of its critical properties. This

allows us to make the following observations about the blur PSF.

Periodic sub-structures. The blur PSF is made of repeated copies of 𝑃 (𝑢, 𝑣) — scaled locally by𝑀 (𝑢, 𝑣).

Once we account for the scaling by 1/(𝜆𝑓0) of 𝐴(𝑢, 𝑣), the periodicity of 𝑃 is 𝜆𝑓0/𝑇 . For a display with
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(a) T-OLED

(b) P-OLED

168µm 1.2mm ~2.7mm

Figure 3.4: Two commonly used OLED patterns, (a) T-OLED and (b) P-OLED, and the blur induced

by them. For each LED type, we show (left) the display opening pattern, (center-left) the three-color

tonemapped PSF, as well as (center-right) the PSF, in log-scale, corresponding to the green channel. The

PSF for each color was computed by averaging across multiple wavelengths and weighted by camera

spectral response. (right) The Fourier transform of the blur PSF, which is also the scaled auto-correlation

of the aperture pattern.

150 DPI, lens focal length 𝑓0 = 10mm and wavelength 𝜆 = 0.53µm, this periodicty comes to 32µm, i.e.,

10-15 pixels wide on the sensor. In contrast, 𝑃 (𝑢, 𝑣) once scaled by 1/𝜆𝑓0 is the airy disk of the open

aperture and is constrained to a few pixels. Hence, we can expect the blur PSF to have sparse repeating

structures, each shaped like an airy disk, as seen in Figure 3.4.

PSF envelope and directionality. While the local structure of the PSF is shaped by 𝑃 , the overall

envelope of the blur kernel, that determines it spread, is primarily determined by 𝑀 (𝑢, 𝑣). This implies

that the per-pixel display opening𝑚(𝑥,𝑦) has a dominant role in shaping the blur PSF that we observe.

This happens in two distinct ways. First, since𝑚(𝑥,𝑦) is spatially compact and restricted to be within

a square of width 𝑇 𝜇m, where 𝑇 is the pixel pitch, we can expect its Fourier transform 𝑀 (𝑥,𝑦) to

have a spread that is inversely proportional to 𝑇 . Second, directionality or anisotropy in the shape of

𝑚(𝑥,𝑦) leads to directionality in the shape of𝑀 (𝑢, 𝑣) and, consequently, in the PSF that we observe; an

example of such anisotropy can be seen in the T-OLED display in Figure 3.4. Directional PSF implies

that we would preserve detail preferentially in some directions as opposed to others. Hence, all things
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considered, displays with larger pixel pitch produce smaller blur and pixel openings that are symmetric

produce isotropic blur kernels.

Invertibility. We can analyze the invertibility of the blur PSF by looking at its magnitude spectra, i.e.,

the magnitude of its Fourier transform. Nulls and small values in the magnitude spectra are undesirable

as they lead to noise amplification when we deblur the image.

Connection to the auto-correlation of the aperture. From (3.2), we can express the Fourier transform

of 𝑘 (𝑥,𝑦; 𝜆) as

𝐾 (𝑢, 𝑣 ; 𝜆) = AC𝑎 (𝜆𝑓0𝑢, 𝜆𝑓0𝑣) (3.5)

whereAC𝑎 is the auto-correlation function of𝑎(𝑥,𝑦); this expression comes from the fact that the power

spectral density and auto-correlation are Fourier pairs, and hence |𝐴(𝑢, 𝑣) |2 is the Fourier transform of

AC𝑎 (𝑥,𝑦). Since each color channel is a weighted sum over the visible waveband, themagnitude spectra

of the blur in each color channel will be the corresponding weighted sum of 𝐾 (𝑢, 𝑣 ; 𝜆), or equivalently,

AC𝑎 (𝜆𝑓0𝑢, 𝜆𝑓0𝑣). This smoothens the PSF as well as its Fourier transform; however, it does not change

the conclusions that we draw below which are based on the monochromatic blur kernel.

Auto-correlation for periodic tiling. The auto-correlation of 𝑎(𝑥,𝑦) depends on the lens aperture

𝑝 (𝑥,𝑦) as well as the per-pixel display opening 𝑚(𝑥,𝑦) as given by (3.1) and (3.3). While a general

expression for AC𝑎 (𝑥,𝑦) is hard to derive, we can derive meaningful insights simply by looking at its

values for small values of (𝑥,𝑦). Specifically, when the pitch of the display 𝑇 is significantly smaller

than the lens aperture, there are multiple display pixels within the aperture. In this scenario, the auto-

correlation AC𝑎 at small displacements (𝑥,𝑦) becomes repeating copies of AC𝑚 , the auto-correlation

of 𝑚(𝑥,𝑦), scaled by the number of copies of 𝑚(𝑥,𝑦) within the lens aperture. Here, we directly see

the effect of the per-pixel pattern 𝑚(𝑥,𝑦) and its periodic tiling in the invertibility of the blur PSF. If

𝑚(𝑥,𝑦) is compact along any direction, then we can expect the repeated copies of its auto-correlation to

not overlap which results in nulls. Further, even if nulls are avoided, decaying tails in the AC𝑚 would

lead to a blur kernel that is not robust to noise. The auto-correlations associated with T/P-OLED dis-

plays are shown in Figure 3.4; we can clearly observe the periodic structures with peaks and nulls, as a

consequence of the periodicity of the display tiling.

3.4 Rethinking Display Pixel Layout

We now propose new display layouts that are motivated by the analysis laid out in Section 3.3.2. In

particular, we are interested in enabling robustly-invertible PSFs by shaping the pixel layout over the
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aperture.

Approach. A straightforward approach is to optimize the entire pixel layout over the lens aperture

under an appropriate cost on the PSF. However, any solution has to accommodate an LED array with

the appropriate resolution and fill factor/LED footprint. While it is possible, in principle, to write out

this as a constrained optimization problem, we adopt a different technique that makes the display design

significantly simpler.

Our proposed approach relies on two key observations.

• Random tiling. First, the periodic tiling of𝑚(𝑥,𝑦) in the display layout causes its auto-correlation to

have small values and nulls, which results in a non-invertible blur. This can be alleviated if we tiled

the display randomly, where each pixel is randomly chosen between one of many patterns.

• Optimizing for the per-pixel pattern 𝑚(𝑥,𝑦). Second, we can optimize the shape of the opening at a

single display pixel with the goal of producing a robust PSF. This pattern is subsequently tiled, with

random rotations and flips, to create a random tiling over the aperture of the lens. As a result, the

number of parameters to optimize is significantly smaller than what we would have if we optimized

for the entire display.

This design methodology has the added advantage of relying on a single per-pixel pattern𝑚(𝑥,𝑦). As

long as this pattern permits the LED of a certain footprint, its tiling at the desired DPI, under the random

rotation and flip, ensures a feasible LED array over the aperture. Figure 3.5 illustrates how the PSF

changes with each of the two modifications.

3.4.1 Random Tiling of the Display Pixel

To understand how random tiling affects the PSF, we will perform the derivation with a 1D display and

sensor; the extension to 2D is straightforward and provided in the supplemental material.

1D analysis. Let’s first consider a simple 1D display where each pixel is randomly chosen between one

of two patterns. Let𝑚1 (𝑥) and𝑚2 (𝑥) be the two potential candidates at each pixel. Also suppose that

there are 𝑅 display pixels over the lens aperture. With this, the overall aperture function 𝑎𝑟 (𝑥), including

the lens aperture, is given as

𝑎𝑟 (𝑥) =
𝑅−1∑︁
𝑘=0

1 +𝑈𝑘
2

𝑚1 (𝑥 − 𝑘𝑇 ) +
1 −𝑈𝑘

2
𝑚2 (𝑥 − 𝑘𝑇 ), (3.6)
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T-OLED / random tiling

top10-L2 loss / periodic

top10-L2 + inv loss / periodic

top10-L2 loss / random

top10-L2 + inv loss / random

Optimize 
with

random 
tiling

Random 
tiling

Optimize 
pattern

T-OLED / periodic tiling

~0.6mm168µm

P-OLED / periodic tiling P-OLED / random tiling

Figure 3.5: We propose to optimize pixel layout by random tiling pixels and optimizing individual pixel

openings. The figure above shows how the blur PSF changes when we introduce random tiling without

changing the per-pixel pattern (top row), and when we optimize for per-pixel patterns under different

criteria (bottom row), both with and without random tiling.

where {𝑈𝑘 , 0 ≤ 𝑘 ≤ 𝑅 − 1} are iid Bernoulli random variables taking values in {+1,−1} with equal

probability; hence, 𝑈𝑘 selects between𝑚1 and𝑚2 at the 𝑘-th pixel. By rearranging the terms involving

𝑈𝑘 in (3.6), we get

𝑎𝑟 (𝑥) = 𝑏1 (𝑥) ∗
𝑅−1∑︁
𝑘=0

𝛿 (𝑥 − 𝑘𝑇 ) + 𝑏2 (𝑥) ∗
𝑅−1∑︁
𝑘=0

𝑈𝑘𝛿 (𝑥 − 𝑘𝑇 ), (3.7)

where

𝑏1 (𝑥) = [𝑚1 (𝑥) +𝑚2 (𝑥)]/2, and 𝑏2 (𝑥) = [𝑚1 (𝑥) −𝑚2 (𝑥)]/2.

The term involving 𝑏1 (𝑥) is similar to the display model from before, namely, tiled copies of a pattern

over the lens aperture. However, this is now modified by the second term whose effect can be studied
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next.

From basic signal processing, we can write the Fourier transform of the aperture 𝑎𝑟 as

𝐴𝑟 (𝑢) = 𝐵1 (𝑢)
𝑅−1∑︁
𝑘=0

𝑒− 𝑗2𝜋𝑢𝑘𝑇 + 𝐵2 (𝑢)
𝑅−1∑︁
𝑘=0

𝑈𝑘𝑒
− 𝑗2𝜋𝑢𝑘𝑇 .

When the pixel pitch 𝑇 is much smaller than the lens aperture, or equivalently when 𝑅 is large, the

observed PSF is well approximated by the expected value of |𝐴𝑟 (𝑢) |2, which can be expressed as

E[|𝐴𝑟 (𝑢) |2] = |𝐵1 (𝑢)Δ(𝑢) |2 + 𝑅 |𝐵2 (𝑢) |2. (3.8)

In essence, when we randomly tile two patterns 𝑚1 and 𝑚2, the expected blur PSF is the sum of two

terms: the first term |𝐵1 (𝑢)Δ(𝑢) |2 that corresponds to a periodic tiling of𝑚1 +𝑚2 over the aperture of

the lens, and the second term that is simply 𝑅 times the Fourier transform of𝑚1 −𝑚2.

Further, as before, we can analyze the Fourier transform of the blur for invertibility and robustness.

Here, there are two terms: first, the auto-correlation of (𝑚1 +𝑚2)/2 with its periodic tiling over the

aperture — this has a behavior similar to what we get with a conventional tiled display, however, (𝑚1 +

𝑚2)/2 is more isotropic than a single 𝑚1 or 𝑚2; and second, the auto-correlation of 𝑅(𝑚1 −𝑚2)/2 —

without any tiling — which stabilizes the PSF.

Extending analysis to the 2D case. To extend the analysis to the 2D display case, we need to first

identify the number of patterns that we choose from. While this is something we can choose freely,

there are advantages to having a single pixel layout and simply rotating / flipping it. As a consequence,

there are four distinct patterns that can appear in any pixel: the unperturbed pattern, the pattern under

a 90◦ rotation, the pattern under a flip, and finally, the pattern under both operations.

We provide a detailed derivation of the observed PSFs of a 2D display with randomly tiled pixels. At

each location, we have four candiate patterns: (1) the original pixel pattern (2) the flipped pixel pattern (3)

orginal pixel rotated by 𝜋
2 and (4) orginal pixel rotated by 𝜋

2 and flipped, denoted as𝑚1 ( ®𝑥),𝑚2 ( ®𝑥),𝑚3 ( ®𝑥),

𝑚4 ( ®𝑥) respectively. We have two Bernoulli random variables𝑈𝑘𝑙 , 𝑄𝑘𝑙 that both take values {−1, +1}with

equal probabilities. Each pixel repeat 𝑅 times along both directions, and the overall aperture function

𝑎𝑟 ( ®𝑥) including the finite lens aperture can be written as
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𝑎𝑟 ( ®𝑥) =𝑚1 ( ®𝑥) ∗
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

1 +𝑈𝑘𝑙
2

1 −𝑄𝑘𝑙
2

𝛿 (𝑥 − 𝑘𝑇 )𝛿 (𝑦 − 𝑙𝑇 )+

𝑚2 ( ®𝑥) ∗
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

1 −𝑈𝑘𝑙
2

1 −𝑄𝑘𝑙
2

𝛿 (𝑥 − 𝑘𝑇 )𝛿 (𝑦 − 𝑙𝑇 )+

𝑚3 ( ®𝑥) ∗
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

1 +𝑈𝑘𝑙
2

1 +𝑄𝑘𝑙
2

𝛿 (𝑥 − 𝑘𝑇 )𝛿 (𝑦 − 𝑙𝑇 )+

𝑚4 ( ®𝑥) ∗
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

1 −𝑈𝑘𝑙
2

1 +𝑄𝑘𝑙
2

𝛿 (𝑥 − 𝑘𝑇 )𝛿 (𝑦 − 𝑙𝑇 ).

We subtitude the following equations into 𝑎𝑟 ( ®𝑥),

𝑏1 ( ®𝑥) =
1
4
(𝑚3 ( ®𝑥) −𝑚4 ( ®𝑥) −𝑚1 ( ®𝑥) +𝑚2 ( ®𝑥))

𝑏2 ( ®𝑥) =
1
4
(𝑚3 ( ®𝑥) −𝑚4 ( ®𝑥) +𝑚1 ( ®𝑥) −𝑚2 ( ®𝑥))

𝑏3 ( ®𝑥) =
1
4
(𝑚3 ( ®𝑥) +𝑚4 ( ®𝑥) −𝑚1 ( ®𝑥) −𝑚2 ( ®𝑥))

𝑏4 ( ®𝑥) =
1
4
(𝑚3 ( ®𝑥) +𝑚4 ( ®𝑥) +𝑚1 ( ®𝑥) +𝑚2 ( ®𝑥))

and rewritten the overall aperture function 𝑎𝑟 ( ®𝑥) as

𝑎𝑟 ( ®𝑥) =𝑏1 ( ®𝑥) ∗
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

𝑈𝑘𝑙𝑄𝑘𝑙𝛿 (𝑥 − 𝑘𝑇 )𝛿 (𝑦 − 𝑙𝑇 )+

𝑏2 ( ®𝑥) ∗
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

𝑈𝑘𝑙𝛿 (𝑥 − 𝑘𝑇 )𝛿 (𝑦 − 𝑙𝑇 )+

𝑏3 ( ®𝑥) ∗
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

𝑄𝑘𝑙𝛿 (𝑥 − 𝑘𝑇 )𝛿 (𝑦 − 𝑙𝑇 )+

𝑏4 ( ®𝑥) ∗
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

𝛿 (𝑥 − 𝑘𝑇 )𝛿 (𝑦 − 𝑙𝑇 ) .

Take the Fourier transform of 𝑎𝑟 ( ®𝑥), we obtain
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𝐴𝑟 (®𝑢) =𝐵1 (®𝑢)
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

𝑈𝑘𝑙𝑄𝑘𝑙𝑒
− 𝑗2𝜋 (𝑢𝑘+𝑣𝑙 )𝑇+

𝐵2 (®𝑢)
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

𝑈𝑘𝑙𝑒
− 𝑗2𝜋 (𝑢𝑘+𝑣𝑙 )𝑇+

𝐵3 (®𝑢)
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

𝑄𝑘𝑙𝑒
− 𝑗2𝜋 (𝑢𝑘+𝑣𝑙 )𝑇+

𝐵4 (®𝑢)
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

𝑒− 𝑗2𝜋 (𝑢𝑘+𝑣𝑙 )𝑇 ,

where 𝐵𝑖 (®𝑢), 𝑖 = 1, ..., 4 is the Fourier transform of 𝑏𝑖 ( ®𝑥). Similar to 1D case, the observed PSF can be

approximated by the expected value of |𝐴𝑟 (®𝑢) |2. Since 𝐸 [𝑈𝑘𝑙 ] = 0 and 𝐸 [𝑄𝑘𝑙 ] = 0, all cross terms in

|𝐴𝑟 (®𝑢) |2 is cancelled out. The observed PSF can be written as

|𝐴𝑟 (®𝑢) |2 = 𝑅2 ( |𝐵1 (®𝑢) |2 + |𝐵2 (®𝑢) |2 + |𝐵3 (®𝑢) |2) + |𝐵4 (®𝑢) |2 |Δ(®𝑢) |2

where Δ(®𝑢) = F {
𝑅−1∑︁
𝑘=0

𝑅−1∑︁
𝑙=0

𝛿 (𝑥 − 𝑘𝑇 )𝛿 (𝑦 − 𝑙𝑇 )}.

As with the 1D case, the key observation is that the PSF for a randomly tiled display is made of two

terms: a term that corresponds to periodic tiling and a second term that is non-repetitive.

Evaluating the efficacy of random tiling. Figure 3.5 shows how the PSF of the T-OLED and P-

OLED pattern changes when we subject it to random tiling. We can observe that both the periodic

sub-structures as well as the anisotropy of the original PSF are reduced significantly. While we provide

a detailed quantitative evaluation of random tiling in Section 3.5.

Figure 3.6 shows how the auto-correlation and modulation transfer function (MTF) of the aperture

changes when we introduce random tiling; recall that the auto-correlation is the Fourier transform of

the blur PSF, and horizontal MTF corresponds to the amplitude of a slice of auto-correlation function

along 𝑥-axis and intercepting 𝑦-axis at DC component. Repeatedly tiled T-OLED has a horizontal MTF

that contains periodic structures. Contrast at valleys is close to zeros and features at these frequencies

are extremely hard to recover. As expected, random tiling serves to smoothen the peaks and valleys of

the auto-correlation function and thus raises the lower envelope of MTF. Although the vertical MTF of

T-OLED becomes worse due to pixel rotations, horizontal MTF is significantly better with all the zero

contrast eliminated and thus the overall PSF becomes much more robust to invert. Similar observations

apply to random tiled P-OLED and our optimized patterns.
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Figure 3.6: Effect of random tiling and pixel shape optimization. In the left four columns, we show

the effect of random tiling to two common displays. In the right four columns, we show our optimized

pixel opening shapes from two losses, top-10 L2 and top-10L2+invertible loss, and each with two tiling

strategies during optimization.

Each curve in Figure 3.7 is generated by taking the radially minimum values of the 2DMTF. The plots

are generated for a singlewavelength 𝜆 = 610nm. As expected, repeatedly tiled T-OLEDhasmultiple null

values in many frequencies and randomly tiled T-OLED lifts the nulls to small values and thus stabilizes

the inversion. For P-OLED pattern, a randomly-tiled aperture induces larger minimum values for all

frequencies than that of the repeatedly tiled aperture and thus is more robust to inversion. Figure 3.7

also provides quantitative comparison for different display layouts by summarizing the area under the

radially minimum MTF curves (AUC) of each display and listing the corresponding light transmittance

rate (LTR). We can clearly see that randomly-tiled displays have higher AUCs than their periodically

tiled counterparts, again indicating that random tilings are more robust to inversion.

3.4.2 Optimizing for the Per-Pixel Pattern

While random tiling provides improvement over a periodic one, we can further improve the efficacy of

the blur PSF by designing the per-pixel opening𝑚(𝑥,𝑦). We formulate this as an optimization problem

where seek a desirable PSF, as characterized by a loss/cost function, and optimize for the per-pixel
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Figure 3.7: Comparison of MTF plots. We compare radially min MTFs of different patterns and the

table summarizes the area under the MTF curve (AUC) and light transmittance rate (LTR) for each mask.

Larger AUC is better.

pattern𝑚(𝑥,𝑦) that minimizes this cost. It is worth reemphasizing that we only optimize for a single

pattern 𝑚(𝑥,𝑦); the display layout is constructed using periodic or random tiling depending on the

specifics of the design.

Optimization setup. We discretize the variable 𝑚(𝑥,𝑦) into a 2D matrix ®𝑚 ∈ 𝑅𝑁×𝑁 . For a display

pixel, each point takes value in {0, 1}, where 0 indicates closed regions that contains LEDs, control

circuits and etc. and 1 represents pixel openings that allow light to comes through. Since optimizing

over a binary-valued variable is not easily amenable to standard descent-based optimization, we relax

®𝑚 to be real-valued, and instead map its elements to [0, 1] using a sigmoid function 𝑔( ®𝑚) to get a mask.

The PSF 𝐴(·) is a function of the mapped pixel opening 𝑔( ®𝑚), as well as a number of fixed parameters

that include the display pixel pitch 𝑇 , the specifics of the random tiling (if used), and other parameters

such as 𝑓0 and 𝜆.

We seek an optimal pixel opening ®𝑚 whose PSF is invertible with respect to Wiener deconvolution.

We chooseWiener deblurring instead of a deep neural network (DNN) during optimization as in previous

PSF-engineeringworks[Chang andWetzstein, 2019,Metzler et al., 2020, Sun et al., 2020] for the following

reasons. First, a simpler algorithm like Wiener deconvolution puts the emphasis entirely on the system

conditioning, in terms of a mask that produces an invertible blur, so that the inadequecies of the mask

are not suppressed by a powerful inverse algorithm. Second, by doing this, we also avoid being biased

to specifics of the DNN that is used, and the data used in the process of training both the DNN and



26 CHAPTER 3. DESIGNING DISPLAY PIXEL LAYOUTS FOR UNDER-DISPLAY CAMERAS

our technique. Finally, Wiener deconvolution is blindingly fast which is very helpful in the context of

optimization.

Loss #1 —- PSF-induced loss. When usingWiener deconvolution, the estimated deblurred image �̂�sharp

can be written in terms of the ground truth image 𝐼sharp as follows,

�̂�sharp = 𝐻 ( ®𝑚)𝐼sharp,

where

𝐻 ( ®𝑚) = 𝐴(𝑔( ®𝑚))𝐴(𝑔( ®𝑚))∗
|𝐴(𝑔( ®𝑚)) |2 + 𝜖 . (3.9)

Here, 𝐻 ( ®𝑚) is the overall system frequency response that characterizes blurring and recovering the

desired image and it is a function of 𝐴(𝑔( ®𝑚), the Fourier transform of PSF induced by the pixel opening

matrix 𝑔( ®𝑚). When 𝐻 ( ®𝑚) is the identity operator, we obtain �̂�sharp = 𝐼sharp and, in theory, we can

perfectly recover the sharp image. Hence, a good metric for optimization is to maximize the smallest

value of 𝐻 ( ®𝑚). In practice, instead of taking the smallest value of 𝐻 ( ®𝑚), we take the average of the

smallest thirty percent of the elements of𝐻 ( ®𝑚) to improve the robustness of optimization. We vectorize

and sort the values in 𝐻 ( ®𝑚) so that {𝐻 ( ®𝑚)}1 ≤ {𝐻 ( ®𝑚)}2 ≤ ... ≤ {𝐻 ( ®𝑚)}𝑁 2 . The invertible loss is

defined as

Linv = −
1
𝑁 ′

𝑁 ′∑︁
𝑖=1
{𝐻 ( ®𝑚)}𝑖 .

We use 𝑁 ′ =
⌈
0.3𝑁 2⌉ in all our optimizations.

The loss function Linv is closely related to the work of Mitra et al [Mitra et al., 2014], where the

performance of various computational imaging systems are analyzed; here, given a forward operator

𝐴, the term Tr(inv(𝐴⊤𝐴)) is to model and analyze system conditioning. For the convolutional model,

(𝐴⊤𝐴)−1 is closely related to theWiener filter. However, there are some differences in howwe define the

loss function. While trace(inv(𝐴⊤𝐴)minimizesMSE, we observe that the inverse filter is only unstable at

a small number of Fourier coefficients, and so we only optimize the worst ten percent of filter coefficients

which prioritizes worst-case performance as opposed to average.

Loss #2 — Data-driven loss. While PSF-induced loss provides a data agnostic metric, deblurring per-

formance on actual images is often the gold metric. Hence, over a small dataset of images [Zhou et al.,

2020a], we minimize the error between the ground-truth images and corresponding deblurred images,

obtained from the Wiener deconvolution technique. Since flat regions in the image are easy to recover,

the loss is dominated by the easy samples. We use hard-sample mining to penalize the largest recon-

struction errors [Shrivastava et al., 2016]. Specifically, we compute the residuals Δ𝐼 = 𝐼 − 𝐼 , vectorize
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and rank the absolute values of the residuals |Δ®𝑖𝑟 | in descending order, take the top 10% residuals to

compute L2 loss. Top-10 L2 loss is formulated as

Ldata =

𝑅∑︁
𝑟=1
|Δ®𝑖𝑟 |2,

where R is the number of 10% elements in the current batch.

Choice of tiling. In addition to the loss functions, we also have different choices in how we tile the

per-pixel pattern𝑚(𝑥,𝑦), that we optimize for, to create the lens aperture function. The standard tiling

creates a periodic pattern by repeating the pattern𝑚(𝑥,𝑦) till it covers the aperture of the lens. We also

have the choice of random tiling where the pattern is randomly flipped and rotated to create the aperture

pattern. An important point is that the sequence of random flips and rotations are randomly generated

once and fixed; at optimization time, the pattern𝑚(𝑥,𝑦) is optimized under this specific tiling.

Target function. Combining abovementioned losses, our target function is formulated as

argmin
®𝑚
𝛼invLinv + 𝛼dataLdata + 𝛼area

���®1𝑇𝑔( ®𝑚)®1/𝑁 2 − 𝑐
���2 .

The last term constraints the total opening area of the mapped pixel opening 𝑔( ®𝑚) to be around target

ratio 𝑐 . We optimize for individual pixel𝑚(𝑥,𝑦) of𝑇 = 168µm in x,y directions and under the constraint

that 20% of pixel region is open, i.e. 1
𝑇 2

∫ 𝑇
𝑥=0

∫ 𝑇
𝑦=0𝑚(𝑥,𝑦) = 0.2, which are parameters of a typical T-OLED

pixel. We discretize the pixel into 21× 21 2D matrix, i.e. 𝑁 = 21, where each element represents a dot of

width and length of 8µm. We fix the focal length as 𝑓 = 10mm, aperture as 𝑓 /2.5 and use wavelength

of 610nm, 530nm, and 470nm. We use stochastic gradient descent with learning rate 1 and optimize for

150 epochs. The pixel opening matrix𝑚 is initialized as an all-one matrix, i.e. the pixel is all open. In

the first iteration, we set the area constraint as 𝑐 = 1 and gradually decrease it by 0.05 every five epochs

until 𝑐 = 0.2.

Optimized layouts. For purposes of evaluation, we generate four distinct display layouts by thresh-

olding the display pattern to binary values {0, 1} and keep the target opening area, which are shown

along with their PSFs in Figure 3.5. The four sets corresponds to two distinct loss functions — top-10 L2

loss, and top-10 L2 + invertible loss — and two kinds of tiling — periodic and random. We will visual-

ize the corresponding optimized patterns and demonstrate their performance in the simulated and real

experiment sections.
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3.5 Simulated Experiments

To evaluate the performance of our techniques, we quantitively compare the recovered images generated

by simulating capture behind different display patterns.

Simulation setup. We utilize thirty images provided in [Zhou et al., 2020b] validation set to generate

degraded and ground-truth image pairs. The degraded image is generated by convolving a ground-truth

image with our simulated PSFs and then adding shot noise and read-out noise to the blurry images ac-

cording to the parameters of a typical cellphone camera. Specifically, we use a full well capacity of 15506

electrons and a standard deviation of read-out noise of 4.87 electrons. We simulate five different light

levels with SNR varying from 24dB to 40dB and corresponding maximum number of electrons varying

from 270 to 10000 (not exceeding full well capacity). To recover sharp images, we first denoise the de-

graded images with BM3D [Dabov et al., 2007] and then deblur them using Wiener deconvolution. We

measure the quality of deblurred images by comparing them with corresponding ground-truth images

and compute PSNR and SSIM [Wang et al., 2004].

Effect of random tiling. We first look at the effect of introducing random tiling to existing display

patterns without altering the shape of individual pixel openings. Figure 3.8 reports PSNR and SSIM

numbers as a function of measurement noise levels. For the T-OLED display as well as optimized ones,

introducing random tiling provides improvements in both metrics; for T-OLED this improvement is very

significant due to inherent anistropy of the pattern.

Effect of pixel shape optimization. We compare existing display pixels with our optimized ones.

In the last four columns in Figure 3.6, we show optimized patterns from two losses, top-10 L2 loss and

top-10 L2 + invertible loss, and for each of them we show two tiling strategies — periodic repeating

and random tiling that is chosen and fixed prior to optimization. During testing, we use corresponding

tiling strategies to form display panels. During optimization, we use 240 images from the training set of

[Zhou et al., 2020b] to compute the top-10 L2 loss. As shown in Figure 3.8, optimizing pixel shape with

periodic repeating improves the reconstruction quality by a large margin compared to the conventional

T-OLED. Incorporating random tiling as described above leads to additional improvements. The pattern

optimized with “top-10 L2 + invertible” loss with random tiling has the best performance and achieves

more than 8dB increase in PSNR and around 0.11 increase in SSIM over T-OLED.

Effect of display pixel density. We show the quality of reconstructed images of conventional patterns

and optimized patterns under different pixel densities. For the same pixel pattern, a higher pixel density
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Figure 3.8: Performance of random tiling and pixel shape optimization. We compare six display

layouts on the simulated dataset and evaluate PSNR and SSIM under varying noise levels.
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Figure 3.9: Effect of display pixel density. We compare four pixel openings/layouts under varying

display densities. The horizontal axes are display Dot-Per-Inch(DPI), and the vertical axes are PSNRs

and SSIMs of the reconstructed images under a fixed noise level.
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Figure 3.10: Autocorrelation functions of mono- and multi-wavelengths blur kernels. The first

row shows autocorrelations of the green channel of the blur kernels computed from peak wavelength

0.53µm. The second row shows autocorrelations of the corresponding blur kernels computed from

weighted sum of multiple wavelengths.

results in a larger blur kernel and thus is harder to recover a sharp image. We fix the noise level to

be SNR= 32 dB and vary pixel density from 80 DPI to 300 DPI. As seen in Figure 3.9, the recovered

image quality decreases as pixel density increases and the optimized patterns outperform two common

pixels T-OLED and P-OLED under all pixel densities. Note that the improvement on P-OLED is not as

significant as on T-OLED.

Mono- vs Multi-wavelengths Simulation. Recall that we design our mask under a tri-chromatic

model on the spectrum of the scene, where-in each color channel is simulated as being monochromatic

at the color channel’s peak wavelength. Here, we test the implications of violations of this assumption,

as is wont in real life, using simulations.

We compare the green channel of blur kernels computed from peak wavelength 𝑘 (𝑥,𝑦; 𝜆) with 𝜆 =

0.53 𝜇mand fromweighted sumofmultiplewavelengths in the spectra band𝑘 ′ (𝑥,𝑦) =
∫
𝜆
𝑘 (𝑥,𝑦; 𝜆)𝑠 (𝜆)𝑑𝜆,

where 𝑠 (𝜆) is the green sensor spectral response. 𝑘 ′ (𝑥,𝑦) is a weighted sum over blurs in different

wavelengths 𝑘 (𝑥,𝑦; 𝜆), and its Fourier transform 𝐾 ′ (𝑢, 𝑣)will also be corresponding weighted sum of

𝐾 (𝑢, 𝑣 ; 𝜆). As mentioned before, this weighted sum smoothens both the blur kernels as well as their

Fourier transform, i.e. autocorrelation functions. As expected in Figure 3.10, Fourier transform of

the multi-wavelengths blur kernels 𝐾 ′ (𝑢, 𝑣) (second row) are smoothened Fourier transform of mono-

wavelength kernels 𝐾 (𝑢, 𝑣, 𝜆) (first row). The smoothening effect becomes more apparent as the fre-

quency magnitude increases. And at small values of (𝑢, 𝑣) the two autocorrelations are consistent.

Moreover, we observe simular effects for periodic tiling and random tiling in the multi-wavelength au-

tocorrelation functions. For T/P-OLED and our optimized patterns, periodic tiling has severe repetitions
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Figure 3.11: We compare to simulate blur kernels using the peak wavelength for green channel and

averaging multiple wavelengths for green channel. We showcase simulated blurry image under periodic

T-OLED display and randomly tiled top-10 L2 + inv display.

at small (𝑢, 𝑣) and thus contains multiple valleys that are unstable to invert. Random tiling effectively

eliminates the repititions by smoothening the peaks and valleys and the blur kernels are more robust to

invert.

In Figure 3.11, we showcase a degraded image blurred by mono- and multi-wavelength blur kernels.

The first row shows blurry images of periodic T-OLED display and the second row shows that of ran-

domly tiled optimized patterns. Blurry images from mono- and multi-wavelength kernels of the same

display have very similar extent of blur.

Optimization for multi-wavelengths. Finally, we test the changes in the PSF and MTF when the

mask is designed under a denser sampling of wavelengths. To show the effect of optimizing blur ker-

nels towards densely sampled wavelengths, we compute PSFs for five wavelengths around the peak

wavelength of each color channel and then average these PSFs to obtain the blur kernel for one sen-

sor channel. Using this new more realistic forward model, we optimize for the mask pattern under the

“top-10 L2 loss and invertible loss” and the same parameters as described before. Figure 3.12 compares
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Figure 3.12: Optimization for peak- versusmulti-wavelengths PSFs. The left column shows the op-

timized display patterns, the center-left and center-right columns show their PSFs and auto-correlation

functions, and the right column shows the radially-min MTFs for R,G,B channels.

the optimized pattern, corresponding PSF, auto-correlation function, and radially-min MTFs with the

results optimized for peak wavelengths. While optimizing for multiple wavelengths improves the MTFs

especially for red and green channels, it leads to patterns that are not conducive to stacking OLED sub-

pixels. During optimization, sampling multiple wavelengths requires more than 3× optimization time

than sampling the peak wavelengths.

Simulated results at 150DPI. We show deblurred results from simulated captured images under six

different display layouts — T-OLED, top-10 L2 optimized, top-10 L2+inv optimized, and each type with

periodic and random tiling. We simulate displays that have 150 DPI and we use camera parameters

𝑓 = 10 mm and aperture size 𝐷 = 2.5 mm as in the simulated setup. We use BM3D [Dabov et al., 2007]

to denoise and then applyWiener deconvolution to deblur the images. As shown in Figure 3.13, T-OLED

yields severe one-directional artefacts, while randomly tiled T-OLED eliminates these vertical artefacts.

Note that random tiled T-OLED images have low contrast compared to that of optimized patterns. Two

optimized patterns with periodic tiling have better contrast but have apparent rinigng artefacts around

sharp edges. Optimized patterns with random tiling yields the best performances with high contrast

and less artefacts.
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TOLED/repeat TOLED/random top-10 L2/repeat top-10 L2+inv/repeat top-10 L2/random top-10 L2+inv/random

Figure 3.13: Simulated results under six different displays. The display masks have a pixel density

of 150 DPI and we compare performance under noise level SNR=28. We show three scens and their

zoom-in patch for comparison.

Ablation study for optimizing pixels. We analyze two important ingredients for optimizing a high-

quality pixel opening shape — initialization and area constraint. As shown in Figure 3.14, initializing

with an all-open pixel yields better performance than initializing with conventional T-OLED, since opt-

mizing pixel pattern with area constraints is an non-convex problem and starting from all-open pixel

helps avoid local minimum. And gradually decreasing the area constraints from 1 to desired opening

ratio every five iterations improves the optimization results compared to fixing area constraint at the

desired opening ratio.



34 CHAPTER 3. DESIGNING DISPLAY PIXEL LAYOUTS FOR UNDER-DISPLAY CAMERAS

24 28 32 36 40
SNR(dB)

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

SS
IM

Init: TOLED,  Area: fixed
Init: all-open, Area: fixed
Init: all-open, Area: decreasing

24 26 28 30 32 34 36 38 40
SNR(dB)

31

32

33

34

35

36

37

PS
N

R
(d

B)

Init: TOLED,  Area: fixed
Init: all-open, Area: fixed
Init: all-open, Area: decreasing

Figure 3.14: Effect of initialization and area constraint in pixel shape optimization. We compare

two initialization and two way of constraining pixel opening area. (a) intialize with existing T-OLED

pattern and fix opening area, (b) intialize with all-open pixel and fix opening area, (c) intialize with all-

open pixel and gradually decrease area cosntraint from one to the desired area ratio.

(a) Photolithography mask (b) Under-panel camera prototype

Figure 3.15: Under-display camera lab prototype. (a) shows twelve photolighographymasks that emulate

different display designs. (b) shows our overall prototype where we place a cell-phone camera tightly

against the printed mask and capture images by accessing the touch screen.
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Figure 3.16: We capture PSFs of different display layouts and visualize green channel in log scale. The

two rows show PSFs of displays with resolutions of 150 and 300 DPI, and of size 300 × 300 pixels and

400 × 400 pixels, respectively.

3.6 Real Experiments

We build a lab prototype to qualitatively evaluate images captured under different display designs and

compare corresponding deblurring results.

Prototype. As shown in Figure 3.15, our prototype consists of a photolithography mask that emulates

the display screen and an on-the-market cellphone camera. The cellphone camera has a focal length

𝑓 = 5.56mm and an aperture of 𝑓 /1.6.

Camera pipeline. We extract RAW images from the camera and process them using a simple pipeline.

We first radiometrically calibrate the cellphone camera and use a color checkerboard, under different

lighting conditions, for white balancing and color correction. This calibration is done prior to placing

the photomask in front of the lens. For each RAW image, we first demosaic, spatially downsample it to

1364 × 1820, denoise and deblur it, and then correct color and tonemap it to obtain the final result. For

Wiener deblurring, we normalize the blur kernel to sum up to 1 and set 𝜖 = 0.037. We sufficiently pad

the blurred image before deconvolution, and then crop the recovered image.

Measured PSF. Figure 3.16 showcases the PSFs measured with our prototype for different display lay-

outs. For each display layout, we focus the camera on a white light LED that is placed far away from the

camera in a dark room and capture an exposure stack. We fuse each exposure stack into an HDR image,
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Figure 3.17: Indoor scenes captured by our lab prototype under five different displays. All display

masks have a pixel density of 300 DPI. We showWiener deconvolved results. Indoor scenes are close to

the camera.

and crop a patch around the brightest point as PSF. Specifically, we crop a patch of 300×300 pixels for a

display that has 150 DPI, and 400×400 pixels for a display that has 300 DPI. These PSFs are used both in

Wiener deconvolution as well as to train DNNs for deblurring.

Capture settings. We fix ISO to be the smallest value 50 and use an exposure time of 1/125 𝑠 for most

outdoor scenes and 1/8 𝑠 for indoor scenes.

Results for 300DPI displays. We show results captured under 300 DPI display patterns for two indoor

scenes in Figure 3.17 and one outdoor scene in Figure 3.18. Randomly tiled T-OLED has significantly

better results than a conventional T-OLED layout. P-OLED and the optimized patterns yield relatively

good performance in recovering the details such as texts and edges. However, P-OLED results contain

more ringing artefacts; for example, around the toy’s feet in Figure 3.18, purple halos around the flowers

and ghosting around the texts on the painting tubes in Figure 3.17. All methods produce artefacts at

specular regions on the spoon; this is a consequence of the non-linearity induced by saturation that

violates the linear blur model. We also provide results for the outdoor scene in Figure 3.18 under 150

DPI displays in the supplementary to characterize performance of the system under lower DPI.

Results for 150 DPI displays. We compare the recovered images captured under six different display

designs: T-OLED, top-10 L2 optimized patterns, and top-10 L2 + invertible loss optimized patterns, and

each type with periodic and random pixel tiling. We print masks of 150 DPI containing pixels with

20% light throughput. We conduct Wiener deconvolution to recover a sharp image by capturing the
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Figure 3.18: Outdoor scenes captured by our lab prototype under five different displays. All

display masks have a pixel density of 300 DPI. Outdoor scenes are relative far-away from the camera

and can better satisfy the infinity assumptions.

degraded image using our prototype and PSFs separately. In Figure 3.19 and 3.20, we show the results of

these methods on an outdoor scene. T-OLED with conventional periodic tiling results in severe ringing

artefacts in horizontal directions due to its one-directional openings. Introducing random tiling to T-

OLED pixels suppresses the horizontal artefacts. Compared to T-OLED displays, optimized patterns

with periodic tiling significantly increase the reconstruction quality. Lastly, optimized patterns with

random tiling — in particular, Top 10 L2+Inv — yields the best performance, where thin structures such

as texts on the clock can be easily seen from the deblurred results.

Comparison of deblurring methods. When presented with a large blur kernel, cropping introduced

by the sensor has a nontrivial effect on deblurring. We show two additional deblurring methods that

implicitly and explicitly handle the boundary issues — a deep neural network and deblurring with an

iterative solver — on degraded images captured using our prototype.

For the neural network, which we denote as UNet-RDB, we use the same network structure as in

[Zhou et al., 2020a], where each layer in the downsampling subnet consists of two Residual Dense Blocks

(RDB) [Zhang et al., 2018c] and a 2D convolution layer, and each decoding layer has two RDBs and a

transpose convolution layer. Since the network is specified to the blur kernel, we train for two networks,
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Figure 3.19: Outdoor scenes captured by our lab prototype under six different displays. The

display masks have a pixel density of 150 DPI.
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Figure 3.20: Outdoor scenes captured by our lab prototype under six different displays. The

display masks have a pixel density of 150 DPI.
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TOLED (Wiener deconv.) TOLED (UNet-RDB) L2+Inv (Wiener deconv.) L2+Inv (UNet-RDB)

Figure 3.21: Comparison of deblurringmethods. We compareWiener deconvolution and UNet-RDB

on a selfie captured under conventional T-OLED and our optimized display. We use display masks of

150 DPI.

one each for T-OLEDwith periodic tiling and L2+invwith random tiling. For each network, we construct

600 training image pairs and 30 validation pairs using images in HDR+ dataset [Hasinoff et al., 2016]. We

first demosaic RAW images in HDR+ [Hasinoff et al., 2016] to serve as ground-truth images, and then

blur the ground-truth images using captured PSFs and add noise to them. We randomly crop 256 × 256

patches and use a batch size of 10 in each iteration. All networks are trained for 1000 epochs with a

learning rate 1e-3 at the beginning and scaled by 0.1 every 250 epochs. We use Adam optimizer with

𝛽1 = 0.9, 𝛽2 = 0.999.

As we observe in Figure 3.21, for the T-OLED pattern, the UNet-RDB significantly improves the

reconstruction quality, recovering finer details with fewer ringing artefacts as compared to Wiener de-

convolution. The improvements for the L2+inv pattern are less subtle, due to the inherent robustness of

the PSF; there is some noise suppression, but the network also introduces some artefacts in the process.

We show additional results to compare Wiener deconvolution with UNet-RDB on degraded images

captured using our prototype. As we obeserve in Figure 3.23 and Figure 3.24, the proposed pattern is

consistently better than T-OLED regardless of the deblurring methods.

For the iterative solver, we model the unknown sharp image to be larger than the known blurred

image, and as a convolution of the sharp image with valid boundary condition in MATLAB emulating

convolution+sensor cropping. In Figure 3.22, we deblur the teaser images using a linear solver with

Tikhonov prior on the image gradients. Compared to T-OLED and P-OLED, the proposed display layout

has fewer ringing artefacts along all the edges.

Teaser. Figure 3.1 shows results on an outdoor scene for the T-OLED, P-OLED, and the Top-10 L2+Inv

mask, all three with 300 DPI, and deblurred with Wiener deconvolution. The large spread of the blur in
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T-OLED / Repeat Top10-L2 + Inv / RandomP-OLED / Repeat

Figure 3.22: Deblurring with TV prior. We recover sharp images by optimizing least square with TV

prior using vanilla linear solver with valid boundary condition. Please zoom in to see the details.
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Figure 3.23: Comparison of deblurring methods. We compare Wiener deconvolution with UNet-

RDB on an indoor scenes captured under conventional T-OLED and our optimized pattern.
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Figure 3.24: Comparison of deblurring methods. We compare Wiener deconvolution with UNet-

RDB on an outdoor scene captured under conventional T-OLED and our optimized pattern.

T-OLED along the x-axis leads to severe artefacts. These artefacts are less severe in P-OLED patterns.

In contrast, the robustness enabled by our technique results in remarkably better results.

Crop vs uncrop. For many of the results shown in this chapter, we crop the edges of recovered images

to better show the main subjects. To clarify the difference between a cropped deblurred image and an

uncropped one, we compare these two under periodic T-OLED and one of our optimized pattern. Before

cropping, T-OLED result contains severe ringing artefacts with wide range along horizontal / vertical

edges. The cropped image is essentially the same image without the image edges. Note that even before

cropping, our optimized pattern has very thin artefacts along the image edges. The ringing artefacts of

the edges can also be observed in the Figure 3.1 and Figure 3.23 in this chapter.
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TOLED / repeat, original

TOLED / repeat, cropped
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Figure 3.25: Comparison of orginal and cropped Wiener deconvolution results. We show the

orginal and cropped Wiener deconvolution results for T-OLED and our optimized patterns.

3.7 Discussions

This chapter shows that photographs obtained using under-panel cameras can be improved via careful

design of the openings in the display through which the camera observes the scene. We show that

introducing non-periodic pixel tilings as well as optimizing the mask openings at each pixel improves

the invertibility of the diffractive blur introduced by the display; so much so that, even simple deblurring

techniques likeWiener deconvolution can be successful. This indicates that designing the display layout

is a promising approach for making under-display imaging practical.

OLED placement over optimized patterns. It is critical that any change in the display layout accom-

modate an LED array at the desired resolution, in terms of DPI. We show the RGB subpixel placement

for T-OLED and P-OLED displays as well as potential subpixel placement for the proposed display pat-
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Figure 3.26: RGB subpixel placement for different display layouts. (a-b) show two typical RGB

subpixel placement for OLED screen, and (c-f) show examples of RGB subpixel placement in out opti-

mized display patterns. White region represents pixel openings and red, gree, blue represent regions for

R, G, B subpixels.

terns in Figure 3.26. In all cases, the RGB pixels have the same footprint, in terms of area, although

with an OLED placement that is no longer uniform. This non-uniform placement does run the risk of

displaying content that appears aliased; however, we contend that this is minimal when operating with

high-resolution displays. To validate this, we simulate images on the different display layouts in Figure

3.27. The displays are at 300 DPI and correspond to a square region with a width of 8.4mm, thereby

emulating the area immediately in front of the under-panel camera. The first and the second row show

T-OLED and two optimized displays, with periodic tiling and random tiling respectively. We observe

that compared to the conventional periodic tiling, random tiled pixels yield reasonable display perfor-

mance. Although random tiling introduces artefacts, it has a negligible visualization effect at these high

resolutions. However, the randomness in OLED sub-pixel placement is likely to introduce challenges in

manufacturing the display panel as well as designing the wiring pattern for data, control, and power,

which we discuss next.
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T-OLED / repeat top-10 L2 / repeat top-10 L2+inv / repeat

T-OLED / random top-10 L2 / random top-10 L2+inv / random

Figure 3.27: Rendering an imageusing different display layouts. This is a high-resolution rendering

of the displays and each image corresponds to a display size of 8.4mm. To view it at the correct size as

it would appear on a display with 300 DPI, please use 25% zoom.

Accommodating power/control wiring. Layout for the wiring required to power and control the

OLEDs come in two forms: transparent and opaque [Wang et al., 2020]. Transparent wiring can be

overlaid under the color pixels and usually has a width of half pixels. Given its transparency, it has a

negligible effect on our system modeling. Opaque wiring is narrower, taking a width of around 8𝜇m.

The simplest approach to adapt opaque wiring to our display design is to add horizontal and vertical

space of 8𝜇m around each pixel. As shown in Figure 3.28 , we add an additional 8𝜇m spacing around

each display pixel, whose size is 168𝜇m and it has a negligible effect on the PSF. In all, given the maturity

of fabrication technology, we believe that handling the randomized layout is an engineering challenge

that can, in principle, be surmounted.

Spatial dependence of the blur PSF. The results shown in the chapter assume that the blur kernel is

spatially invariant and that the degraded image can be modeled as a convolution between sharp image

and a single PSF. In reality, the spacing between the camera lens and the display panel causes the blur

PSF to be spatially varying. Further, non-idealities in the lens introduces other aberations including the

Pincushion distortion seen in the PSFs shown in Figure 3.29. We show residual blurs (insets) of all PSFs
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168𝝁𝒎 176𝝁𝒎

Figure 3.28: Accomodation of opaque wiring. The left two figures show the proposed Top10 L2+Inv

random display and its PSF, and the right two figures show the same pattern with horizontal and vertical

space of 8𝜇m added around each pixel.

when deblurred by the center PSF.

Handling saturation. Non-linearities in the imaging pipeline can create a significant model mismatch

to the linear model commonly assumed in deblurring approaches. For example, specular highlights in

Figure 3.17 leads to jarring artefacts in the restored photographs. We can handle such scenes either by

incorporating such artefacts in the training dataset for the DNNmodel. Alternatively, capturing an HDR

image by exposure bracketing to revert back to a linear model helps, as seen in Figure 3.30.

Depth dependence. All of the results in this chapter are using blur PSFs measured under the assump-

tion of the scene at infinity. For scenes with points close to the camera, there is a possibility that the

PSF at infinity has a significant mismatch to that from a finite distance. To quantify this, we measure

the PSF for our L2+Inv optimized mask when we focus on a point light source placed at different depths.

This is shown in Figure 3.31. The observed blur kernel is (near) constant over the depth range that our

prototype is capable of focusing on; we provide a detailed theoretical justification for this in the supple-

mental material. The net result is that we can successfully deblur an in-focus scene immaterial of the

depth as seen in Figure 3.31, using the measured blur kernel for a scene at infinity. We also show that

the defocus blur (last row of Figure 3.31) is stable when deblurred (inset), indicating a gentle bokeh on

the out-of-focus regions. These observations are consistent with the deblurred textures in Figure 3.18,

for both the in-focus and out-of-focus regions.

We derive the depth-dependence property of these blur PSFs, based on a standard derivation from

Goodman [Goodman, 2005]. We follow notation and problem setup as stated in that book. Let us con-

sider measuring the point spread function of our under-panel camera system. Point light source𝑈0 (𝜉, 𝜂)

is placed 𝑧1 mm from the lens plane, a thin lens with focal length 𝑓0 has an overall aperture function
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Figure 3.29: Spatial variation of the blur kernel of the Top10-L2+Inv pattern. We capture PSFs

that appear on all corners and near edges. Insets show residuals after deblurring with the center PSF.

𝑎𝑟 (𝑥,𝑦), and image sensor is placed 𝑧2 mm from the lens. We require that the point source is in the focus

of our prototype and the distances satisfy the Lens law,

1
𝑧1
+ 1
𝑧2
− 1
𝑓0

= 0.

The system impluse response can be given as the Fraunhofer diffraction pattern of the overall aper-

ture 𝑎𝑟 (𝑥,𝑦) [Goodman, 2005],

ℎ(𝑢, 𝑣 ; 𝜉, 𝜂) ∝∬ ∞

−∞
𝑎𝑟 (𝑥,𝑦)𝑒{− 𝑗

2𝜋
𝜆𝑧2
[(𝑢 −𝑀𝜉)𝑥 + (𝑣 −𝑀𝜂)𝑦]}𝑑𝑥𝑑𝑦,

where 𝑀 = −𝑧2/𝑧1. For a point ligth source 𝑈0 (𝜉, 𝜂) that lies on the optical axis, the measured point
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Single exposure deblurred HDR deblurredSingle exposure

Figure 3.30: Handling saturation in UDCs. Saturated pixels break the linearity of the imaging model

and leads to artifacts in the deblurred photograph. We alleviate these by using HDR photography to

obtain a linear blur model.

spread function can be written as

𝑘 (𝑢, 𝑣 ; 𝜆) =
����∬ ∞

−∞
ℎ(𝑢, 𝑣 ; 𝜉, 𝜂)𝑈0 (𝜉, 𝜂)𝑑𝜉𝑑𝜂

����2
∝ |

∬ ∞

−∞
𝑎𝑟 (𝑥,𝑦)𝑒{− 𝑗

2𝜋
𝜆𝑧2
[𝑢𝑥 + 𝑣𝑦]}𝑑𝑥𝑑𝑦 |2

∝ |𝐴𝑟 (
𝑥

𝜆𝑧2
,
𝑦

𝜆𝑧2
) |2 .

Point spread function𝑘 (𝑢, 𝑣 ; 𝜆) is the Fourier transform of the overall aperture functionwith a scaling

factor 1/𝜆𝑧2 and the scaling factor changes with the depth 𝑧1 we focus on. In this chapter, we calibrate

our system with a point at infinity (or atleast very far away), and so, 𝑧1 = ∞ and 𝑧2 = 𝑓0. Note that in

our camera 𝑓 = 5.56 mm and can focus in a range of 10 cm to infinity. When the camera is focused at

the nearest possible setting 𝑧1 = 10 cm, the corresponding 𝑧2 = 5.86mm, which is less than 10% off from

𝑓0 and hence the scaling that we observe on from the focused-at-infinity blur is minimal. For scenes at

say 𝑧1 = 1 m, 𝑧2 = 5.59 mm which is extremely close to 𝑓0 and we will observe nearly the same blur

when focused on that point.

We conclude that within the depth range that our prototype is capable of focusing on, the scaling

point spread function is near constant.
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Figure 3.31: Deblurring at different depths using the Top10-L2+Inv pattern. (Top row) Deblurred

photos for in-focus scene at different depths. In all cases, the deblurring was performed with the PSF

corresponding to scene-at-infinity. (middle row) PSF of a point light source at different depths, with

camera focused on the light source. (bottom) PSF of a point light source with camera focused at infinity.

(bottom-inset) Residual blur after deblurring the defocus blur.



4Designing Phase Masks for Under-Display Cameras

While optimizing the shape of the display openings produces significant improvement in the image

quality of UDCs, it also requires non-trivial engineering effort to redesign the entire display. As a com-

plementary solution, in this chapter, we incorporate phase masks on display panels to optically modify

the display openings. Our design inserts two phase masks, specifically two microlens arrays, in front of

and behind a display panel. The first phase mask concentrates light on the locations where the display

is transparent so that more light passes through the display, and the second phase mask reverts the

effect of the first phase mask. We further optimize the folding height of each microlens to improve the

quality of PSFs and suppress chromatic aberration. We evaluate our design using a physically-accurate

simulator based on Fourier optics. The proposed design is able to double the light throughput while

improving the invertibility of the PSFs. Lastly, we discuss the effect of our design on the display quality

and show that implementation with polarization-dependent phase masks can leave the display quality

uncompromised.

4.1 Introduction

Inspired by a large body of work that enhances capability of imaging systems with phase masks [Heide

et al., 2016, Jeon et al., 2019, Peng et al., 2016, 2019, Shi et al., 2022, Sitzmann et al., 2018, Wu et al., 2019],

we propose to design phase masks to suppress diffractive blur and increase light throughput for UDCs.

We first show using basic Fourier optics [Goodman, 2005] that inserting a thin phase mask at the display

is ineffective in improving UDCs. To overcome the limitation of a single phase mask, we propose to use

two phase masks—specifically two microlens arrays– placed in front of and behind the display; we do

this for the specific case of transparent-OLEDs (TOLED), a display model commonly used in today’s

cellphones. The first phase mask distributes light to locations where the display is transparent, and the

second phase mask recovers the original waveform. Within some limits, this allows the incident light to



50 CHAPTER 4. DESIGNING PHASE MASKS FOR UNDER-DISPLAY CAMERAS

display lens sensor

(a) TOLED (b) TOLED + Phase Masks

Captured

Naïve restored 25.09 / 0.8354 32.19 / 0.9306

27.46 / 0.9398 31.48 / 0.9447SOTA restored

phase masksTOLED
pattern (a) (b)

Figure 4.1: A comparison between a UDC under a transparent-OLED display (a) without and (b)

with the proposed phase masks. (From top to bottom) Rows show the setup, images captured under

each, restored images using a naive iterative solver, and using a state-of-the-art deep network [Feng

et al., 2021]. We show PSNR(↑) in dB and SSIM(↑) for restored images. Both UDCs have a pixel density

of 600 DPI.

pass through without being blocked by the display or effectively renders the display fully transparent!

In order to prevent themicrolens arrays from hindering the display quality, we propose to implement

them as thin polarization-dependent phase masks. A naive implementation of microlens arrays as thin

optics is to fold them at a fixed height. However, this results in severe chromatic aberrations. We instead

choose a different height for each microlens through optimization, so that diffractive blur is suppressed

equally at all wavelengths. Using simulations, we show that the proposed phase mask significantly

increases the image quality of a UDC (see Figure 4.1). The code for this work is publicly available [Yang

et al., 2023].

In summary, we make the following contributions:

• We show that a phase mask placed tightly against a display is inadequate to improve the image quality



4.2. BACKGROUND 51

of UDCs.

• We propose to insert two microlens arrays in front of and behind a TOLED, which effectively allows

more light to reach the camera and produces more invertible PSFs.

• We implement the proposed microlens arrays as thin polarization-dependent phase masks, a design

that ensures light emitting from the display is not modulated and therefore guarantees high display

quality.

• When implementing microlenses as thin optics, we optimize the folding height of each microlens to

minimize chromatic aberrations.

• We conduct simulation based on wave optics and physically-accurate camera pipeline and demon-

strate that the proposed setup outperforms the conventional UDC.

Limitations. The proposed method has two limitations. First, we show phase correction can suppress

the diffractive blur of TOLED display, whose pattern is separable along 𝑥 and𝑦 directions. Extending this

to 2D displays is hard due to the high computational cost of simulating 2D short-distance propagation.

Second, the field of view of the resulting UDC can be constrained by the use of phase masks. This is

determined by the ratio of the focal length 𝑓 of microlens arrays and the size of the pixel opening. Our

choice of 𝑓 produces a field of view of around 14◦.

4.2 Background

T-OLED Displays. In this chapter, we focus on the simplest layout TOLED, whose opening pattern

is shown in the upper left of Figure 4.1 and is a separable along 𝑥− and 𝑦−directions. Along the 𝑥-

direction, every display pixel has an opening of around 23.8 %; in 𝑦-direction, the aperture is fully open.

The PSF produced by TOLED is also separable. Therefore, we focus on the design of one-dimensional

phase masks for 𝑥-direction.

4.3 Phase Mask Design for UDCs

We explore the design space of phase masks in UDCs and look into two scenarios — first, a single phase

mask placed tightly against the display and second, two phase modulations in front of and behind the

display.
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4.3.1 Inadequacy of Single Phase Masks

Phase masks modulate the phase of an incident wavefront and can potentially correct the wavefront to

form a PSF that is easily invertible. We first examine the most common setup of placing a single phase

mask at the aperture plane [Heide et al., 2016, Jeon et al., 2019, Peng et al., 2016, 2019, Shi et al., 2022,

Sitzmann et al., 2018, Wu et al., 2019]. Unfortunately, using basic Fourier optics, we show that such a

phase mask is insufficient to reduce diffraction blur in UDCs.

Lemma 1 (Inadequacy of a single phase mask). A single-sided phase mask can not improve the invert-

ibility of the point spread function of a UDC.

Proof. Let 𝑎(𝑥) be the aperture of a UDC, and ℎ(𝑥) be the height map of a single-sided phase mask that

is placed tightly against the display panel. We assume that the aperture and the phase mask are on the

same plane, and the overall aperture function 𝑏 (𝑥) can be written as

𝑏 (𝑥) = 𝑎(𝑥)𝑒 𝑗 2𝜋𝜆 (𝑛−1)ℎ (𝑥 ) (4.1)

where 𝑛 is the refractive index of the phase mask and 𝜆 is the wavelength of the incident wavefront.

The invertibility of PSF 𝑘𝑏 (𝑥) can be measured by its amplitude spectrum |𝐾𝑏 (𝑢) |, where values close

to zero are hard to invert, and large values are robust to noise in inversion. From (3.2), 𝑘𝑏 (𝑢) is the

(scaled) power spectral density of the aperture, its Fourier transform 𝐾𝑏 (𝑢) = AC𝑏 (𝜏), where AC𝑏 (𝜏)

is the (scaled) autocorrelation function of the aperture. We compute the autocorrelation of the overall

aperture function,

AC𝑏 (𝜏) =
∫ ∞

−∞
𝑎(𝑥)𝑎(𝑥 + 𝜏)𝑒 𝑗ΔΦ𝜏 (𝑥 )𝑑𝑥, (4.2)

and ΔΦ𝜏 (𝑥) = 2𝜋
𝜆
(𝑛 − 1) (ℎ(𝑥) − ℎ(𝑥 + 𝜏)). We then compute the intensity of AC𝑏 (𝜏), and by triangle

inequality,

|AC𝑏 (𝜏) | =
��� ∫ ∞

−∞
𝑎(𝑥)𝑎(𝑥 + 𝜏)𝑒 𝑗ΔΦ𝜏 (𝑥 )𝑑𝑥

��� (4.3)

≤
∫ ∞

−∞
|𝑎(𝑥)𝑎(𝑥 + 𝜏) |𝑑𝑥. (4.4)

Since aperture function 𝑎(𝑥) is non-negative, we can further simplify the above equation,

|AC𝑏 (𝜏) | ≤
∫ ∞

−∞
𝑎(𝑥)𝑎(𝑥 + 𝜏)𝑑𝑥 = |AC𝑎 (𝜏) |. (4.5)

We can see that |AC𝑏 (𝜏) | ≤ |AC𝑎 (𝜏) | for all 𝜏 and

|𝐾𝑏 (𝑢) | ≤ |𝐾𝑎 (𝑢) |, (4.6)
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implying that PSF produced by a display panel with a single-sided phase mask is always worse in terms

of invertibility than that produced by a pure display panel. ■

4.3.2 Double Phase Masks

If inserting a thin phase mask at the display plane is ineffective to improve the image quality of a UDC,

would inserting multiple phase masks help? Diffraction blur in a UDC is produced by the small openings

on the display pixels that have sizes comparable to the wavelength of incident light. Smaller opening

results in a more severe diffraction blur [Yang and Sankaranarayanan, 2021b]. Would it be possible

to optically expand the size of display openings, i.e. let a larger portion of light pass through display

openings?

Consider now a system with two phase masks, on either sides of a display. The first surface with a

height profile ℎ1 (𝑥) modulates light incident on the display so that, after propagating for some distance

𝑧 m, most of the intensity of the wavefront is concentrated at the display openings. The second surface

ℎ2 (𝑥) modulates the diffused wavefront so as to revert the effect of the first phase mask. If successful,

the display panel would be rendered invisible.

Mathematically, this can be modeled as follows: Given a wavefront 𝑝𝜃 (𝑥 ; 𝜆) that incidents from

angle 𝜃 and has a wavelength of 𝜆. The incident wavefront passes through a phase mask, a display

panel, followed by another phase mask, and becomes

𝑝′
𝜃
(𝑥 ; 𝜆) = (Φ2 ◦ Q𝑧 ◦ 𝑎 ◦ Q𝑧 ◦ Φ1)︸                        ︷︷                        ︸

𝑎Φ

(𝑝𝜃 (𝑥 ; 𝜆)) (4.7)

where 𝑎(𝑥) describes the display openings, Φ𝑖 (𝑥) = exp{ 2𝜋
𝜆
(𝑛 − 1)ℎ𝑖 (𝑥)}, 𝑖 = 1, 2 are phase modulations

of the first and second height maps, and Q𝑧 (·) is the operator corresponding to wave propagation of 𝑧

m.

Our goal is to design height maps ℎ∗1 (𝑥), ℎ∗2 (𝑥) and distance 𝑧∗ such that the resulting aperture 𝑎∗Φ (𝑥)

is approximately a fully-open aperture, 𝑎∗Φ (𝑥) ∝∼ 1.

4.3.3 Proposed Design: Double Microlens Arrays

In theory, height maps and thickness of an optimal double-sided phase mask ℎ∗1 (𝑥), ℎ∗2 (𝑥), 𝑧∗ can be

solved through an optimization problem. However, propagating incoherentwavefrontswith a physically

accurate model at each iteration is an expensive procedure, and gradient descent only allows solving for

the height range that corresponds to the range of 2𝜋 modulation.
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Figure 4.2: Proposed microlens arrays for UDCs. In the right column, we render OLED display with

MLA from two viewpoints. MLA is placed under the UDC aperture (center square). When viewed from

the front (i.e, 0◦), the display appears dark.

Our design is to place two microlens arrays (MLA) with equal focal lengths on either sides of the

display such that the display panel lies in the focal plane of both MLAs, as shown in Figure 4.2(a). Light

incident from the scene is concentrated by each microlens, passes through the display opening, and

diverges to a parallel beam by the second set of microlenses. Compared to UDCs with a pure display,

the proposed setup allows a larger portion of light to reach to camera main lens, and therefores improve

the conditioning of incident wavefront and SNR.

However, the microlens array in front of the display also modulates light emitting from the display

pixels. An illustration is shown in Figure 4.2(b). Since the display subpixels are misaligned with the

optical axis of each microlens, light emitting from subpixels is rarely refracted to the direction along the

optical axis. This implies the display would appear dark when users view it from orthogonal viewpoint.

4.3.4 Folding MLAs to Thin Plates

One approach to prevent microlenses from affecting the display is to implement them as polarization-

dependent optics and place a pair of orthogonal linear polarizers on both sides of the display panel.

The microlens arrays only modulate the phase of light along 𝑝-polarization state. First, we examine

the camera point of view. Light incident from the scene is a mixture of both states. Phase mask only

modulates the 𝑝-state (shaded lines) and leaves 𝑠-state (solid color) unchanged. The polarizer behind

the display selects 𝑝-states and filters out the rest. Thus the camera works in the same principle as
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we described in the previous section. This polarization-dependent implementation reduces the light

throughput by half, which is taken into consideration in all simulations. Second, we look into the effect

of phase masks on the display quality. Due to the presence of 𝑠-polarization filter, the display RGB

subpixel emits light along 𝑠-state. As our phase mask only modulates light along 𝑝-polarization state,

light emitting from the display is left untouched.

Since polarization-dependent optics are only available in thin optics, either as phase spatial light

modulators (SLM) or thin optical elements [Hu et al., 2021, Li et al., 2019]. It is necessary to fold each

microlens into a thin phase plate at maximum height 𝑑0,

ℎ̂(𝑥) = mod
(
− 𝑥2

2(𝑛 − 1) 𝑓0
, 𝑑0

)
. (4.8)

Figure 4.3 shows an example. Larger 𝑑0 produces a phase mask that contains few phase wrappings and

performs almost equally across all wavelengths; and small 𝑑0 leads to much more phase wrappings and

the resulting performance is strongly wavelength dependent. Phase plate wrapped at 𝑑0 has preferable

performance for light of a certain wavelength 𝜆0 over those of other wavelengths. This is because

𝑑0 can be viewed as 𝑇𝜆0
𝑛−1 , where 𝑇 is an arbitary positive integer that coarsely controls the thickness

of a phase mask and 𝜆0 is a wavelength that decides the exact thickness. A thick microlens can be

written as ℎ(𝑥) = ℎ̂(𝑥) + 𝑐 (𝑥) 𝑇𝜆0
𝑛−1 , where 𝑐 (𝑥) ∈ Z, and produces a phase modulation of exp{ 𝑗 2𝜋

𝜆
(𝑛 −

1)ℎ̂(𝑥)} exp{ 𝑗 2𝜋
𝜆
𝑐 (𝑥) 𝑇𝜆0

𝑛−1 }. For incident light of wavelength 𝜆 = 𝜆0, the modulation of thick lens is

the same as that of the phase plate. For incident light of other wavelengths, the phase plate produces

wrapping artifacts and thinner plates have more chromatic aberration.

A typical phase SLM is able to achieve phase modulations within a range of 2𝜋 or equivalently𝑇 = 1;

other liquid crystal-based non-programmable optics can be implemented with larger phase retardation.

Therefore, we design phase masks for two thicknesses: 𝑇 = 1 for the phase SLM and 𝑇 = 5 for thicker

retarders.

4.3.5 Phask Masks Optimization

As mentioned in the previous section, a thin phase plate of uniform height 𝑑 favors a corresponding

wavelength 𝜆 and produces wrapping artifacts for other wavelengths, resulting in chromatic aberration.

We propose to optimize a different height 𝑑 [𝑙] for each microlens 𝑙 such that the optimized inevitability

of the overall PSF is the same across RGB channels to eliminate chromatic aberration.

Given a UDC with 𝐿 microlenses with corresponding heights {𝑑𝑙 |𝑙 = 1, ..., 𝐿}, each of which takes

the value in a set of heights i.e., 𝑑𝑙 ∈ {ℎ 𝑗 | 𝑗 = 1, ..., 𝑁 }. The set of discrete heights is created by uniformly

sampling 𝑁 wavelengths from 400 nm to 700 nm. The goal is to find the number of 𝑑𝑙 with the same
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Figure 4.3: Thick lens versus phase masks wrapped at the dash lines 𝑇 = 1, 5 and their PSFs.

height for each ℎ 𝑗 .1 Thus we define𝑚 𝑗 =
∑
I(𝑑𝑙 = ℎ 𝑗 ),∀𝑙 = 1, .., 𝐿 and a vectorm = [𝑚1, ...,𝑚𝑁 ]⊤ for all

𝑁 heights.

We calculate the invertibility of a system with different heights as a weighted combination of that of

constant ones. The invertibility is measured by 𝑣 𝑗 (𝜆), the region under modulation transfer function for

microlens of height ℎ 𝑗 and a specific wavelength 𝜆, and higher scores are better. Specifically, we form

form a matrix 𝑽 ∈ R𝑁×𝑁 , where 𝑽𝑗,𝑘 = 𝑣 𝑗 (𝜆𝑘 ) is the system invertibility for height ℎ 𝑗 and wavelength

𝜆𝑘 . The invertibility of a new system with mixed heights 𝒎 can therefore be computed by 𝑽⊤
𝑘
𝒎.

Different wavelengths contribute to the performance of RGB channels differently, for example, wave-

lengths close to 470 nm, 530 nm, 610 nmmatter more to the overall performance than other wavelengths,

and the importance is characterized by the sensor spectral response function. We thus discretize the

function into a matrix 𝑺 = [𝒔⊤
𝑅
, 𝒔⊤
𝐺
, 𝒔⊤
𝐵
] and 𝑺⊤𝑽⊤𝒙 computes the RGB performance under 𝒎. We opti-

mize the following problem,

min
𝒎
∥𝑺⊤𝑽⊤𝒎 − 1∥22 + 𝛼 ∥𝒎∥1 (4.9)

s.t. 𝑚𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑁 . (4.10)

1We show that the ordering of 𝑑𝑙 has negligible effects on the performance in supplementary. Therefore, we only optimize

for the counts.
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The first term guarantees that performance of RGB channels is equally high, and the second term is

a regularization. In optimization,𝒎 ∈ R𝑁 is a continuous variable, and in evaluation it is rounded up to

integers.𝑚𝑖 is non-negative since it represents a count.

#1 Achromatic. The first term minimizes the ℓ2 difference between the invertibilities of RGB channels

and an all-one vector so that the system performance is equal across RGB channels. Note that 𝑺⊤𝑽⊤ ∈

R3×𝑁 , 𝑁 ≫ 3. Therefore, the first term is an under-determined system with infinitely many solutions.

Without proper regularization, the magnitudes of elements in 𝒎 can be unbounded.

#2 More invertible. The second term, ℓ1 regularization, encourages large invertibilities. The choice of

ℓ1 norm is motivated as follows. Since 𝒎 represents counts of microlenses, with proper normalization,

it sums to the total number of microlenses in the aperture. We let the normalized counts be 𝒎𝐿
∥𝒎∥1 ,

and normalized invertibilities be 𝑺⊤𝑽⊤ 𝒎𝐿
∥𝒎∥1 . Since 𝑺⊤𝑽⊤𝒎 is constrained to be 1 by the first term,

the normalized invertibilities can be simplified as 1𝐿
∥𝒎∥1 . Therefore, minimizing ∥𝒎∥1 is equivalent to

maximizing the invertibilities of RGB channels.

We use the log-barrier approach to approximate the non-negative constraint and convert the original

optimization into an unconstrained problem,

min
𝒎
∥𝑺⊤𝑽⊤𝒎 − 1∥22 + 𝛼 ∥𝒎∥1 −

1
𝑡

𝑁∑︁
𝑗=1

log
(
𝒛⊤𝑗 𝒎

)
(4.11)

where 𝒛 𝑗 is a one-hot vector that is one at 𝑗-th element. We apply the barrier method to solve this

problem [Boyd et al., 2004]. The algorithm is summarized in Algorithm 1.

During inference, we normalize and round up the optimal𝒎 into �̂�∗ = ⌊ 𝒎∗

∥𝒎∗ ∥1𝐿⌋, such that
∑𝑁
𝑗=1 �̂�

∗
𝑗 =

𝐿. The resulting phase mask contains �̂�∗𝑗 number of microlenses that have a maximum height of ℎ 𝑗 =
𝑇𝜆 𝑗

𝑛−1 .

Figure 4.4 shows an example of optimized phase masks. Compared to a fixed height that favors the

green sensor channel and produces severe chromatic aberration, the optimized heights perform equally

across RGB channels. Compared to uniformly varying heights, the optimized profile produces sharper

PSFs.
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Algorithm 1 Algorithm for phase mask optimization

Input: 𝛼 ← 0.1, 𝜇 ← 2,𝒎init ← 1, 𝑡 (0) ← 0.01

Output: 𝒎∗

𝑘 ← 0 ⊲ iteration index

𝒎 (0) ← 𝑁𝑒𝑤𝑡𝑜𝑛(L,𝒎init, 𝑡
(0) )

while 𝜇 · 𝑡 (𝑘 ) ≤ 104 do

𝑘 ← 𝑘 + 1

𝑡 (𝑘 ) ← 𝜇 · 𝑡 (𝑘−1)

𝒎 (𝑘 ) ← 𝑁𝑒𝑤𝑡𝑜𝑛(L,𝒎 (𝑘−1) , 𝑡 (𝑘 ) )

end while

𝒎∗ ← 𝒎 (𝑘 )

Function 𝑁𝑒𝑤𝑡𝑜𝑛(L,𝒎init, 𝑡)

𝒎 ← 𝒎init

𝜖 ← 1

while 𝜖 ≥ 0.001 do

𝒎pre ← 𝒎

𝑮 ← ∇L(𝒎pre; 𝑡) ⊲ Gradient

𝑯 ← ∇2L(𝒎pre; 𝑡) ⊲ Hessian

𝒎 ← 𝒎pre − 𝑯 −1𝑮

𝜖 ← |L(𝒎pre; 𝑡) − L(𝒎; 𝑡) |

end while

Return𝑚
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Figure 4.4: Choice of 𝑑0s at different locations. The center part indicates the screen under the UDC

aperture, and the white edges indicate the normal screen. The display is at 600 DPI. Colors from dark

blue to red indicate 𝑑0s determined by wavelengths from 400 nm to 700 nm.

4.4 Imaging Model and Its Characteristics

In this section, we describe the image formation model of the proposed setup and analyze its character-

istics.

4.4.1 Image Formation Model

In UDCs, diffraction is usually non-negligible due to the small size of the display openings, thus we

resort to wave optics in simulation. The height profiles of the first and second phase masks ℎ1 (𝑥), ℎ2 (𝑥)

are specified as microlens arrays as in Equation 4.8. Given a set of plane waves 𝑝𝜃 (𝑥 ; 𝜆) with unit

irradiance. We can plug the ℎ1 (𝑥), ℎ1 (𝑥), 𝑧 = 𝑓0 into Equation 4.7, and obtain the modulated wavefront

𝑝′
𝜃
(𝑥 ; 𝜆) under our design. The modulated wavefront 𝑝′

𝜃
(𝑥 ; 𝜆) is then focused by the camera main lens

and forms a set of blur kernels 𝑘𝜃 (𝑥 ; 𝜆), as specified in Equation 3.2. The blur kernel produced by a

wide spectrum light source coming from angle 𝜃 can be computed as an integral of blur kernels with

wavelength 𝜆s weighted by sensor spectral sensitivity 𝑠 (𝜆), 𝑘𝜃 (𝑥) ≈
∫
𝜆
𝑘𝜃 (𝑥 ; 𝜆)𝑠 (𝜆)𝑑𝜆.We simulate 300

wavelengths from 400 nm to 700 nm.

Since TOLED is fully-open in 𝑦-direction and it produces a blur kernel of approximately a Dirac

Delta function, the captured image can be written as

𝑰UDC = 𝑲𝑥 𝑰 + 𝒏 (4.12)

where 𝑲𝑥 is a concatenation of 1D blur kernels, 𝑰 ∈ R1024×2048 is a high quality image, and 𝒏 is noise. We

simulate blur kernels produced by 1024 incoming directions that correspond to sensor pixel locations
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Figure 4.5: Field of view of our design.

along 𝑥-direction.

Reconstruction. We first apply BM3D denoiser [Dabov et al., 2007] to captured images. And then

we minimize the least square error between the captured 𝑰UDC and estimated blurry image 𝑲𝑥 𝑰 , and

regularize the estimated 𝑰 with Tikknov priors. We solve the target function using a naive iterative

solver with a ’full’ boundary condition and then crop the estimated 𝑰 to have the same shape as 𝑰UDC.

4.4.2 Characterisics of Our Design

Field of View (FoV). Figure 4.5 illustrates light from different directions incident on one pair of mi-

crolenses and display pixel. Let the display pixel has an opening of Δ and the microlenses have a focal

length of 𝜅Δwhere 𝜅 is a design choice. We choose 𝜅Δ to equal display pitch, the smallest focal length if

assuming spherical lenses. Normal incident light is focused to a point in the center of the display open-

ing. As the incident angle increases, the focus point also shifts away from the center, until it reaches

extreme angle. Any incident angle larger than the extreme angle is blocked by the display. The FoV of

the system is

FoV = 2 tan−1
(
Δ/2
𝜅Δ

)
≈ 1
𝜅
. (4.13)

Light Transmission Ratio (LTR). Normal incident light passes through our setup without being

blocked. As the incident angle increases, a larger portion of the light is out of the range of the second

microlens. At the largest angle within the FoV, the LTR of our system is

LTRmin ≈ 1 − 1
𝜅
. (4.14)

Due to the polarization-dependent implementation of our system, the LTR is reduced by half.
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Figure 4.6: Comparison of our setups with TOLED.

4.5 Simulated Experiments

We design phase masks for UDCs under TOLED of pixel densities ranging from 150 to 600 DPI. All

displays have an open ratio of 23.8 %. We choose the focal length to equal display pixel pitch, and thus

𝜅 = 4.2. The resulting FoV is around 14◦and the LTR is between 38 % and 50 %.

We compare the proposed setup with conventional UDCs under TOLED. All displays have a pixel

density of 600 DPI, equivalently a pixel pitch of 42 µm. We simulate a smartphone front camera with an

aperture size of 2.3mm and focal length of 4.67mm. To simulate captured images, we apply spatially-

varying blur kernels to ground-truth sharp images, and then add noise according to a physically-accurate

noise model, and quantized to 12-bit. We emulate a sensor that has a full well capacity of 15 506 electrons

and a standard deviation of 4.87 electrons, which are commonly seen in smartphone camera sensors.

We set the gain to be inversely proportional to the LTR of each setup so that the captured image has

consistent intensities across setups. We vary the light level by changing the number of the photons

incident on an open aperture on the display from 250 to 10 000 photons. All setups are evaluated on a

test set containing thirty images and using PSNR and SSIM as evaluation metrics.

Effect of PhaseMasks. We compare TOLEDwithout and with two sets of proposed phase masks that

have thickness of around 1 µm and 5 µm. For each thickness, we compare three choices of wrapping

heights — a fixed height determined by 𝜆0 = 530 nm, different heights determined by wavelengths
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Figure 4.7: Comparison of our setups with a traditional UDC with TOLED on validation set.
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Figure 4.8: Effect of phase mask optimization.
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Figure 4.9: Qualitative results from UDC under TOLED and our setups. For each scene, columns

from left to right show captured, recovered, and difference maps between the restored and ground truth.

The intensities of difference maps are magnified by 2 times. We show SSIM for each restored image.

Higher score means better quality.

uniformly sampled from 400 nm to 700 nm, and optimized heights. Figure 4.6 shows that the proposed

setups outperform TOLED at all light levels. At 1 µm, the optimized height map largely outperforms the

fixed one; while at 5 µm, different designs perform similarly. Because thinner phase masks have more

phase wrappings and are more sensitive to the selection of 𝑑0. At 5 µm, the phase mask is quite similar to

a thick lens and the system performance is more consistent across different choices of 𝑑0. Comparisons

on validation set is in the supplementary.

Figure 4.7 shows additional results on the validation set comparing TOLED without and with two

sets of proposed phase masks that have a thickness of around 1 µm and 5 µm. For each thickness, we

compare three choices of wrapping heights. Results on the validation set are similar to those on the test

set, showing that the proposed setups outperform TOLED at all light levels.
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Effect of Optimization. Figure 4.8 compares qualitative results of three choices of wrapping heights

on ISO 12233 resolution chart [ISO, [n.d.]]. The light level is about 10 000 photons. The restored image

of TOLED contains a significant amount of ringing artifacts. The phase mask designed at a fixed height

and with 1 µm thickness produces apparent chromatic aberration. The image captured under uniformly

sampled heights appears less greenish. Phase masks with optimized heights further suppress chromatic

artifacts and retain more details, and the one at 5 µm performs even better than the one at 1 µm. For

example, it recovers more high-frequency details on the circle.

Qualitative Results. Figure 4.9 shows the qualitative results of TOLED and those of our setups. Light

level is around 10 000 photons. The upper rows show results from a naive iterative solver, and the lower

two rows are from the cutting-edge CNN for UDCs [Feng et al., 2021]. Ours are consistently better

than TOLED in SSIM. It is worth noting that TOLED results, even with CNN, contain apparent ringing

artifacts. For example, in the first scene, ghosting artifacts appear on the blue and red bags, and in the

third scene, there is an extra copy of the window left in the restored image.

Comparisons with Other OLED Displays. We compare our design with two display layouts com-

monly used in smartphone screens, TOLED and POLED [Zhou et al., 2020a, 2021], and two displays lay-

outs designed specifically for UDCs [Feng et al., 2021, Yang and Sankaranarayanan, 2021b]. POLED con-

tains a poly-amide substrate, which causes extremely low light throughput of around 8 % and produces a

yellowish color shift in the captured images. The display designed by Yang and Sankaranarayanan [Yang

and Sankaranarayanan, 2021b] modifies the display openings, and subsequently requires significant en-

gineering effort to accommodate display RGB subpixels and circuits. ZTEAxon 20 phone largely reduces

the display pixel density to make room for transparent regions for light to pass through. We evaluate

the performance of ZTE using the PSF provided by Feng et al. [Feng et al., 2021] and an estimated LTR

of around 75 %. Note that reducing the pixel density results in apparent artifacts on the display.

Table 4.1 summarizes the design, LTR, and imaging performance of UDCs under various OLED dis-

plays. Ours falls into the category of requiring no change of the display openings and outperforms the

other two common displays, TOLED and POLED.While Yang et al. [Yang and Sankaranarayanan, 2021b]

and ZTE Axon have higher imaging quality, the modifications of the display have non-trivial negative

effects on the display quality. Detailed performance at different light levels and qualitative results are

in the supplementary.
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Display Changes LTR% PSNR / SSIM

TOLED − 23.8 22.42 dB / 0.59

POLED − 8.3 26.22 dB / 0.67

Ours − 47.6 28.01 dB / 0.75

Yang et al. Modify layout 22.6 32.93 dB / 0.88

ZTE Axon Low DPI ∼ 75 38.24 dB / 0.96

Table 4.1: Comparisonswith otherOLEDdisplays. TOLED, POLED, and ours do not require a change

to the display openings, while Yang et al. and ZTE Axon require significant modifications to the display

layout. We list averaged PSNR(↑) and SSIM(↑) across scenes from typical indoor to outdoor light levels,

from 250 to 10 000 photons.

Effect of Pixel Density. Figure 4.10(a) evaluates the performance of UDCs at various pixel densi-

ties. Displays at 150DPI are commonly used for desktop monitors and laptops; 600DPI for high-quality

cellphone displays and tablets. Light level is around 1600 photons. At 5 µm, optimized phase masks

outperform TOLED at all four pixel densities, and at 1 µm ours outperform TOLED with pixel densities

larger than 300DPI. Because microlens arrays for larger pixel pitch have larger radii, and results in phase

warpping artifacts when implemented as thin plates. Additional SSIM plots are shown in the supple-

mentary. Figure 4.11(a) shows SSIM plots for UDCs at various pixel densities. The trends are similar to

PSNR plots. At 5 µm, optimized phase masks outperform TOLED at all four pixel densities, and at 1 µm

ours outperform TOLED with pixel densities larger than 300DPI. Because microlens arrays for larger

pixel pitch have larger radii, and results in phase wrapping artifacts when implemented as thin plates.

CNN-based Restoration. We adopt DISCNet [Feng et al., 2021], one of the best UDC restoration

networks. We utilize the 240 high-quality images in UDC dataset [Zhou et al., 2020a] and simulate the

captured images using the pipeline described earlier. Figure 4.1 and Figure 4.9 showcase restored images

for TOLED and ours. Compared to the naive iterative solver, CNN-based restoration largely improves

imaging quality. The proposed setup consistently outperforms TOLED.

Effect of phase mask quantization. In fabrication, phase masks are often quantized into discrete

height maps with a step of 200 nm, for example in two-photon lithogaphy [Nanoscribe, 2007]. Fig-

ure 4.10(b) shows that quantized phase masks perform similarly as ones before quantization. Fig-

ure 4.11(b) evaluates phase masks without and with a quantization of a 200 nm step in height using

SSIM. Phase masks with quantization perform similarly to ones before quantization.
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(a) Effect of pixel densities (b) Effect of phase mask quantization

Figure 4.10: Effect of (a) setups with varying display pixel densities and (b) quantization of

phase masks.
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Figure 4.11: Effect of (a) setups with varying display pixel densities and (b) quantization of

phase masks.
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Figure 4.12: Different ordering of 𝑑𝑙 .

Effect of Ordering of 𝑑𝑙 . Given a set of folding heights 𝑑𝑙 s for each microlens, we show the spatial

ordering of 𝑑𝑙 s has a negligible effect on the imaging performance. We compare two types of 𝑑𝑙 s — those

decided by uniformly sampled 𝜆0s and those decided by optimization, and for each type, we compare

two orderings — sorted 𝑑𝑙 s with an ascending order and shuffled 𝑑𝑙 s. All phase masks are controlled by

𝑇 = 1. Figure 4.12 illustrates two types of 𝑑𝑙 s together with two types of orderings. Table 4.2 evaluates

PSNR and SSIM of each setup at a fixed light level of around 1600 photons. ΔPSNR and ΔSSIM compute

relative differences between the shuffled and the ordered with respect to the ordered. We can see that

for each type of 𝑑𝑙 , the ordered and shuffled have similar performance; while optimized 𝑑𝑙 s outperform

uniform 𝑑𝑙 s. Therefore, in this chapter, we only optimize for heights 𝑑𝑙 s and adopt an ascending order

after optimization.

PSNR ΔPSNR SSIM ΔSSIM

uniform, ordered 26.69 dB − 0.7106 -

uniform, shuffled 26.51 dB −0.68 % 0.7187 1.13 %

optimized, ordered 27.44 dB − 0.7368 -

optimized, shuffled 27.18 dB −0.96 % 0.7396 0.38 %

Table 4.2: Effect of ordering of 𝑑𝑙 .

Comparisons with Other OLED Displays. We compare our design with TOLED, POLED [Zhou

et al., 2020a, 2021], and two displays layouts designed specifically for UDCs [Feng et al., 2021, Yang

and Sankaranarayanan, 2021b]. Figure 4.13 shows qualitative results for scenes with an indoor light

level of around 650 photons. Our design falls into the category of requiring no change to the display
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Captured Recovered Difference Captured Recovered Difference Captured Recovered Difference
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Figure 4.13: Qualitative results comparing ours with common display layouts. All displays are

600 DPI except for the ZTE display. ZTE display is modified to have low pixel densities to accommodate

UDCs. All scenes are at an indoor light level.

openings. Compared to two other high-quality displays in this category, TOLED and POLED, ours

produces significantly fewer artifacts. POLED has an LTR of around 8 % and produces photographs

with the most noise. Displays designed specifically for UDCs, including Yang et al. and ZTE, have better

performance than ours. However, these modifications also degrade the display quality. For example, the

random tiling proposed by Yang et al. produces non-negligible visual artifacts for the display, and the

ZTE display trades off pixel densities for larger transparent regions.

Figure 4.14 shows the performance of all displays for scenes ranging from indoor to outdoor light

levels. Note that the performance of POLED increases fast as the light level of the scene increases,

however, at a light level of 250 photons, POLED is worse than ours by around 10 dB in PSNR. This is due

to its low LTR, which becomes a pronounced issue when capturing photographs of indoor scenes.
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Figure 4.14: Comparisons with other OLED displays.
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Figure 4.15: Deblurring using an iterative solver versus using a SOTA deep neural network.

SOTA Restoration. We compare the quantitative results from an iterative solver and from a cutting-

edge deep neural network-based method for TOLED and our setup. Our setup refers to an optimized

phase mask with a 5 µm thickness. First, results from SOTA deep neural network are significantly better

than those from the iterative solver. For TOLED, SOTA method outperforms the iterative solver by

around 4 dB; and for ours, by around 2 dB. Second, when comparing SOTA restorations for both setups,

TOLED performs similarly to ours in SSIM, while worse than ours by around 2 dB in PSNR. This is

because, although DISCNet recovers many sharp details for TOLED, it fails in removing widespread
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Step 1: print microlens array on
a photomask emulating display.

Step 2: repeat step 1. Step 3: align the two structure by 
aligning the display patterns.

Figure 4.16: The fabrication procedure of double-sided phase masks.

ringing artifacts caused by the ill-conditioning of the PSF of TOLED. The resulting visual artifacts are

ghosting effects and repetitive copies that are unfaithful to the ground-truth scene, and therefore, ours

produce much more visually appealing results than TOLED.

4.6 Real Experiments

Fabrication. We use photomask with chrome patterns to emulate TOLED display that has a pitch

of 336 µm, an opening of 40 µm between display pixels, and light throughput of 11.9 %. The substrate

of the photomask is soda-lime and is 500 µm thick, one side of which is deposited with a thin layer of

chrome and the other side is an anti-reflection (AR) coating that aids the interface finding during the

fabrication of phase masks. We fold the microlens array into thin phase plates with𝑚 = 20 and optimize

for folding heights, and the resulting thickness of microlenses is 25.28 µm. The MLA is printed on the

AR coating side of the photomask. The focal length of the MLA is designed such that an incident parallel

beam of light modulated by MLA is focused at the plane with chrome patterns. The total dimension is

3mm by 3.696mm, which approximately covers the camera aperture. As shown in fig. 4.16, we divide

the fabrication into three steps: (1) print a piece of microlens array on the photomask, aligned with

the chrome patterns, and (2) repeat the first step and print another piece of phase mask, (3) put two

pieces together by aligning the chrome patterns. In the first and second step, two-photon lithography

(Nanoscribe) is used to fabricate phase masks. The alignment is done by using the microscope built in

the Nanoscribe station.

Figure 4.17 (b) shows one set of fabricated phase mask on a TOLED substrate. We align the target

structure with the features on the photomask using the built-in microscope and translation stage inside

Nanoscribe and print the phase mask on the photomask. In the third step, we tightly clamp the two
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(a) Setup (b) MLA printed on a photomask that emulates TOLED display 

Figure 4.17: The hardware prototype for the proposed phasemasksWe use photomasks to emulate

a TOLED display and print folded microlens arrays on the photomask. The emulated display panel

together with phase masks is tightly placed and taped on the rear camera of a smartphone to emulate a

UDC. (a) shows the overall setup; (b) shows a microlens array aligned and printed on the TOLED display

using two-photon lithography. On the right is a zoomed-in image of the printed MLA, viewed under a

microscope.

photomasks and manually adjust the alignment. By maximizing the light throughput, we are able to

align the two pieces with an accuracy within 4 µm along 𝑥 direction.

Optical Evaluation. We use a simple optical setup to examine the quality of the fabricated phase

masks. We illuminate the phase mask and TOLED display with a collimated beam of light of wavelength

530 nm, and measure propagated wavefronts using a 4𝑓 lens relay. In Figure 4.18 (a), the red lines

showcase the target planes we measure. Upper image in (b) is the measured intensity where the center

region is with the presence of one MLA. We can see that light is focused into brighter lines for the

regions with MLA; while lines in other regions are dimmer. (c) is a cross-section of the two boxed

regions in (b). The intensity of regions with MLA is approximately 6 times that of without MLA. Lower

images in (b) and (c) are measured image and its cross-sections with the presence of two aligned MLAs.

The center region is where two MLAs are aligned„ and we can see that a larger portion of light passes

through the display. Examing the cross-sections, we observe that approximately 5.13 times light passes

through the display with the proposed MLA. The optical evaluation confirms a single fabricated phase
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(a) Target plane (b) Captured image (c) Cross section

Figure 4.18: Evaluation of the fabricated microlens arrays. The red line in Figure (a) illustrates the

target plane we measure. (b) are captured images of the target plane, where the center part is with phase

masks. Figure c are cross-sections of regions in (b) that are with and without phase masks.

mask is effective in concentrating light and two of them are able to sent a larger beam of light through

the display. However, due to fabrication imperfections such as stiching effects and aberrations when

approaching the field of view of objective lens, the performance of the fabricated lens is worse than

ideal increase in light throughput.

Real Results. We place the fabricated phase masks and TOLED display in front of a smartphone

camera. The camera has a focal length of 4.67mm and an 𝑓 -number of 2. Figure 4.19 are three indoor

scenes captured with TOLED only and the proposed setup. We use the same exposure time and gain for

both setups.

Images captured under proposed setup is significantly brighter than that captured with the original
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(a) TOLED (b) TOLED + Phase Masks

Figure 4.19: Captured photographs under TOLEDdisplay and our setup. Using the proposed phase

masks, the captured image is significantly brighter. This verified that the proposed phase masks guide

more light through the display. However, due to the challenge in accurately align phase masks along

spatial and axial directions, the phase modulation is not as well as expected in simulation.

TOLED. This verifies that the proposed phase masks successfully guide more light through the openings

of the dfisplay. However, the captured images under our setup appear more blurry than simulation. We

analyze that this is mainly caused by the challenge in aligning the printed phase masks and the TOLED

display plane. It is fairly easy to print two (thin) phase masks; however, this would then need to be

aligned with each other and with the openings on the display. Due to the small feature size of the

display, the alignment tolerance is within a few micrometers along lateral dimensions. This alignment

is further complicated by the precise axial distance we need to build the relay (we need 42 µm between

the phase mask and the display openings for 600DPI display). Standard substrates for phase masks have

thicknesses in 200-500 µm, which is already much thicker than the required distance, let alone accurate

adjustment of the distance itself to achieve the desired performance. A second challenge to resolve are

artifacts from fabrication imperfections. For example, two-photon lithography with 25× objective lens

has a field of view of around 0.3 × 0.3mm and needs to print block by block for the entire phase mask.

Invariably, there are stitching artifacts as well as aberrations near the edge of each block. We believe

these factors can be compensated by careful calibration of PSFs aswell asmore advanced post-processing

algorithms andwon’t significantly affect the performance of the proposed setup. In summary, we believe

the proposed hardware can be build if enough resources are devoted to the effort; for example, custom

building a mold, aligning it to the display and curing liquid polymer to get the lenses on each side.
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4.7 Discussions

In this chapter, we design phase masks to improve the image quality of UDCs. First, we show that

inserting one phase mask behind the display is ineffective. Second, we propose to place two MLAs

in front of and behind the display. The first MLA concentrates light to locations where the display

is open, and the second recovers the original wavefront. The proposed design allows more light to

reach the camera main lens and shapes the wavefront to a better condition. To ensure the display

quality uncompromised, we implement microlens arrays as polarization-dependent phase masks and

optimize their heights to suppress chromatic aberration. The proposed design largely improves the

imaging quality of UDCs under TOLED display.

Scene at different depths. The effect of the proposed phase masks is nearly constant across scenes

at different depths in the working range of selfie cameras. This is due to the small focal lengths of the

proposed microlens arrays, which are at the scale of hundreds of microns.

Diffraction blur. A byproduct of inserting phase masks a short distance away from the display is that

the captured images lose some details towards the edge (see Figure 4.1(b)). Similar to diffractive grating,

the diffraction becomes apparent as the angle of incident light increases. In contrast, TOLED retains

those details, however, with wide-spread ringing artifacts that are difficult to remove even with SOTA

deep neural networks (Figure 4.1(a)). Consequently, our method yields much more visually appealing

reconstructions and higher benchmark scores.

Inadequacy of Single PhaseMasks: Additional Analysis In this chapter, we consider the scenario

where a single phase mask is inserted tightly against the display and prove its inadequacy in improving

the image quality of UDCs, as show in in Figure 4.20(a). In this section, we consider two additional

scenarios shown in Figure 4.20(b)(c). We move the phase mask away from the display panel by a short

distance 𝑧0. Note that after introducing the distance 𝑧0, plane waves that are incident on the display

from different directions produce different PSFs. These spatially-varying PSFs break the convolutional

imaging model, and thus prevent us from analyzing system invertibility as in Section 3.1, i.e., using

the MTF as a tool for analysis. Instead, we solve for a phase mask that minimizing the difference be-

tween wavefronts observed in a UDC and a camera with fully open aperture, and examine the resulting

analytical solution.

Given a UDC,we define the display as the aperture plane, and a phasemask and the camera lens are at

a plane parallel to and 𝑧0 distance away from this aperture plane. We assumewave propagation for 𝑧0 can
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Figure 4.20: Three scenarios where a single phase mask is inserted behind the display in UDCs.

bewell approximated by Fresnel diffraction. Now consider a planewave incident on the display/aperture

at an angle 𝜃𝑖 ∈ [𝜃min, 𝜃max], where the bounds denote the field of view of a conventional smartphone

camera. The wavefront after propagation to the phase mask, i.e., free-space propagation by a distance

𝑧0, is denoted as 𝑢𝜃𝑖 ; the effect of the phase mask can be denoted as a pointwise multiplication with a

unit-norm phasor, and so the wavefront after the phase mask is denoted as 𝜙 [𝑚]𝑢𝑖 [𝑚], where 𝑚 is a

spatial index. We repeat this for a number of different incident angles {𝜃𝑖 , 𝑖 = 1, . . . , 𝑁 }. Now, consider

an ideal alternative, where the display (and its aperture) is not present, and we simply have the main lens

𝑧0 distance away from the aperture plane. This ideal system provides us with a target set of wavefronts,

one for each incident angle, that we denote as 𝑇 = [𝑡𝜃1 , ..., 𝑡𝜃𝑖 , ..., 𝑡𝜃𝑁 ].

Lemma 2 (Inadequacy of a single phase mask behind the display). Following the setup for a UDC de-

scribed above, inserting a phase mask a distance away from the display panel can not decrease the Frobenius

norm between the set of wavefront in the ideal camera and that in the UDC, ∥𝑇 −𝑑𝑖𝑎𝑔(𝜙)𝑈 ∥2
𝐹
≥ ∥𝑇 −𝑈 ∥2

𝐹
,

where 𝜙 is the phase and amplitude modulation introduced by the phase mask.

Proof. We solve the modulation of phase mask such that the Forbenius norm between the modulated

wavefront diag(𝜙)𝑈 and the target wavefront 𝑇 is minimized. By taking the derivative of the objective

function with respect to phase modulation 𝜙 [𝑚𝑘 ] at each location𝑚𝑘 and set the derivative to zero, we

obtain

𝜙 [𝑚𝑘 ] =
∑
𝜃 𝑢
∗
𝜃
[𝑚𝑘 ]𝑡𝜃 [𝑚𝑘 ]∑

𝜃 𝑢
∗
𝜃
[𝑚𝑘 ]𝑢𝜃 [𝑚𝑘 ]

. (4.15)

We can substitute wavefront incident from direction 𝜃 with that from normal direction, 𝑢𝜃 [𝑚𝑘 ] =

𝑒 𝑗
2𝜋
𝜆
(𝜃 (𝑚𝑘− 1

2𝜃𝑧 ) )𝑢0 [𝑚𝑘 − 𝜃𝑧] and 𝑡𝜃 [𝑚𝑘 ] = 𝑒 𝑗
2𝜋
𝜆
(𝜃 (𝑚𝑘− 1

2𝜃𝑧 ) )𝑡0 [𝑚𝑘 − 𝜃𝑧]. The wavefront 𝑡0 (·) is propa-
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gated from the fully-open aperture, 𝑡0 (𝑥) = 𝑒 𝑗𝜆𝑧

𝑗𝜆𝑧

∫ +∞
−∞ 1 ·𝑒 𝑗 𝑘

2𝑧 (𝑥−𝜉 )
2
𝑑𝜉 = 𝑐0, and is thus a constant. We can

simplify the expression for 𝜙 [𝑚𝑘 ] as

𝜙 [𝑚𝑘 ] =
𝑐0

∑
𝜃 𝑢
∗
0 [𝑚𝑘 − 𝜃𝑧]

∥𝑢0 [𝑚𝑘 − 𝜃𝑧] ∥22
. (4.16)

The numerator of 𝜙 [𝑚] can be recognized as a convolution between 𝑢∗0 [𝑚] and a rectangular window

running from 𝜃min𝑧 to 𝜃max𝑧, and the denominator is a normalization term. The periodic pixel tiling on a

display panel produces a peroidic wavefront 𝑢∗0 [𝑚] with a period of pixel pitch 𝑝 . When the rectangular

window is significantly larger than the period of 𝑢∗𝑜 [𝑚], (𝜃max − 𝜃min)𝑧 = 𝜃𝑧 + 𝑛𝑝 , where 𝑛 ∈ N and

𝜃𝑧 < 𝑝 , ∑︁𝜃max

𝜃=𝜃min
𝑢∗0 [𝑚𝑘 − 𝜃𝑧] =

∑︁𝜃min+𝜃
𝜃=𝜃min

𝑢∗0 [𝑚𝑘 − 𝜃𝑧] + 𝑛𝑐𝑝 , (4.17)

where 𝑐𝑝 =
∑𝑝

𝑚=0 𝑢
∗
0 [𝑚] is the summation of𝑢∗0 over one period. Since 𝑛𝑐𝑝 ≫

∑𝜃min+𝜃
𝜃=𝜃min

𝑢∗0 [𝑚𝑘 −𝜃𝑧], (4.17)

is dominated by a constant term. Thus, 𝜙 [𝑚] is approximately a constant function.

Further, let us introduce a distance 𝑧1 between the phase mask and lens, as is shown in scenario (c)

in Figure 4.20. It is easy to see that varying distance 𝑧1 has no effect on the PSFs, and thus the same

conclusion holds. ■

Implication. The optimal phase mask that can be inserted a short distance away from the display panel

is approximately a constant. Any other phase masks can only deviate wavefronts from that of an ideal

camera, making the PSFs formed on the sensor less desired.



5Spatially-Varying Gain and Binning

Pixels in image sensors have progressively become smaller, driven by the goal of producing higher-

resolution imagery. However, ceteris paribus, a smaller pixel accumulates less light, making image qual-

ity worse. This interplay of resolution, noise and the dynamic range of the sensor and their impact on

the eventual quality of acquired imagery is a fundamental concept in photography. In this chapter, we

propose spatially-varying gain and binning to enhance the noise performance and dynamic range of im-

age sensors. First, we show that by varying gain spatially to local scene brightness, the read noise can be

made negligible, and the dynamic range of a sensor is expanded by an order of magnitude. Second, we

propose a simple analysis to find a binning size that best balances resolution and noise for a given light

level; this analysis predicts a spatially-varying binning strategy, again based on local scene brightness,

to effectively increase the overall signal-to-noise ratio. We discuss analog and digital binning modes

and, perhaps surprisingly, show that digital binning outperforms its analog counterparts when a larger

gain is allowed. Finally, we demonstrate that combining spatially-varying gain and binning in various

applications, including high dynamic range imaging, vignetting, and lens distortion.

5.1 Introduction

Noise and resolution are central to an image sensor, affecting the quality of the photographs acquired

by it and the flavor of algorithmic post-processing required. The importance of these two factors is

readily seen across a wide game: from classic problems such as denoising and super-resolution to more

modern ones pertaining to (high) dynamic range. All of these challenges are routinely encountered

and addressed, to some extent, every time a photograph is acquired. Hence, advancing the design of

image sensors—the premise of this work—to combat noise and resolution can have an outsized impact

on photography as well as the myriad set of applications that benefit from visual imagery.

At capture time, a sensor and its associated electronics do offer choices to a photographer to con-
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Photo-
diodes

A/D
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amplification / binning

Post-
processing

Const gain / No bin. Varying gain / No bin.  (Ours)Const gain / Varying bin. (Ours)

Conventional Proposed vary. gain Proposed vary. binning

Figure 5.1: Overview of the proposed spatially-varying readout techniques. The upper figure is an

illustration of the proposed spatially-varying readout techniques. The lower figures are captured by BFS-

U3-200S6C machine vision camera and denoised by SOTA transformer-based method Restormer [Zamir

et al., 2022]. Note: We kindly request readers to use Adobe Acrobat Reader to interact with

the clickable buttons. Conventional sensor uses a constant gain and no binning. Clicking between

conventional and the proposed spatially-varying gain, proposed readout strategy produces much more

details. Clicking between conventional and the proposed spatially-varying binning, proposed retains

better contrast due to higher signal-to-noise ratio.
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trol noise and resolution; this comes in the form of gain (or ISO) and binning. Gain refers to a pre-

amplification of the signal before readout. Using a high gain, for example, to amplify a weak signal

before digitization helps in suppressing the effects of quantization. However, a large gain also sup-

presses read noise, a dominant source of noise that is caused by electronics in the sensor. This improves

quality in the dark regions as they are read noise dominated. However, maxing out the gain for dark

regions would end up saturating the bright regions in the same scene, limiting the use of an extremely

large gain. Binning, on the other hand, involves adding the charge at neighboring pixels to increase

signal levels. Photon noise depends on light levels, and increasing light levels by binning increases the

signal-to-noise ratio (SNR). However, binning produces larger pixels; applying the same binning size to

the entire sensor would unnecessarily sacrifice fine details in the bright regions that are already resolved

in high SNRs.

This chapter makes the argument for novel capabilities in image sensors in the form of spatially-

varying and scene adaptive gain and binning. At its simplest incarnation, imagine if we had a sensor

which at readout allows for each patch to be readout with a different gain and binning. The argument

for a spatially-varying gain is immediately evident since, for each patch, we can select the largest gain

that avoids saturation for the pixels within. Since dynamic range observed in a patch is bound to be

significantly smaller than that observed in the entire image, the darkest patches will benefit from using

the highest gain offered by the imager without risking saturation at brighter regions. Effectively, this

expands the dynamic range of the sensor by reducing the noise floor. However, this will require some

knowledge of the bright and dark patches in the scene, which we can obtain from a low-resolution

snapshot. We also discuss a single-shot variant that implements a per-pixel spatially-varying gain, using

the intensity observed at a previously readout pixel.

Spatially-varying binning poses a different question: can binning, which is explicitly a loss of res-

olution, ever improve the quality of the acquired photograph? To answer this question, we develop a

simple theory that, given the light level of the scene, analyzes the optimal binning size that resolves

features in the photograph. Surprisingly, a larger binning in dark regions gives better resolution, since

our ability to resolve details is also strongly dependent on noise [Treibitz and Schechner, 2012]. We also

analyze three binning modes: analog additive, analog average, and digital binning. We also show that

digital binning can achieve better performance than both analog binning modes, when a larger gain is

allowed for.

Finally, we combine spatially-varying gain and binning to reduce both read and photon noise for

high dynamic range imaging, vignetting, and spatially-varying lens distortion. Figure 5.1 shows an

example of the benefits to be derived using our proposed techniques.
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Contributions. This chapter revisits concepts of noise, resolution, and dynamic range for image sen-

sors, through the mindset of rethinking gain and binning.

• Spatially-varying gain. We propose spatially-varying gain that adapts to local scene brightness, which

significantly reduces read noise for dark regions and expands sensor dynamic range.

• Spatially-varying binning. We establish an analysis that maps light levels to optimal binning sizes and

apply it to spatially-varying binning, thereby achieving better noise-resolution tradeoffs.

• Applications. Proposed techniques show significant improvement in noise performance for high dy-

namic range imaging, vignetting, and lens distortion.

Limitations. While the proposed ROI-based techniques are relatively straight-forward to implement,

per-pixel varying gain requires a modification to the readout circuits, capabilities that we are yet to

implement in hardware. There is an inherent risk: changing readout circuitry could increase read noise,

which might annul the improvements in the noise performance predicted by these emulations.

Impact. Our work looks into addressing the conflict between resolution, noise, and dynamic range for

sensors. While increasing dynamic range for brighter parts of the scene has been studied extensively,

there are few techniques that address noise floor, the limiting factor for darker regions. We show that

applying spatially-varying gain, the sensor dynamic range can be expanded by an order of magnitude

and resolving more signals towards the low light end. Our work also provides a way to select binning,

to tradeoff resolution and noise, for general photography.

5.2 Related Work

This work touches upon noise and resolution which has been studied extensively in imaging and vision.

Noise Analysis. Early work including Clark [2016] and Healey and Kondepudy [1994] look at models

for understanding noise in image sensors. Photon noise is caused due to randomness in photon arrivals

at the sensor, and can be modeled as being Poisson distributed. Read noise, caused by voltage fluctu-

ations in readout circuitry, is introduced at both pre- and post-amplifier stages. Hasinoff et al. [2010]

provide a detailed model of read noise and the role of sensor gain in the context of high dynamic range

(HDR) photography. They, and others [Martinec, 2008], point out how pre-amplifier read noise is often

significantly smaller than its post-amplifier counterpart . This suggests using a larger gain to signifi-

cantly suppress post-amplifier read noise. Noise and dynamic range are intricately coupled. However,
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the majority of computational cameras devoted to HDR imaging [Narasimhan and Nayar, 2005, Nayar

et al., 2004, Sun et al., 2020] focus on enhancing range at the brighter end of the light levels; this is rel-

atively easier as it involves blocking light. A notable exception is a recent sensor [Sony, 2018] that uses

microlensets of different sizes to redistribute light, providing an assorted pixel-like design, that does

increase light levels at some pixels without using increased exposure times. Outside of this, there are

few techniques that suppress the noise floor to enhance darker regions of the photograph—the premise

of this work.

Spatially-varying gain. Hajsharif et al. [2014] propose a sensor where the gain is varied across pixels,

with a spatial tiling that is pre-determined; for example, alternative rows of the sensor have gains of 1×

or 16×, respectively. However, the gain pattern is fixed, and not adaptive to the specifics of the scene.

To adapt the multiplexing patterns to different scenes, Qu et al. [2024] propose an enumeration method

that selects the best gain and exposure pattern according to a pilot shot of the scene. Although scene

adaptive, thismethod still uses a global multiplexing pattern for the entire image, resulting in an inherent

loss of resolution at the brightest and darkest pixels. In contrast, our approach aims to avoids the loss

of resolution by applying locally varying gain and binning patterns.

Pixel binning. Zhang et al. [2018b] propose a new pixel binning pattern for color sensors that min-

imizes the binning artifacts. An extension pattern design equals to a sensor interlacing original pixels

with super-pixels binned from four neighbouring pixels. Jin and Hirakawa [2012] analyze the analog

additive binning on color sensors and design a specialized demosaic algorithm to suppress the binning

artifacts. However, these techniques cannot adaptive to the local scene brightness.

Noise and resolution. The idea that noise influences resolution has been studied formally in prior

work. Treibitz and Schechner [2012] look at this interplay in the context of imaging in fog, showing how

resolution loss happens not just due to loss of contrast in fog, but also due to sensor noise. We borrow

the same formalism, but instead look at pixellation in place of fog. This requires certain modifications

to the underlying theory, based on frequency domain methods, where the effect of pixellation and noise

are readily understood.
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5.3 Noise in Image Sensors

Noise in image sensors mainly consists of three types: photon noise, read noise, and dark current. The

measured image 𝑖 can be formed as:

𝑖 = Φ{𝑔 · (𝑙 + 𝑛𝐷 + 𝑛𝑝𝑟𝑒 ) + 𝑛𝑝𝑜𝑠𝑡 } + 𝑖0, 𝑙 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑙∗). (5.1)

Here, 𝑙 is the measured photon counts and follows a Poisson distribution with mean and variance as the

expected photon arrival within the exposure time, 𝑙∗. We also assume that the sensor has a quantum

efficiency of one; alternatively, we can replace the average photon arrivals with the average photo-

electron arrivals, and absorb the quantum efficiency into 𝑙∗. The term 𝑛𝐷 denotes the dark current and

scales linearly with exposure time and temperature. Since we discuss photography with an exposure

time of up to hundreds of milliseconds, the dark current is negligible. Finally, 𝑛𝑝𝑟𝑒 and 𝑛𝑝𝑜𝑠𝑡 are pre- and

post-amplifier read noise. Both are signal-independent and follow Gaussian distributions with a mean

of zero and variance of 𝜎𝑝𝑟𝑒 and 𝜎𝑝𝑜𝑠𝑡 . Note that for most sensors, 𝜎𝑝𝑜𝑠𝑡 is one or two magnitudes larger

than 𝜎𝑝𝑟𝑒 , and thus post-amplifier read noise is much more significant than pre-amplifier read noise. 𝑔

is the analog gain. It usually ranges from one to hundreds. Φ denotes the analog-to-digital conversion

(ADC). Since most sensors have a bit depth higher than their dynamic range, we can safely assume that

the ADC noise is small. 𝑖0 is the black level.

With the abovementioned assumption, we can simplify the noise model and estimate photon counts

from the noisy digital image,

𝑙 = Φ−1 (𝑖 − 𝑖0)/𝑔 = 𝑙 + 𝑛𝑝𝑟𝑒 + 𝑛𝑝𝑜𝑠𝑡/𝑔. (5.2)

𝑙 has an expectation of 𝑙∗ and a total variance of 𝑙∗ + 𝜎2𝑝𝑟𝑒 + 𝜎2𝑝𝑜𝑠𝑡/𝑔2. And SNR equals to 𝑙∗/
√︃
𝑙∗ + 𝜎2𝑝𝑟𝑒 + 𝜎2𝑝𝑜𝑠𝑡/𝑔2.

We can draw two key insights from the noise model.

• Constant gain. A large gain 𝑔 can largely reduce the post-amplifier read noise term 𝜎2𝑝𝑜𝑠𝑡/𝑔2. Since

𝜎2𝑝𝑟𝑒 is much smaller than 𝜎2𝑝𝑜𝑠𝑡 , both read noises can be suppressed. This largely benefits low-light

photography where read noise standard deviation is at a similar scale as the signal 𝑙∗. As a conse-

quence, photon noise becomes the dominant source of noise for all practical light levels. However, for

a scene with a large dynamic range, increasing gain would saturate the bright regions, which limits

the choice of a large gain.

• Constant binning. Binning neighboring pixels together increases SNR. Averaging 𝑁 pixels results in

an expectation of 𝑙∗ and a standard deviation of
√︁
𝑙∗/𝑁 , considering 𝑙∗ ≫ 𝜎2𝑝𝑟𝑒 + 𝜎2𝑝𝑜𝑠𝑡/𝑔2. Thus the
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(a)ROI-based gain map (b) Per-pixel gain map and its implementation
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(c) Per-pixel gain saturation map

Figure 5.2: Implementation of spatially-varying gain. (a) ROI-based implementation first fragments

the image into multiple ROIs and then sets a gain for each ROI based on snapshot light levels. (b) per-

pixel implementation adaptively sets gain according to the readout of the previous pixel. Black dots in

(c) show saturated pixels with per-pixel implementation. Only around 3 % of pixel saturates.

overall SNR is increased from
√
𝑙∗ to

√
𝑁𝑙∗. However, binning comes with a side effect of pixelation

and loss of resolution. The binning size 𝑁 that produces the highest SNR for the low-light regions

could sacrifice fine details in the bright regions.

Overview. We propose spatially-varying gain and binning to overcome read- and photon-noise limi-

tations, and expand the dynamic range of a sensor. In section 5.4, we show that setting varying gain for

varying signal levels in a single shot effectively reduces the read noise for dark scenes without saturat-

ing bright regions. In section 5.5, we propose a spatially-varying binning strategy, where pixel binning

size is decided by the scene light level.

5.4 Spatially-Varying Gain

We propose to apply a spatially-varying gain, and discuss its ability to reduce read noise and expand

dynamic range, as well as approaches for implementation.

Choice of gain. Given an estimated scene light level 𝑙,E(𝑙) = 𝑙∗, we aim to find the largest gain such

that the amplified signal 𝑔𝑙 saturates with a small probability. We adopt the Gaussian-Heteroskedastic

noise model [Foi et al., 2008] and approximate the amplified signal with a Gaussian distribution,

𝑔 · (𝑙 + 𝑛𝑝𝑟𝑒 ) + 𝑛𝑝𝑜𝑠𝑡 ∼ N(𝑔𝑙, 𝑔2𝑙 + 𝑔2𝜎2𝑝𝑟𝑒 + 𝜎2𝑝𝑜𝑠𝑡 ).

Note that 𝑔𝑙 is intended to be close to well-capacity 𝑙𝑤𝑐 and is much larger than the read noise variances,

thus the total variance can be further simplified to 𝑔2𝑙 . To make the probability of saturation small, we
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set a gain value 𝑔 that satisfied

𝑙𝑤𝑐 ≈ 𝑔𝑙 + 𝜂𝑔
√︁
𝑙 . (5.3)

Here, when the parameter 𝜂 = 2, the pixel saturates with a probability of 2.2%.

5.4.1 Design of spatially-varying gain

We provide two strategies for design for spatially-varying gain.

Two-shot ROI-based strategy. We first capture a noisy snapshot using constant gain. We fragment

the snapshot into multiple region-of-interests (ROIs), so that each ROI has a smaller dynamic range,

and compute the optimal gain for each ROI. The computed gain map is used to inform the subsequent

capture and readout. The advance of ROI-based methods is that it only requires a minimal change to

today’s readout circuitry in the form of being able to select multiple ROIs, instead of one. However, it

requires two images, leading to potential of motion-related artifacts (although their effects are not in

the form of blur as we discuss later).

Single-shot per-pixel strategy. The per-pixel strategy sets gain adaptively during readout and only

requires a single shot. Since natural images are typically piecewise smooth, we assume the light level of

one pixel is similar to its neighbors. Therefore, we use the readout value of one pixel to set the gain for

the subsequent pixel (see fig. 5.2(b)). Specifically, from the readout value and gain of the 𝑘-th pixel, we

estimate its light level 𝑙𝑘 , and use 𝑙𝑘 as an approximate estimate for the next pixel’s light level, �̂�𝑘+1 ≈ 𝑙𝑘 .

By substituting �̂�𝑘+1 into eq. (5.3), we obtain the gain𝑔𝑘+1 for (𝑘+1)-th pixel and set it in the ADC circuits

for readout. When 𝑘−th pixel saturates, we reset 𝑔𝑘+1 = 1. Emperically, we set 𝜂 = 4 and only around

3 % of pixels saturates in the captured image, as shown in Fig. 5.2(c).

5.4.2 Improving dynamic range in a single-shot

Spatially-varying gain expands the dynamic range of a sensor by one or two magnitudes within a sin-

gle exposure. This is because the dynamic range of a sensor is typically decided by the ratio of its

well-capacity and read noise floor, 𝑙𝑤𝑐/
√︃
𝜎2𝑝𝑟𝑒 + 𝜎2𝑝𝑜𝑠𝑡/𝑔2. To capture a high dynamic range scene, a con-

ventional sensor with a constant gain is limited to use a small 𝑔 to avoid saturating the bright objects,

and the variance of post-amplifier read noise is much larger than that of pre-amplifier read noise, thus

𝜎2𝑝𝑜𝑠𝑡/𝑔2 ≫ 𝜎2𝑝𝑟𝑒 and the dynamic range of a conventional sensor is approximately 𝑙𝑤𝑐/𝜎𝑝𝑜𝑠𝑡 . In contrast,

the proposed spatially-varying gain uses large gain 𝑔 to capture dark regions, effectively reducing post-

amplifier read noise 𝜎2𝑝𝑜𝑠𝑡/𝑔2 to negligible, 𝜎2𝑝𝑜𝑠𝑡/𝑔2 ≪ 𝜎2𝑝𝑟𝑒 , and the resulting dynamic range becomes
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𝑙𝑤𝑐/𝜎𝑝𝑟𝑒 . Moreover, spatially-varying gain effectively reduces the read noise and leaves photon noise

the bottleneck of image quality. Next, we will look into reducing photon and read noise with a proposed

technique, spatially-varying binning.

5.5 Spatially-Varying Binning

Small pixels gather less lights, and one way to increase light levels is to bin pixels. This raises the fol-

lowing question: what is the optimal binning size that maximizes image quality? We show this optimal

binning is tightly coupled with scene light levels. This is because effective resolution increases as pixel

gets smaller, but decreases with increasing noise levels—a side-effect of small pixels—indicating a sweet

spot that best trades off resolution and noise.

5.5.1 Analysis of the optimal pixel pitch

Given a scene light level, what is the optimal pixel size that achieves the highest effective resolution?

We define effective resolution as the frequency whose ratio between the noise-free signal contrast and

the measured noise standard deviation is greater than a predefined threshold SNR𝑡 . The resolution with

SNR equals SNR𝑡 is the highest effective resolution, and frequencies smaller than it are all effective.

We characterize scene contents of various feature sizes by examining sinusoidal signals with varying

frequencies. Consider a camera with an ideal lens and a sensor with a pixel pitch 𝑝 µm. The measured

signal can be modeled as a convolution between the signal and a box function induced by the pixel size.

This models the expected noise-free signal measurement by incorporating the blurring effect of pixel

pitch. The contrast of the noise-free measurement of a sinusoid with frequency 𝑓0 and a light level of 𝑙0

photons per unit area is,

𝑐 (𝑓0; 𝑙0, 𝑝) = |max 𝑙∗ −min 𝑙∗ | = 𝑙0𝑝2
𝑠𝑖𝑛(𝜋𝑝𝑓0)

𝜋 𝑓0
. (5.4)

We refer readers to the appendix for detailed derivation. We plug in the expected signal 𝑙∗ to the noise

model shown in eq. (5.1) and obtain the noisy measurements. The total noise variance is,

𝜎 (𝑓0; 𝑙0, 𝑝) =
√︃
𝜎2𝑝𝑟𝑒 + 𝜎2𝑝𝑜𝑠𝑡/𝑔2 + 𝑙0𝑝2/2, (5.5)

where read noise is independent of pixel size, and shot noise variance increases proportionally to pixel

area 𝑝2. With a specified threshold SNR𝑡 , we can find the cutoff frequency 𝑓cutoff and all features below

𝑓cutoff are considered resolved.
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Figure 5.3: Analysis of optimal binning. Left figure shows the signal contrast, noise floor, and cutoff

frequencies for pixel pitches from 0.5 µm to 2.0 µm under a fixed light condition. Right figure shows

functions that map scene light levels to optimal pixel sizes under the required SNR threshold.

Fig. 5.3(a) shows one set of signal and noise curves for pitch 𝑝0 and at a given light level 𝑙0. Consid-

ering SNR𝑡 = 1, the two curves intersects at the cut-off frequency 𝑓cutoff (𝑙0, 𝑝0). This means that given

light level 𝑙0, a sensor with pixel pitch 𝑝0 can resolve features with maximum frequency 𝑓cutoff (𝑙0, 𝑝0). As

shown in fig. 5.3(b), we analyze for varying pixel pitches, from 0.5 µm to 2.0 µm, given the same light

level 𝑙0, and find their cutoff frequency 𝑓cutoff (𝑙0, 𝑝). Based on (b), we obtain the pixel and its effective

resolution at light level 𝑙0, which is shown as the blur curve in (c), and find out the optimal pitch for 𝑙0,

𝑝∗ (𝑙0) = argmax𝑝 𝑓cutoff (𝑙0, 𝑝). We repeat this analysis for varying light levels from extremely dark to

bright. As shown in fig. 5.3(d), this allows us to analyze the optimal pixel pitch that achieves the high-

est effective resolution for each scene light level. Note that the optimal pixel size is a function of light

level, and decreases as the scene gets brighter. This confirms the intuition that small pixels suit bright

scenes and large pixels suit dark scenes. The SNR threshold SNR𝑡 is a hyperparameter and is determined

empirically by examining a set of measured image quality. We use SNR𝑡 = 4 for all our experiments.

To evaluate the effectiveness of our binning theory, we simulate a texture patch captured under

various light conditions and binning sizes, as shown in fig. 5.4(a). Under most light conditions, the

predicted binning sizes (black boxes) match the one with best image quality (blue box) indicated by

LPIPS scores [Zhang et al., 2018a].

Constrasts versus SNR. Conventional MTF computes the degraded contrasts compared to the orig-

inal contrast with varying feature sizes and the contrast is typically defined as 𝐼max−𝐼min
𝐼max+𝐼min

. This typically

assumes noise-free signals. With the presence of noise, the intuition is that it becomes harder to differ-

entiate the peaks and valleys in the signal. However, conventional contrasts actually become larger on

noisy signals, since 𝐼max is larger than clean 𝐼 ∗max and 𝐼min is smaller than clean 𝐼 ∗min. This clearly counters
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Figure 5.4: Optimal bin sizes under different light levels. (a) shows the effect of increasing bin sizes

under from dim light condition to sufficient light. All are analog additive binning for unit pixel size

0.5 µm. Black box shows the predicted optimal binning, and blue box shows the binning size with best

LPIPS score [Zhang et al., 2018a]. (b) compares analog and digital binning with small and large gain

under dim light conditions.

our intuition. What notion should we use to capture this intuition?

If we view noisy pixels at the peak and the valley as two classes, and the pixel values follow two

Gaussian distributions N(𝐼 ∗max, 𝜎
2) and N(𝐼 ∗min, 𝜎

2). We look into existing metrics that capture the di-

vergence of the two.

• KL divergence. We use Kullback–Leibler divergence to capture the difference between the two distri-

butions, 𝐷𝐾𝐿 (𝑖1 | |𝑖0) = 1
2
(𝐼 ∗max−𝐼 ∗min )

2

𝜎2 . Note that as noise standard deviation 𝜎 gets larger, KL divergence

becomes smaller, successfully capturing the reduced difference between peaks and valleys.

• Fisher linear discriminant rule. Similarly, we can use Fisher linear discriminant rule to measure

the intra- and inter-distribution variance, 𝑆𝑆 =
𝑆between
𝑆within

= 1
2
(𝐼 ∗max−𝐼 ∗min )

2

𝜎2 . This notion also successfully

captures our intuition, since SS is inversely proportional to noise variance 𝜎2.

Interestingly, both KL divergence and Fisher linear discriminant rule are equivalent to the signal-to-noise

ratio in our case. Therefore, we use SNR as a tool to analyze effective resolution for noisy measurements

and showed the above analysis.
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Table 5.1: A summary of binningmodes. Assume equal weights for neighboring pixels and normalize

the combined signal to the same level.

Binning modes Imaging model 𝑙 Total noise variance

No binning 𝑙 + 𝑛𝑝𝑟𝑒 +
𝑛𝑝𝑜𝑠𝑡

𝑔
𝑙∗ + 𝜎2

𝑝𝑟𝑒 +
𝜎2
𝑝𝑜𝑠𝑡

𝑔2

Additive binning 1
𝑁

∑𝑁
𝑖=1{𝑙𝑖 + 𝑛𝑖,𝑝𝑟𝑒 } +

𝑛𝑝𝑜𝑠𝑡

𝑁𝑔
𝑙∗
𝑁
+

𝜎2
𝑝𝑟𝑒

𝑁
+

𝜎2
𝑝𝑜𝑠𝑡

𝑁 2𝑔2

Average binning 1
𝑁

∑𝑁
𝑖=1{𝑙𝑖 + 𝑛𝑖,𝑝𝑟𝑒 } +

𝑛𝑝𝑜𝑠𝑡

𝑔
𝑙∗
𝑁
+

𝜎2
𝑝𝑟𝑒

𝑁
+

𝜎2
𝑝𝑜𝑠𝑡

𝑔2

Digital binning 1
𝑁

∑𝑁
𝑖=1{𝑙𝑖 + 𝑛𝑖,𝑝𝑟𝑒 +

𝑛𝑖,𝑝𝑜𝑠𝑡

𝑔
} 𝑙∗

𝑁
+

𝜎2
𝑝𝑟𝑒

𝑁
+

𝜎2
𝑝𝑜𝑠𝑡

𝑁𝑔2

5.5.2 A sensor with varying pixel pitches through binning

We implement the optimal pixel pitches through pixel binning. We discuss three binning types that are

commonly seen in sensors — analog additive, analog average, and digital binning.

• Analog additive binning. Both analog binning modes are conducted on the analog signals. After photo-

electron counts are converted into analog voltages, the sensor sum up the analog voltage of 𝑁 neigh-

boring pixels.

• Analog average binning. The sensor weighted average the analog voltages of 𝑁 neighbouring pixels.

• Digital binning. Signals are binned after read out as digital values.

We summarize the noise models and total noise variances of all binning modes in table 5.1. All three

binning modes reduce the photon noise by 𝑁 times. At first sight, analog additive binning reduces the

most read noise, but when we take different gains into account, digital binning becomes the best. This

interesting observation comes from the fact that digital binning does not raise the analog voltage while

additive binning scales voltage up by around 𝑁 times. To avoid saturation, additive binning uses a gain

that is around𝑁 times smaller than that of digital binning. With𝑔 = 𝑔/𝑁 , read noise variance of additive

binning becomes 𝜎2𝑝𝑜𝑠𝑡/(𝑁 2𝑔2) = 𝜎2𝑝𝑜𝑠𝑡/𝑔2, and is larger than that of digital binning.

Fig. 5.4(b) compares analog and digital binning under different gain settings. When gain is restricted

to be low, spatially-varying analog binning can significantly increase the SNR for dark patches, where as

digital binning suffers to recover details from noise. However, if a larger gain is allowed, digital binning

is superior to analog binning as it reduce noise without sacrificing resolution.
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Figure 5.5: Pre- and post-amplifier read noise calibration. 𝑥-axis is gain and𝑦-axis is the total noise

variance. Base ISOs are normalized to 1.

Table 5.2: A summary of sensors. 𝜎𝑝𝑟𝑒 and 𝜎𝑝𝑜𝑠𝑡 are in analog digit unit.

Camera Type Max. Gain Binning 𝜎𝑝𝑟𝑒 𝜎𝑝𝑜𝑠𝑡

Nikon Z5 Mirrorless ISO 51200 — 0.11 3.53

Nexus 6P Smartphone ISO 7656 — 1.17 7.39

BFS-U3-200S6C Machine Vision 27 dB
1 × 1 0.46 2.27

2 × 2 (avg) 0.32 2.17

BFS-U3-16S2M Machine Vision 48 dB
1 × 1 0.52 4.55

2 × 2 (add) 0.23 1.47

5.6 Emulated Results on Real Hardware

Sensor Calibration. We calibrate and capture data with four cameras: Nikon Z5 (mirrorless cam-

era), Nexus 6P (smartphone main camera), FLIR BFS-U3-200S6C (machine vision with Bayer color filter

arrays), and FLIR BFS-U3-16S2M (machine vision monochrome). Table 5.2 summarizes their key specifi-

cations. We calibrate their pre- and post-amplifier read noise by closing the cap on sensors and capturing

dark noisy frames, and capturing images with varying gain. As shown in fig. 5.5, we fit a quadratic curve

between 𝜎2 and 𝑔 and estimate the coefficients 𝜎𝑝𝑟𝑒 and 𝜎𝑝𝑜𝑠𝑡 . As the two machine vision cameras also

support analog binning, we repeat the calibration with analog binning. We summarize the calibrated

noise statistics in Table 5.2. We can see that post-amplifier read noise is usually around one magnitude

larger than pre-amplifier noise.
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HDR scene Snapshot + 
Gain map

Real captured by sweeping 
ROIs

Emulated from gain stack Intensity histogram of 
yellow patches

Emulated

Real captured

Figure 5.6: Emulator versus real-capture by windowing. All images are captured by BFS-U3-200S6C

camera. The emulated image is composed from a real captured gain stack. Real capture is obtained by

sequentially setting ROIs using low-level API, integrating, and read out with the optimal gain.

Emulator. We emulate spatially-varying gain and binning by capturing a gain stack, sweeping from

the lowest to highest gain settings, computing gain maps and binning maps based on the lowest gain

snapshots, and compositing ROIs from corresponding bursts into one image. For mirrorless and smart-

phone cameras, we only capture one gain stack, and for machine vision cameras, we capture gain stacks

with and without analog binning.

Note that both machine vision cameras supports random access to region-of-interests (ROIs), and

allow user to specify gain and binning for each ROI. We can thus sequentially set ROI and readout each

ROI using optimized parameters. In fig. 5.6, we show that for ROI-based spatially-varying techniques,

emulating from a gain stack produce the same noise statistics as real-capture through windowing.

Effect of spatially-varying gain. Shown in fig. 5.7, we compare constant gain, alternating gain [Ha-

jsharif et al., 2014], and the proposed spatially-varying gain on Nikon Z5 and Nexus 6P. For each scene

and from top to bottom, we show gain map, one bright patch, and one dark patch. When captured with

lowest ISO, dark regions are excessively noisy and the details are largely degraded by noise. When cap-

tured with highest ISO, read noise is suppressed, but the bright regions are over-exposed. Alternating

ISOs emulates a sensor with lowest and highest ISOs every alternating rows [Hajsharif et al., 2014].

However, their vertical resolution is reduced by half, since only half rows are valid for the bright re-

gions and extremely dark regions. Finally, the proposed spatially-varying gain captures details in the

bright region without sacrificing resolution, and effectively reduce sensor noise in the dark regions. This

reflects an expansion of the sensor dynamic range without reducing resolution.

Effect of spatially-varying binning. We evaluate the effect of spatially varying binning on BFS-U3-

16S2M monochrome camera and BFS-U3-200S6C color camera. As shown in the first two columns in
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Lowest
gain

Captured image Highest
gain

ROI-based
vary. (ours)

Per-pixel
vary. (ours)

Alternating
gains

Figure 5.7: Comparisons of gain modes in HDR. Upper figures are captured by Nikon Z5 and lower

by Nexus 6P. The lowest and highest ISOs for Nikon Z5 are 100 and 51200 and for Nexus 6P are 60 and

7656.

fig. 5.8, we capture HDR scenes with and without 2× 2 analog binning. Without binning, regions in the

dark are extremely noisy. With uniform analog binning, the noise is reduced, but it sacrifices the reso-

lution in the bright regions. For example, point lights appear square-ish in the upper example, and the

leaves appear blurry in the lower example. Compared with those without binning, our methods reduce

noise in the dark regions, and compared to those from uniform binning, ours retain appealing details in
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no binning uniform analog
binning (= 2)

vary. analog
binning (≤ 𝟐)

vary. digital
binning(≤ 𝟐)

vary. digital
binning*(≤ 𝟖)

(Upper) Outdoor lights
(Lower) Indoor toy house

1234

1234

Figure 5.8: Comparisons of binning modes in HDR. Upper is captured by BFS-U3-16S2M and lower

BFS-U3-200S6C. The first two columns are from off-the-shelf binning modes and the last three columns

are proposed spatially-varying binning. Since both cameras only support analog binning up to 2 × 2,

we demonstrate binning with larger sizes on digital binning. *The last column is digital binning under

varying gain.

the bright regions. With the same gain, digital binning is slightly worse than analog additive binning,

which confirms our analysis. Finally, we examine spatially-varying binning up to size eight, using digi-

tal binning since analog binning only supports up to size two; this achieves the best performance. This

suggests that when light conditions is extremely low, image sensors could benefit from analog additive

binning larger than two. If large gain is allowed, conducting digital binning would produce the best

quality.

Effect of post-processing. Fig. 5.9 compares images denoised by Restormer, a SOTA transformer-

based image restoration network [Zamir et al., 2022]. We use the pretrained "Real denoising" checkpoint

and denoise captured images with a patch size of 720 × 720 and an overlap of 32 pixels. The captured

images are demosaicked and gamma corrected before fed into the network. For spatially-varying binning

(up to 2 × 2 analog binning) images, we feed both the full resolution and downsampled images to the
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Conventional (captured)

Conventional (denoised) Vary. gain (denoised)

Vary. gain (captured) Conventional (captured)

Conventional (denoised) Vary. binning (denoised)

Vary. binning (captured)

Figure 5.9: Effect of transformer-based restoration networks. Left example is captured by Nikon

Z5 and right BFS-U3-200S6C. The upper row shows the captured image after demosaicking and gamma

correction, and the lower row shows the above images denoised by Restormer [Zamir et al., 2022]. (Left)

Compared to conventional sensor, the proposed spatially-varying gain recoversmuchmore object details

in the dark lighting; (Right) Compared to conventional, spatially-varying binning retains better contrast

and recovers sharper contours.

network, so that regions without binning and with binning are denoised separately, and then merge two

denoised copies according to the binning map.

Teaser. As shown in Figure 5.1, we capture with an BFS-U3-200S6C with no binning and constant

gain, with proposed varying gain, the proposed varying analog additive binning, and denoise all by

Restormer [Zamir et al., 2022]. The baseline image is extremely noisy, leaving the alphabets hard to tell

and hazing colors in the cropped patch. Adapting gain to local brightness can effectively reduce noise

and we can the details clearer. Applying varying binning reduces noise and improves the signal contrast

compared to baseline.

Application on vignetting and lens blur. Vignetting and spatially-varying blur is common in pho-

tography. We show that the proposed spatially-varying gain and binning can increase the noise perfor-

mance for vignetting and lens blur. As shown in fig. 5.10(a)(b), we pre-calibrated the vignetting map and

spatially-varying lens blur for BFS-U3-200S6C with an 8mm lens and fixed aperture 𝑓 /1.4. We compute

a gain map that is inversely proportional to vignetting and a binning map that bin 2× 2 pixels when the

PSFs are flat. We capture a scene shown in (e) and correct the intensity by inverting the vignetting map.

(f) shows zoom-patches for baseline no binning and constant gain and proposed spatially-varying gain

and binning. We can see that with the proposed technique, noise is reduced to a much smaller region
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(e) captured scene (f) zoom-in patches from (e)

(a) vignetting (b) PSFs 

(c) gain map (d) binning map

Baseline Ours

Figure 5.10: Proposed techniques for vignetting and lens blur. Images are captured by BFS-U3-

200S6C camera with an 8mm C-mount lens and 𝑓 /1.4 aperture.

Table 5.3: Tonemapping functions for each camera.

Camera Resolution ROI size Tonemap Figures

Nikon Z5 2640 × 3960 512 × 512 Farbman et al. [2008] Fig. 5.7 upper (2-3 row)

Nexus 6P 3024 × 4032 512 × 512 Farbman et al. [2008] Fig. 5.7 lower (2-3 row)

BFS-U3-200S6C 3648 × 5472 256 × 256
(50 · 𝑖 )1/2.2 Fig. 5.8 upper (2nd row)

(500 · 𝑖 )1/2.2 Fig. 5.8 upper (3rd row)

BFS-U3-16S2M 1080 × 1440 128 × 128
(50 · 𝑖 )1/2.2 Fig. 5.8 lower (2nd row)

(500 · 𝑖 )1/2.2 Fig. 5.8 lower (3rd row)

towards the edge.

Details about tonemapping used in the chapter As shown in table 5.3, we list the tonemapping

functions used in each figure. ForNikonZ5 andNexus 6P, we use built-inMatlab function tonemapfarbman [Farb-

man et al., 2008] with RangeCompression=0.2, Saturation=2.5. For machine vision cameras, we

use power functions. In zoomed-in patches, we magnify the intensities of dark patches by 500 times so

that the noise and details in the dark regions are more visible, and we only magnify bright patches by

50 to avoid saturation.



5.7. QUANTITATIVE RESULTS 95

Table 5.4: Quantitative results on simulated HDR scenes [Fairchild, 2008]. For each method and

each scene, we showworst-case SSIM (larger is better) and worst-case LPIPS [Zhang et al., 2018a] scores

(lower is better).

Scenes
const gain vary. gain const gain vary. gain

no bin. no bin. vary. bin vary. bin.

BarHarborSunrise.exr 0.03/ 1.47 0.07/ 1.29 0.14/ 1.14 0.24 / 0.97

BloomingGorse.exr 0.47/ 0.46 0.62/ 0.37 0.47/ 0.46 0.63 / 0.37

GoldenGate.exr 0.04/ 1.39 0.07/ 1.22 0.07/ 1.08 0.09 / 1.00

JesseBrownsCabin.exr 0.04/ 1.40 0.08/ 1.20 0.08/ 1.25 0.09 / 1.12

MirrorLake.exr 0.20/ 0.93 0.48/ 0.56 0.38/ 0.66 0.57 / 0.50

NiagaraFalls.exr 0.51/ 0.60 0.74/ 0.40 0.68/ 0.45 0.80 / 0.41

RedwoodSunset.exr 0.03/ 1.38 0.08/ 1.22 0.23/ 0.81 0.26 / 0.78

TunnelView.exr 0.40/ 0.57 0.61 / 0.38 0.50/ 0.47 0.61 / 0.36

WallDrug.exr 0.03/ 1.35 0.10/ 1.12 0.12/ 1.14 0.32 / 0.82

YosemiteFalls.exr 0.06/ 1.24 0.16/ 1.01 0.10/ 1.04 0.33 / 0.72

Average 0.18/ 1.08 0.30/ 0.88 0.28/ 0.85 0.39 / 0.71

5.7 Quantitative Results

In table 5.4, we compare conventional sensor with the proposed spatially-varying gain, spatially-varying

binning, and the combined. Quantitative metrics are computed on simulated images. We download

high-quality HDR images from Fairchild [2008] and simulate noisy captured images based on the noise

model in eq. (5.1). The simulated camera has a pixel pitch of 0.5 µm, full well capacity of 1000 𝑒− , pre-

and post-amplifier read noise of 𝜎𝑝𝑟𝑒 = 0.33𝑒−, 𝜎𝑝𝑜𝑠𝑡 = 3.31𝑒− . We set the black level to be 5% and read

out 12-bit images. We normalize the captured image such that the mean intensity equals to 0.05, and

gamma correct the normalized images with a power of 1/3.2. We use an ROI size of 128× 128. SNR𝑡 = 4

is used to decide the optimal binning. We compare the gamma corrected captured images with the

ground-truth ones, and compute LPIPS [Zhang et al., 2018a] and SSIM. We compute the metrics for each

ROI and take the worst-case performance. Numbers to the left of slash is SSIM and right is LPIPS. LPIPS

is smaller better and SSIM is larger better. We highlight the best SSIM and LPIPS using green and red

box for each scene. We see that the proposed spatially-varying gain and binning is significantly better

than conventional sensors.
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(a) Gain = 0dB (b) Gain = 27dB

(c) Gain = 0dB 
(used to compute gain map)

(d) Readout with ROI-based spatially-
varying gain

Processed from (d)

Merged from (a)(b)

Figure 5.11: Comparison betweenmulti-shot technique and ours. (Upper)Multi-shotmethod tends

to produce ghosting artifacts with the presence of dynamic objects. (Lower) The proposed spatially-

varying gain technique utilizes the first capture to determine gain map. The final capture is soley pro-

cessed from frame (d) by normalizing gains.

5.8 Discussion

We propose two novel readout techniques for image sensors: spatially-varying gain and binning that

adapt to the local scene brightness. The proposed techniques significantly improve the noise perfor-

mance of the captured images for low-light regions, thereby expanding the sensor dynamic range.

Comparison withmulti-shot techniques. There is a rich literature that captures high-quality HDR

scenes through exposure or gain bracketing [Hasinoff et al., 2010, Pérez-Pellitero et al., 2022]. However,

multi-shot techniques are sensitive to motion, and aligning dynamic objects across frames requires sig-

nificant computation in post-processing. In contrast, our spatially-varying techniques are more robust

for dynamic scenes. An example is shown in fig. 5.11. For a fair comparison, we capture two frames for

both methods. In the upper row, the multi-shot technique merges low- and high-gain frames through

post-processing, and is prone to produce ghosting artifacts. In contrast, our technique (lower row) uses

the first frame only to compute the gain map and guide the readout of the subsequent frame. Thereby,

ours is free of ghosting.
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What does it take to implement in hardware? First, the proposed ROI-based techniques are par-

tially implementable using off-the-shelf CMOS sensors [FLIR, [n.d.]] through windowing, as shown in

fig. 5.6. However, existing sensors reset the cycle of integration after each ROI readout, which could

lead to motion artifacts for dynamic scenes. To avoid exposing the sensor repeatly during readout, the

internal timing should restart integration only after all ROIs are sequentially read out. Second, imple-

menting the proposed per-pixel varying gain requires more engineering efforts as it requires a rapid

variable amplifier and additional circuitry to set gain based on previous readout. Previous works [Cui

et al., 2017, Lee et al., 2007] demonstrates ultra-wideband programmable variable gain amplifier. They

are controled by input signal and can reach a bandwith up to 900MHz, offering a promising solution.

Is analog binning really superior to digital? Prior works emphasize the advantage of analog bin-

ning over digital binning. Our analysis shows that this conclusion is arguable with the interplay of gain.

When the scene is dark and gain is restricted to a small value, analog binning is indeed better than

digital binning, by combining the signal levels to overcome read noise. However, when a larger gain is

allowed, either by the proposed spatially-varying gain or other dual ISO techniques, digital binning is

all you need to improve the noise performance.

Detailed derivation of optimal pixel pitch We characterize scene contents of various feature sizes

by examing sinusoidal signals with varying frequencies. Let us consider a scene of sinusoidal func-

tion that varies at frequency 𝑓0 cycles/mm in 𝑥−direction and constant in 𝑦-direction and has the peak

intensity of 𝑙0𝑒−/mm2 within the exposure time.

𝑖∗ (𝑥,𝑦; 𝑓0, 𝑙0) =
𝑙0

2
cos(2𝜋 𝑓0𝑥) +

𝑙0

2

Consider a camera with an ideal lens and a sensor with a pixel pitch 𝑝 µm. The measured signal can be

modeled as a convolution between the signal and a box function induced by the pixel size,

𝑙 (𝑥,𝑦; 𝑓0, 𝑙0, 𝑝) = 𝑖∗ (𝑥,𝑦; 𝑓0, 𝑙0) ∗ 𝑏
{
𝑥

𝑝
,
𝑦

𝑝

}
+ 𝑛𝑠ℎ𝑜𝑡 (𝑥,𝑦) + 𝑛𝑟𝑒𝑎𝑑 (𝑥,𝑦). (5.6)

The first part models the expected noise-free signal measurement by incorporating the blurring effect of

pixel pitch. We obtain the expression of the measured signal by taking the Fourier transform of 𝑖∗ and

𝑏, multiply them and taking inverse Fourier transform. The expression for noise-free component is,

𝑙∗ (𝑥,𝑦; 𝑓0, 𝑙0) =
𝑙0𝑝

2
sin(𝜋𝑝𝑓0)
𝜋 𝑓0

cos(2𝜋 𝑓0𝑥) +
𝑙0

2
𝑝2
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As −1 ≤ cos(2𝜋 𝑓0𝑥) ≤ 1, 𝑙∗ has a maximum and minimum intensity of,

max 𝑙∗ =
𝑙0𝑝

2
sin(𝜋𝑝𝑓0)
𝜋 𝑓0

+ 𝑙0
2
𝑝2

min 𝑙∗ = −𝑙0𝑝
2

sin(𝜋𝑝𝑓0)
𝜋 𝑓0

+ 𝑙0
2
𝑝2

The contrast of the noise-free signal is

𝑐 (𝑓0; 𝑙0, 𝑝) = |max 𝑙∗ −min 𝑙∗ | = 𝑙0𝑝2
𝑠𝑖𝑛(𝜋𝑝𝑓0)

𝜋 𝑓0
. (5.7)

Next, we examine the total noise variance. Note that we approximate the Poisson distributed shot noise

by Gaussian distribution 𝑛𝑠ℎ𝑜𝑡 (𝑥0, 𝑦0) ∼ N (0, 𝑙∗ (𝑥0, 𝑦0)) with a mean zero and variance of latent signal.

Interestingly, 𝑛𝑠ℎ𝑜𝑡 (𝑥0, 𝑦0), 𝑛𝑠ℎ𝑜𝑡 (𝑥0 +𝑇0, 𝑦0), ..., 𝑛𝑠ℎ𝑜𝑡 (𝑥0 + 𝑁𝑇0, 𝑦0), 𝑥0 ∈ [0,𝑇0), 𝑁 ∈ Z can be viewed as

iid samples of the same distribution N(0, 𝑙∗ (𝑥0, 𝑦0)), as the latent signal 𝑙∗ is a periodic function with

period 𝑇0, 𝑙∗ (𝑥0, 𝑦0) = 𝑙∗ (𝑥0 +𝑇0, 𝑦0) = ... = 𝑙∗ (𝑥0 + 𝑁𝑇0, 𝑦0), 𝑁 ∈ Z. Therefore, the combined variance of

𝑛𝑠ℎ𝑜𝑡 (𝑥,𝑦0)∀𝑥 ∈ [0,𝑇0) can be written as,

𝜎2
𝑠ℎ𝑜𝑡

=

∫ 𝑇0

𝑥=0
𝑉𝑎𝑟 (𝑛𝑠ℎ𝑜𝑡 (𝑥,𝑦0))

1
𝑇0
𝑑𝑥

=

∫ 𝑇0

𝑥=0
𝑙∗ (𝑥,𝑦0)

1
𝑇0
𝑑𝑥

=

∫ 𝑇0

𝑥=0

(
𝑙0𝑝

2
sin(𝜋𝑝𝑓0)
𝜋 𝑓0

cos(2𝜋 𝑓0𝑥) +
𝑙0

2
𝑝2

)
1
𝑇0
𝑑𝑥

=
𝑙0

2
𝑝2 .

𝑛𝑟𝑒𝑎𝑑 includes both pre- and post-amplifier read noise and follows a Gaussian distribution 𝑛𝑟𝑒𝑎𝑑 ∼

N(0, 𝜎2𝑝𝑟𝑒 + 𝜎2𝑝𝑜𝑠𝑡/𝑔2). Putting the combined variance of shot and read noise, we obtain the total noise

variance as the following,

𝜎2 (𝑓0; 𝑙0, 𝑝) = 𝜎2𝑝𝑟𝑒 + 𝜎2𝑝𝑜𝑠𝑡/𝑔2 + 𝑙0𝑝2/2, (5.8)

where read noise is independent of pixel size, and shot noise variance increase proportionally to pixel

area 𝑝2. Interestingly, the combined noise variance is independent of the underlying signal frequency

𝑓0.

With the noise-free signal contrast 𝑐 (·) and the combined noise standard deviation 𝜎 (·), we can find

out the cutoff frequency that has an SNR𝑡 for a given pixel pitch 𝑝 and at light level 𝑙0,

𝑓cutoff (𝑙0, 𝑝) = argmin
𝑓0

 𝑐 (𝑓0; 𝑙0, 𝑝)𝜎 (𝑓0; 𝑙0, 𝑝)
− SNR𝑡

. (5.9)



6Conclusion and Future Work

The past decade has seen rapid development and prevalence of mobile photography. Nowadays, mobile

device cameras have become an indispensible part of our daily life. How should we revolutionize the

camera to further push the limit of mobile photography? This thesis advances the camera design for

mobile devices from two distinct aspects. First, the introduction of under-display cameras redefine the

placement of a camera unit. UDCs doesn’t require any dedicated region on the display screen, therefore

is free to place anywhere under the screen. Recently, UDCs have been introduced to many state-of-the

art smarphone s and used as selfie cameras. It is also appealing to place UDCs in the center of the screen

so that the eye gazing is more natural in video conferencing. Apart from smartphones, UDCs can also be

placed in tablets, monitors, and laptops, enabling truly full-screen devices, and potentially in large TVs,

VR teleconferencing stations, and front-facing cameras in VR headsets in the future. Second, combating

noise has been a long-standing problem in computational imaging despite the continuous improve-

ment in CMOS manufacturing capability. We introduce novel scene adaptive techniques to improve

the noise performance of the cutting-edge sensors. The proposed techniques are not only applicable to

smartphone camera sensors but also conventional DSLR, mirrorless cameras, and research cameras. We

hope the proposed sensor designs could inspire more innovations in the space of computational sensors.

Lastly, the ideas proposed in this thesis can be naturally extended to new directions that worth looking

into in the future. We list some of these ideas in this section.

6.1 Future directions on Under-Display Cameras

6.1.1 Under-Display Cameras + 3D Imaging

UDCs don’t require dedicated screen space, thus the display quality is kept the same even with more

cameras beneath it. Placing multiple cameras under the screen can provide rich 3D information and

can largely benefits applications such as AR/VR teleconferencing. Apart from smartphone and tablets,
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under-display cameras are also particularly suitable for large screen devices such as televisions, VR

teleconferencing stations, and smart mirrors. As large screen devices are viewed from afar compared to

small screens and thus typically have lower pixel resolution. The large distance between display pixels

improves the conditioning of the diffractive blur and increase the light throughput, thus largely benefits

the quality of under-display cameras. Moreover, large screen sizes allow a much larger baseline for

multi-camera systems, thus offer more robust depth estimation.

More interestingly, different display openings can be designed for multiple UDCs such that the

point spread functions complement each other, producing a system more robust to inversion. A re-

cent work [Wang et al., 2024] proposes to use a pair of UDCs with one display rotated 45◦ from the

other and show significant improvements in image quality compared to the UDC with one display pat-

tern. Apart from hand-crafted operations such as rotation, the opening patterns of all UDCs can also be

solved through optimizing the overall image quality.

6.1.2 Under-Display Cameras + Lensless Imaging

Can we turn the entire region under the OLED display to a large imager? Accommodating an image

sensor as large as the entire screen would require innovative camera design as there lacks enough space

to place conventional compound lenses that focuses light to the sensor.

A rich literature of research on lensless imaging provides many inspirations. The OLED display can

be viewed as the attenuationmask on the lensless camera. Following similar ideas as in chapter 3, we can

optimize the OLED display layout such that the quality of the restored image is the maximized. Different

from BiDiScreen [Hirsch et al., 2009] that uses a LCD display, this camera can operate with OLED display

at the same time as OLED display doesn’t require a backlit panel and is partially transparent.

Alternatively, we can place a phase mask tightly against the display panel to form a coded aperture.

An intuitive phase mask profile is a lenslet array, where the lens pitch matches the display pixel size.

Therefore, the opening of each display pixel acts as the aperture of each lenslet. This effectively forms

a light field camera, where each image depicts a different viewpoint. Consider a display of 300 DPI and

a sensor pixel pitch of 0.5 µm. Each lenslet forms an image of a resolution of around 168× 168, a typical

trade-off between angular resolution and spatial resolution. And the challenge of building high quality

UDCs is converted from deblurring to super-resolving the low resolutional image.

Similar to the idea presented in chapter 4, we can optimize the height map of a phase mask such that

the point spread function is robust to deblurring. In addition to the image quality, we can optimize the

phase mask such that the point spread functions are distinct from each other at different depth, offering
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depth cues during reconstruction.

6.1.3 Under-Display Camera + Active Illumination

Lots of innovation in this thesis focus on display-camera systems, especially redesigning the shape of

display openings to improve camera performance. However, random pixel tiling compromises the dis-

play quality such as (chapter 3). This is because randomly flipping and rotating display pixels causes

randomness in RGB subpixels and results in color leaking artifacts. It suggests that we should not only

consider the shape of openings but also other light emitting units on the display. One promising ap-

proach is to jointly optimize display opening shape as well as display subpixel placement, such that

both the display quality and the camera image quality is maximized.

Up till now, we view the display as the effective aperture on the camera. An natural extended idea

is to use the display as an active light source to illuminate the target scene. Displaying known patterns

on the display can encode information in the captured image. For example, use the display as the light

source in photometric stereo for 3D reconstruction. We can jointly optimize the image used for display

as well as image reconstruction algorithms for the camera to achieve desired performance.

6.1.4 Under-Display Camera + Flare Removal

Flare cause apparent artifacts in under-display cameras. In a high dynamic range scene, a bright light

source produces a large diffractive blur pattern around it, occluding the textures in the surrounding dark

regions. Removing the diffractive pattern of the light source and recovering the details from its sur-

rounding regions becomes a very challenging task. Feng et al. [2021] incorporate saturation to the UDC

imaging model and use exposure stack to capture high dynamic range scenes. The proposed restoration

has less artifacts around the light source, but still struggles to recover clear details in the dark region

immediately around the light source.

Our analysis shows that it is the extremely low signal-to-noise ratio that hinders the restoration of

low light regions around the light source. Consider a high dynamic range scene spanning around 40 dB.

Assume that the flare produced by a bright light source has a signal level of around 1000 photonelectrons

and a background region of around 10 photonelectrons. The flare is photon-noise dominated and has

noise standard deviation of around 33 photonelectrons, which is much larger than the signal level of the

background regions. That is to say, the background regions has an extremely low signal-to-noise ratio

and thus the texture is very hard to recover from excessive noise. How to robustly recover the details

from the excessive noise with minimal hallucination is an open challenge.
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6.2 Minimizing Lens Components and Light Path

Another challenge in designing mobile device camera is that the thickness of mobile devices largely

constraints the focal length of the cameras. For example, a focal length equivalent to 200 mm telephoto

lens would require a light path of at least x in smartphone cameras, which is much longer than the

thickness of mobile devices.

Prior works propose various designs to accommodate the long focal length in thin devices. Periscopic

cameras use a 45◦ mirror the turn the optical axis so that its length is limited by the length of the device

instead of the thickness. Origami lens designs the profiles of two mirrors, so that the light bounces

multiple times before reaching the sensor, and therefore folds a long focal length to a thin device.

Can we utilize the vacant space inside the entire mobile device as space for light propagation? Fold-

ing the light path inside the entire space would significantly increase the effective length of light prop-

agation. One promising solution is to carefully design the profile and placement of mirrors or phase

masks, such that they guide light incident from the aperture to the sensor with as many bounces as

possible. This could be an interesting directions in mobile photography.

In additional to folding light path, reduce the size of compound lenses is also important when space

is limited. Metalenses offer an exciting opportunity to replace traditional compound lenses with a thin

phase masks with micron-scale thickness. Future work that focuses on improving image quality, field

of view, focal length using novel optics is an appealing direction.

6.3 More on Computational Sensors

6.3.1 Focal Plane Sensor Processors

An emerging type of sensor is focal plane sensor processors [Nguyen et al., 2022, Zarándy, 2011]. They

support analog and digital computation at each pixelsite at the sensor plane. These new sensors can

thus implement more advanced filtering or even neural networks at the sensor plane and reduce the I/O

bandwith for high resolutional imagery. They are especially suitable for task-specific cameras such as

edge detection, object tracking, face identification, and others. Image features can be directly extracted

at the sensor plane and only low-dimensional outputs are output to the computer. End-to-end sensor

plane design with specified tasks is an interesting and promising direction.
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6.3.2 Adaptive Imaging

This thesis looks into sensor capabilities that adapts to the content of a scene, specifically spatially-

varying gain and binning. Prior works have also explored the adaptive feature of exposure and color

filter arrays [Luo et al., 2017, Saragadam et al., 2021, Sarhangnejad et al., 2019]. Sarhangnejad et al. [2019]

adapt the exposure at local pixels to the scene according to the previous frame, enabling high dynamic

range imaging at high framerate. Saragadam et al. [2021] use an RGB image to guide the scene-adaptive

spatial sampling, thus achieving high quality and video-rate hyperspectral imaging. Many conventional

sensor features are yet to be rediscovered to adapt to the scene content to achieve extended capabilities.
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