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Abstract. This study advances material classification using Spectral
Sub-Surface Scattering (S4) measurements. While spectrum and sub-
surface scattering measurements have individually been used in material
classification, we argue that the strong spectral dependence of subsurface
scattering lends itself to highly discriminative features. However, obtain-
ing S4 measurements requires a time-consuming hyperspectral scan. We
avoid this by showing that a carefully chosen 2D projection of the S4

point spread function is sufficient for material estimation. We also design
and implement a novel imaging setup, consisting of a point illumination
and a spectrally-dispersing camera, to make the desired 2D projections.
Finally, through comprehensive experiments, we demonstrate the supe-
riority of S4 imaging over spectral and sub-surface scattering measure-
ments for the task of material classification.
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1 Introduction

Identifying the material composition of an object or a scene has been an en-
during challenge across numerous scientific disciplines. One approach, rooted in
the early work of Newton, Fraunhofer, and many others, harnesses spectrum
variations in the light reflected from objects. Since materials often have distinct
spectral absorption profiles, spectral analysis of reflectance has become indis-
pensable in inspecting materials with various scales: common daily objects such
as powders [28,47] and foods [29,44], geographical material distribution [9,19,22],
and the composition of celestial objects [18,36]. Light transport in a scene, how-
ever, extends well beyond reflection. When an object is illuminated, it is not
only reflected off the illuminated points but often penetrates the surface. This
phenomenon, called “subsurface scattering”, is central to the appearance of ob-
jects as we perceive them, and has garnered widespread attention in a number of
applications including light transport modeling [45], inverse light transport [5],
scene analysis [30] and material classification [6,26,38,40,41]. Notably, subsurface
scattering is also significantly influenced by the wavelength of the incident light.
This strong synergy between spectral characteristics and subsurface scattering
offers a unique opportunity for enhancing material classification.

Perhaps, the most informative physical measurements for understanding light
transport with subsurface scattering is the spectral bidirectional scattering re-
flectance distribution function (BSSRDF) [45]. As such, measurement of the
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BSSRDF data is impractical due to its high dimensionality and the resulting
acquisition time; this gets all the more challenging when we seek to resolve
it across the spectrum. To simplify this process, we reduce the complexity by
omitting the angular dimension of light. Instead, we aim to measure spectral
variations of subsurface scattering observed on the surface of the material. To
acquire this, we assume the object’s material composition is homogeneous and
illuminate it at a single point. A hyperspectral image (HSI) of this scene is sub-
sequently acquired by sequentially scanning it with narrowband spectral filters.
This approach, which we refer to as multishot Spectral Sub-Surface Scattering
(S4) measurement, offers a more efficient way to gather the necessary data. How-
ever, the method is still limited by the need for multiple images as well as the
need for a hyperspectral camera with significant spectral resolution.

To further simplify our imaging instrument, we introduce a single-shot S4

measurement. As before, we illuminate the scene with a point light source. We use
an optical element (a grism [1] in our setup) to spectrally disperse light along one
dimension; this provides us with a linear projection of the measurements made by
the multishot S4 system. This single-shot approach is a significant improvement
over the conventional multispectral approach, which requires complex alignment-
sensitive components with predetermined spatial and spectral parameters.

Contributions. Our contributions to advancing material classification:

– We formulate material classification using spectral subsurface scattering mea-
surements, an approach that seeks to leverage the complementary strengths
of the individual modalities.

– We present a single-shot S4 imaging prototype in a laboratory setting. Our
setup uses a spectral disperser and a monochrome camera to capture a sin-
gle image of the backscattered light from the subsurface layers of materials
illuminated by a point light source.

– Our single-shot technique is quite effective in recovering parameters describing
S4, under a physics-based model, across a wide range of materials.

– We provide a thorough analysis of the efficacy of our S4 imaging across diverse
datasets, demonstrating its versatility and robustness.

The result is a significant enhancement in material classification, surpassing
traditional methods based solely on spectral reflectance or broadband scattering.
The code and data associated with this work can be found on the project website
[24].

Limitations. Despite its promising capabilities, our single-shot S4 imaging method
faces several challenges. It necessitates an active illumination setup, which may
not be practical in environments where lighting cannot be controlled. The sys-
tem’s accuracy is dependent on the object’s surface geometry; non-uniform or
irregular surfaces could disrupt the uniformity of the spectral scattering ker-
nel, leading to classification errors. Additionally, the technique’s ability to probe
subsurface features is inherently limited by the material’s opacity and thick-
ness. These limitations underscore the need for further refinement to enhance
the method’s robustness and versatility in real-world conditions.
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2 Prior Work

In this section, we briefly discuss techniques commonly used for material classi-
fication in the computer vision community.

Spectrum-based material classification. Spectral analysis evaluates optical and
electronic properties such as band gap energy, extinction coefficient, and re-
fractive index [37] and can be categorized into two approaches. The first ap-
proach is capturing images beyond the visible spectrum. In addition to using an
RGB camera, capturing images in the longer wavelengths such as Near Infrared
(NIR) [25, 35] and Shortwave Infrared (SWIR) spectrum [47] has been widely
used. However, this approach does not have enough spectral diversity, due to the
large bandwidths of filters used. The second approach captures images at higher
spectral resolution using a hyperspectral camera; this has found applications in
inspecting printed circuit boards [20], remotely sensing the urban surface mate-
rials [9, 19, 22], and space surveillance [18, 36]. In this work, we go beyond the
spectrum by considering sub-surface scattering in tandem.

Sub-surface scattering and material classification. Subsurface scattering infor-
mation has also been pivotal in material classification. Light scattering can pro-
vide information about the structural characteristics of the material such as
variations of particle number density with radius [7]. For instance, Steimle et
al . [38] and Mao et al . [26] actively projected a dot pattern and captured the
backscattered light to classify materials. However, these methods only look at
monochrome images. A different approach is to use a time-of-flight (ToF) cam-
era [6, 39–41] to capture the temporal point spread function, which is affected
by the extent of subsurface scattering. However, due to the multipath interfer-
ence in ToF cameras, these methods exhibit limited robustness against geometric
variations.

Hyperspectral subsurface scattering. Hyperspectral scattering imaging has proven
to be beneficial in agriculture and food research communities by providing de-
tailed insights into the physical properties of biological materials, which show
strong scattering signals. This method has been instrumental in assessing fruit
quality by correlating spectral scattering profiles with firmness and soluble solids
content [32], predicting meat tenderness with high precision in the food indus-
try [46], and determining the bulk density and particle size in wheat flour [48],
thereby enhancing quality control measures in agriculture and food production.
However, hyperspectral imaging is time-consuming, which is not ideal for many
applications. We resolve this with our single-shot S4 design.

Hyperspectral imaging. The design of classical hyperspectral cameras is based
on scanning—either in space as with the push broom device or in the spectrum
as in tunable filters. This sequential scanning is time-consuming as well as light
inefficient. Many designs have been proposed to overcome these limitations in-
cluding mosaic cameras [14], spectral scanning [23], spatio-spectral scanning [33],
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compressive imaging [42], computed tomography imaging [21], and prism-mask
systems [2], each with its own relative merits. Our single-shot S4 imaging system
is inspired by these designs.

3 Spectral Subsurface Scattering Imaging

In this section, we present the Farrell model for spectral subsurface light trans-
port and introduce our multishot and single-shot S4 imaging systems.

3.1 The Farrell Model for Spectral Subsurface Light Transport.

A comprehensive treatment of light transport within a scattering media is pro-
vided by the Radiative Transport Equation (RTE), which describes L(x,ω),
the radiance at a point x in direction ω, in terms of the material’s extinction
coefficient σt, scattering coefficient σs, and its phase function p [4]:

(ω · ∇)L(x,ω) = −σtL(x,ω) + σs

∫
4π

p(ω,ω′)L(x,ω′)dω′. (1)

In scenarios where scattering is predominant, light transport described by the
RTE can be approximated as a diffusion process for which analytical solutions
can be derived in certain scenarios. For instance, Farrell et al . [12] investigated
the diffuse reflectance for the surface of a semi-infinite homogeneous medium
upon being illuminated by a vertically oriented, infinitesimally small light source.
They derived an analytical solution to describe the diffuse reflectance, Rf , which
is the portion of the incident light remitted out of the upper boundary at each
point at the surface of the medium [43]:
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where r is the distance from the incident point, a′ is the transport albedo defined
as a′ = σ′

s/(σa + σ′
s). σeff is the effective attenuation coefficient given by σeff =
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Here, A represents the internal reflection coefficient, which is determined by the
refractive index mismatch at the interface and can be calculated using empirical
equations [16]. It is important to note that every parameter in Eq. (2) except r
for r1 and r2 is dependent on the wavelength of the incident light.

The Farrell model has been extensively adopted for modeling subsurface
light transport in graphics [10, 45] and estimating optical properties, such as
the absorption and scattering coefficients, σa and σ′

s, of various scattering ma-
terials [3, 11, 15, 31]. Since σ′

s, σa, and A are all functions of the incident light’s
wavelength, Rf (r) is a function of spectrum. Figure 1 shows the multispectral
diffuse reflectance of a scattering medium captured with our imaging setup.



S4 material classification 5

(b) Diffuse reflectance profile(a) Point illumination on surface

r

r

Multispectral

M
ultispectral

Fig. 1: Multispectral diffuse reflectance profile of a scattering medium measured with
our setup. (a) Captured multispectral image of backscattered point illumination on the
surface of subject material, (b) Diffuse reflectance profile computed by taking intensity
values from illumination center toward outside. As shown in the right side plot, the
profile is also a function of the wavelength of the incident light.

3.2 Multishot S4 Imaging System

The multishot S4 imaging setup comprises a light source, a camera, and a tun-
able bandpass spectral filter. We sequentially scan the illuminated surface with
the tunable filter to obtain a 16-channel multispectral scattering image. The
measurements of the i-th channel at pixel (x, y) from the multishot setup can
be expressed as follows:

km(x, y, i) =

∫
λ∈Ci

k(x, y, λ) dλ, (4)

where k(x, y, λ) is the spectral subsurface scattering kernel at wavelength λ, and
Ci denotes the bandwidth of the i-th channel.

Implementation details. Figure 2 illustrates the laboratory prototype of the
multishot S4 imaging system. This setup combines a point light source, a
monochrome camera that captures near-infrared (NIR) light (Hamamatsu
ORCA Flash 4.0 LT), and a tunable spectral filter. The tunable filter is two
Continuously Variable Filters (CVFs), which are specialized edge-pass spectral
filters whose cut-off wavelength varies continuously along one axis [8]; we use
two of them: one long-pass and one short-pass. By juxtaposing the long-pass
and short-pass filters, we can create a linearly-varying bandpass filter, with the
bandwidth determined by the relative displacement between the two, and a cen-
ter wavelength that varies continuously along the filter. The illustration of CVBF
is shown in Figure 2. We can then fine-tune the spectral selection by precisely
adjusting the placement of these CVBF with respect to the camera using mo-
torized translation stages. This arrangement allows us to capture images across
16 distinct spectral channels, with the bandwidth of each channel depicted in
Fig. 2. For both multi- and single-shot systems (which we describe next), a point
light source was projected onto the surface of a sample (see Fig. 4), creating an
impulse illumination on the scene.
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Fig. 2: The multishot S4 imaging setup, showing our laboratory prototype and its
schematic representation on the left. The Continuously Variable Bandpass Filter
(CVBF), depicted on the right, features a spatially varying central wavelength of nar-
rowband. It enables the acquisition of 16-channel multispectral scattering images by
sequentially shifting the CVBF across the camera lens. The spectral bandwidths for
the 16 channels, measured using a spectrometer, are shown in the lower right corner.

3.3 S4 Single-shot Imaging System
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Fig. 3: Multishot and single-shot
S4 imaging measurements.

Multispectral imaging techniques are complex,
comprising multiple alignment-sensitive com-
ponents with predetermined spatial and spec-
tral parameters [34]. Especially, multishot ap-
proaches require long exposure times to cap-
ture narrowband spectral images. To address
this issue, we propose a single-shot S4 imag-
ing method that further simplifies the capture
setup.

The key idea of single-shot S4 imaging is capturing scattering images through
a spectral disperser, which spatially disperses the scattering kernel in each wave-
length, as illustrated in Fig. 3. The dispersed scattering kernel captured through
the single-shot S4 imaging setup can be expressed as:

ks(x, y) =

∫
λ

k(x− δ(λ− λc), y, λ) dλ, (5)

where δ is the dispersion coefficient of the spectral disperser, and λc is the central
wavelength of the spectral disperser.

Figure 5 presents the prototype of the single-shot S4 imaging system. The
system incorporates a point light source, a monochrome camera sensitive to near-
infrared (NIR) light (Hamamatsu ORCA Flash 4.0 LT), and a spectral dispersing
element, which is a grism. We built the point light source by placing a stainless
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Fig. 4: Point illumination. An image of our laboratory prototype on the right side,
and images of the point illumination on the surface of a few samples on the left side.
The point illumination is achieved by focusing the incandescent light source onto the
surface of the sample using a lens and a pinhole. For our single-shot technique, we also
added a high-pass filter with a cutoff frequency of 500nm to avoid the overlap with the
higher-order diffraction mode.

steel mask with a pinhole in front of a tube of incandescent white light source.
Then the illumination was focused onto the surface of the sample using a lens.

For the spectral disperser, we use a grism, a combination of prism and grating
that allows a chosen wavelength to go through undeflected. This gave us signif-
icant improvements in being able to focus correctly on the target samples. Our
configuration uses a right-angle prism with an apex angle of 30◦ and a diffrac-
tion grating with 300 lines per millimeter. The details of the grism design and
its effectiveness are elaborated in Appendix B.

Examples of the images acquired by our single-shot setup are shown in Fig. 5.
The horizontal bars in the acquired image show the spectrally varying spatially
dispersed scattering kernels, which we extract with a patch of 1200×2048 pixels;
this is subsequently used for material classification as a single data sample.

4 Experiment

We present the experimental results, starting with an evaluation of the single-
shot model and subsequently its effectiveness in material classification.

4.1 Justification of Single-Shot S4 Imaging

Before delving into material classification with our single-shot approach, we aim
to demonstrate its feasibility. Specifically, we fit the Farrell model on the mea-
surements made with the multishot S4 imaging setup and compare the model
parameters to those fit on a simulated single-shot setup on the multishot data.
We provide the details of the model fitting in Appendix C, summarizing the
conclusions here.
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Fig. 5: Single-shot S4 imaging setup, featuring: (a) Schematic illustrations of spectral
dispersers, including both prism and grism. The precise alignment of grating and prism
facilitates a direct light path for spectral dispersion, aligning with the light’s trajectory
from the scene. (b) The lab prototype of our single-shot S4 imaging system employing a
grism. (c) Sample single-shot S4 images of steel and wax. Below, we depict wavelength
markers derived from illuminating the subjects with monochrome lasers of distinct
wavelengths, captured using our imaging system. The position of each laser spot along
the row axis corresponds to its wavelength, effectively mapping the spectral dispersion.

To show that single-shot measurements are sufficient for modeling spec-
tral subsurface scattering, we computed the distance between the diffuse re-
flectances from the measurements and the optimized Farrell models. The com-
parative analysis of the distance is illustrated in Fig. 6. It is important to note
that d(Rf,d, Rf,m1), which is the distance between the multi-shot model and
the measured data, represents the minimum achievable error. Observing the re-
sults, we find that d(Rf,d, Rf,m2) values, that capture the distance between the
single-shot and data, are sufficiently small and exhibit a comparable scale to
d(Rf,d, Rf,m1) across all materials. This proximity in values leads us to conclude
that our single-shot S4 imaging method is capable of accurately representing the
diffusive reflectance model, thereby encapsulating the unique optical properties
of the materials under the measurements.

4.2 Material Classification with Single-Shot S4 Imaging

Derivation of comparable measurements. From our single-shot S4 image,
we can decompose the Surface Spectral reflectance (S2) and broadband Sub-
Surface Scattering (S3) measurements, which have been extensively employed for
material classification as discussed in Sec. 2. The S2 measurements are obtained
by the projection integral of the spectral scattering kernel over the spatial axis.
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Fig. 6: Optimization results with Farrell model for multishot and simulated single-shot
S4 images. The left side shows the distance between the diffuse reflectance from our
dataset and the optimized Farrell models with diffuse reflectance from multishot image
(d(Rf,d, Rf,m1)), and the distance between the diffuse reflectance of dataset and opti-
mized model with simulated single-shot image (d(Rf,d, Rf,m2)). The right side shows
both optimized Farrell models in each multispectral channel for two different materials
(milk and coated paper). Despite the complexity introduced by the image dispersion
operation to simulate single-shot image, we find that d(Rf,d, Rf,m2) values are suf-
ficiently small and exhibit a comparable scale to d(Rf,d, Rf,m1) across all materials,
indicating that the single-shot measurements are capable of accurately representing the
diffusive reflectance.

The process could be expressed as:

R(λ) = R(x) =

∫
y

ks(x, y) dy. (6)

The size of S2 measurements derived from each S4 is 1x2048. If the scattering
kernel on each wavelength only spreads in the column axis, the S2 will be equiv-
alent to the spectral reflectance of the surface. However, due to the spreading
in the row axis (spectral axis) as well, each kernel smeared along the row axis
overlapping with spectrally proximal kernels. Thus, the computed S2 measure-
ments are expected to be blurred spectral reflectance. The S3 measurements
are obtained by integrating the spectral scattering kernel over the spectral axis.
The process could be expressed as:

kb(r) = kb(y) =

∫
x

ks(x, y) dx. (7)

The size of derived S3 measurements is 1200x1. Through the operation, we can
reconstruct the broadband scattering kernel before the spectral dispersion from
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Ceramic Clay-plaster Clay-soft Egg Fabric-cotton Fabric-PET Fabric-silk Fabric-wetwipe

Foam

Paper-toilet Plastic Rubber Steel Stone-jade Stone-marble Stone-pumice Wax Wood

Leather-fake Leather-genuine Milk Paint Paper-copy Paper-coated Paper-kitchen

Fig. 7: Sample images from the white materials dataset.

our single-shot S4 imaging. We compare classification performance with S2 and
S3 as a baseline to establish the overall effectiveness of S4 measurements.

Dataset 1: White materials. The challenge of material classification in com-
puter vision is exacerbated by the color uniformity across diverse materials. To
tackle this challenge with our proposed single-shot S4 imaging, we collected a
dataset comprising 25 classes of white materials, which include a variety of sub-
stances such as ceramic, clays (plaster and soft clay), egg, cotton, various fabrics
types (PET fabric, silk, and wet wipe), foam, artificial and genuine leather, milk,
paint, various paper types (copy, coated, kitchen, and toilet), plastic, rubber,
steel, various stone types (jade, marble, pumice stone), wax, and wood. For a
robust evaluation, each material class contains three distinct items (for instance,
the plastic class includes a food container, a bottle, and a cosmetic container).
This approach facilitates three-fold cross-validation, with each fold scanning a
distinct set of 25 objects across separate days to reduce data correlation between
training and test sets. Every object underwent five scans on different surface ar-
eas. Fig. 7 showcases sample images of individual items from each material class
within our dataset.

In Fig. 8, we illustrate the radii of spectral scattering kernels for the whole
dataset (75 objects). It was computed by analyzing every column of our single-
shot S4 image, which indicates one axis of scattering kernels dispersed along the
spectral domain. The radius is defined as the distance from the peak value to the
point where the scattering kernel reaches 0.1 of its maximum value. As shown
in the figure, each material class has a distinct range of scattering radius values,
varying across the wavelength. This observation underscores the potential of
spectral scattering radius as a discriminative feature for material classification.

Classifier. While various classifiers are capable of assessing the informativeness
of each measurement, it is preferable to utilize classifiers that efficiently handle
non-linear data. Consequently, we opted to implement an SVM with an RBF
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Fig. 8: Spectral scattering radii for the white materials dataset. The radius is com-
puted by analyzing every column of the single-shot S4 image. We defined radius as the
pixel distance from the peak value of each column to the point where the scattering
kernel reaches 0.1 of its maximum value. This allows us to understand materials more
intuitively. For example, wax and stone-jade have significantly higher scattering.

kernel, MLP, and CNN. Since S2, S3, and S4 data have all different dimen-
sionality, we transform each of them to have all the same dimensions for fair
comparison. For SVM and MLP, we applied PCA for the three measurements.
The number of components was chosen to preserve 100% of the original data’s
variance, resulting in 375 dimensions which is the same number of total data
points. For CNN, we resized the S2 and S3 data to the same size as S4 image
by copying and pasting the 1-dimensional data onto the row and column axis.

Evaluation 1: Classification. Table 1 showcases the averaged classification ac-
curacies from a 3-fold cross-validation. Notably, the classification accuracy when
utilizing S4 data reached the highest at 58.80% with CNN, outperforming the
best accuracies achieved with S2 and S3 data, which were 54.13% and 41.33%,
respectively. This disparity in performance underscores the superior efficacy of
S4 data in material classification tasks over S2 and S3 data.

Further insights are provided in Fig. 9, which depicts the summed confusion
matrix from the 3-fold cross-validation of the three measurements. Interestingly,
the confusion matrices for S4 and S3 data exhibit similar patterns, with the ma-
trix for S4 data displaying a more pronounced diagonal trend, indicating higher
classification accuracy. Conversely, the confusion matrix for S2 data reveals a
slightly different pattern. For instance, the classification of ‘rubber’ achieved no-
table accuracies of 100% with S4 and S3 data, respectively, contrasted by a mere
53.33% accuracy when using S2 data. Meanwhile, the highest classification accu-
racy of ‘Clay_soft’ was achieved with S2 data, at 86.67%, compared to 66.67%
and 70.00% with S3 and S4 data, respectively.

An additional observation is the frequent misclassification among certain
classes within broader categories, such as fabrics and papers. This trend is re-
flective of the inherent challenge in distinguishing materials with closely related
material properties. In our dataset, some materials naturally exhibit a white hue,
while others have been artificially colored using paint—for instance, leathers,
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Table 1: Averaged classification accuracy from 3-fold cross-validation for surface spec-
tral (S2), sub-surface scattering (S3), and S4 with different classifiers.

S2 (S. Reflectance) S3 (B. Scattering) S4 (S. Scattering)

SVM 40.53% 46.93% 52.27%
MLP 41.33% 52.53% 55.20%
CNN 35.47% 54.13% 58.80%

(a) (b) (c)with MLP with CNN with CNN 

Fig. 9: Confusion matrix summed from 3-fold cross-validation results for S2, S3, and
S4 with best classifiers.

steel, and wood. We observed that these painted objects were frequently mis-
classified from each other. This highlights the effectiveness of our method to
analyze the surface of materials, while the complexity of accurately classifying
materials that are coated or covered with substances such as paint.

Dataset 2: Black coffee with different concentrations. After assessing
our imaging setup on white, solid materials through a classification task, we
proceeded to explore a distinctly different dataset and task. We assembled a
dataset of black coffee at various concentrations to tackle a regression problem.
The experiment began with 80 ml (approximately 1/3 cup) of pure water in a
transparent bottle, to which we incrementally added 0.63 ml (about 1/8 tsp) of
instant coffee powder, repeating this addition 10 times. This process resulted in
10 distinct labels of coffee concentrations. For each concentration class, we made
two separate bottles to avoid correlation, capturing their images at different
times. This approach allowed us to perform a 2-fold cross-validation. We scanned
each class five times, focusing on different surface areas of the bottles each time.

Evaluation 2: Regression. For the regression task, we employed three dif-
ferent models: Random Forest, Ridge, and MLP. The results are summarized
in Tab. 2. The Ridge and MLP models achieved the lowest Mean Squared Er-
ror (MSE) for S2, S3, and S4 data, with the MLP model outperforming the
Ridge model in the S3 and S4 datasets. Compared to the first experiment, S4
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Table 2: Averaged MSE from 2-fold cross-validation for S2, S3, and S4 data with
different regression models.

S2 S3 S4

Random Forest 8.18 4.54 11.33
Ridge 5.09 3.13 3.09
MLP 5.15 1.78 1.73

and S3 results greatly outperformed S2 results, producing a small gap between
each other with the best regression model, MLP. Since our dataset comprises
the equivalent medium (water) with only a difference in concentration of partic-
ipating particles (coffee powder), the information on the coffee concentration is
expected to be more related to the broadband scattering information than the
spectral information.

5 Discussion

This study presents a novel approach to material classification by leveraging
single-shot S4 imaging. We have demonstrated the feasibility of the single-shot
approach by comparing the scattering models estimated from them to those
from the multishot technique. Then, we conducted material classification with
the comprehensive datasets, which showed that our single-shot S4 outperformed
measurements of the traditional approach, which are spectrum and sub-surface
scattering in isolation, in distinguishing materials.

(a) Stronger disperser (b) Weaker disperser

Fig. 10: Multipoint illumination for
multi-material classification.

Multi-material classification. Although we
only present a single spectral scattering
kernel image per material, our method is
not necessarily limited to a single material.
Our measurements are based on a single-
point illumination on the surface, so we can
handle more complex scenes by illuminat-
ing multiple points on the scene and clas-
sifying each in isolation. We provide exam-
ples of imaging taken with our single-shot S4 imaging using point array illumina-
tion in Fig. 10 (a) and (b). However, the number of such points we can illuminate
on a scene depends on the size of the S4 kernel, and there is an inherent tradeoff
between the size of the spectral kernel and the number of illuminated points.

Challenges and limitations. Despite its promising capabilities, the single-shot S4

imaging method faces several challenges. The requirement for active illumination
and the dependence on surface geometry to be smooth are limitations that may
restrict the method’s applicability in uncontrolled environments. Additionally,
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Planar paper

Planar steel

Curved paper

Curved steel

Fig. 11: (Left) two material samples we scanned that have planar and curved sur-
faces. We collected two measurements per surface and per material. (right) Average
normalized cross-correlation between the different types of surfaces, showing inter- and
intra-class consistency across curvatures. This suggests that the S4 measurements are
stable despite changes in surface geometry.

the technique’s effectiveness is inherently limited by the material’s opacity, with
opaque materials reducing the informativeness of S4 measurements.

Non-uniform or irregular surfaces lead to unmodelled variations in the scat-
tering kernel across different surface areas, impacting the consistency of mea-
surements. As illustrated in Fig. 8, materials with non-uniform surfaces, such as
cotton and kitchen paper, exhibit significant changes in the scattering kernel’s
radius at different locations within the same object (or fold). Such variability
can adversely influence the classification accuracy of our technique. However,
most objects in daily life have planar or smoothly curved surfaces. To check the
robustness of our method to such surface variations, we empirically measured
their actual effect by looking at two materials: copy paper, which can be natu-
rally shaped, and steel, where the object we used had a curved contour (Fig. 11).
The S4 measurements between the planar and curved counterparts show remark-
able similarity with high cross-correlation values, indicating some tolerance to
surface geometry.

The efficacy of our single-shot S4 imaging in accurately capturing the scat-
tering kernel across wavelengths is affected by the scattering kernel’s size. Our
setup utilizes a spectral disperser, which generates a continuous dispersion of
spectral scattering kernels. Consequently, larger scattering kernels, like those
observed with ‘stone_jade’ and ‘wax’ in Fig. 8, result in extensive overlapping
of scattering kernels. This overlap reduces the spectral domain’s informativeness,
rendering it nearly equivalent to broadband subsurface scattering.

Conclusion. Our single-shot S4 imaging presents a new modality for material
classification. By harnessing the power of spectral subsurface scattering, it offers
a more detailed analysis of materials, surpassing the capabilities of traditional
measurements. Despite its current limitations, the method’s potential applica-
tions in various fields—from robot vision to food assessment—underscore its
importance in advancing various areas that accommodate computer vision tech-
niques. As we continue to refine and expand this technology, we hope it will play
a pivotal role in material analysis and classification.
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A Light scattering and its dependency on wavelength.

Scattering is a physical process where light is redirected in various direc-
tions upon encountering microscopic constituents of materials—such as atoms,
molecules, or minute granules—that interfere with its path. When an electro-
magnetic wave encounters such a particle, it causes the electrons orbiting within
the particle’s molecules to oscillate at the same frequency as the incident wave’s
electric field [17]. This fluctuation acts as a source of electromagnetic radiation,
which is the basis for the phenomenon of light scattering.

Fig. 12: Scattering of red
light by a thumb illuminated
with a white flashlight.

The scattering of light is dependent on the
wavelength, which is observable in everyday phe-
nomena, such as the pronounced scattering of
red light by human skin when illuminated with
a white flashlight, as shown in Fig. 12. The de-
pendency can be understood through Mie scat-
tering theory [27]. Mie theory describes the elastic
scattering of electromagnetic radiation by spher-
ical particles, taking into account the size of the
particles relative to the wavelength of light. When
considering a material as an ensemble of spherical
particles embedded in a homogeneous medium, Mie theory enables the deriva-
tion of analytical expressions for the material’s scattering parameters: the phase
function p(θ), the total scattering coefficient σs, and the total extinction coeffi-
cient σt [13]. All of these parameters are expressed as functions of the wavelength
in vacuum together with the size of the spherical particles and the refractive in-
dices of the particles and the embedding medium. We summarize the notation
used in this paper in Tab. 3.

Assuming that only a single type of particles with the same radius and index
of refraction are dispersed in the dispersing medium, the phase function of Mie
theory, which specifies the normalized distribution of the scattered light for the
bulk material, can be expressed as:

p(θ) =
|S1(θ)|2 + |S2(θ)|2

4πK
, (8)

which is expressed with two scattering intensity functions of scattering angle θ:

S1(θ) =

∞∑
i=1

2i+ 1

i(i+ 1)
(aiπi(cos θ) + biτi(cos θ)) , (9)

S2(θ) =

∞∑
i=1

2i+ 1

i(i+ 1)
(biπi(cos θ) + aiτi(cos θ)) , (10)

and the scattering coefficient function:

K =

∞∑
i=1

(2i+ 1)
(
|ai|2 + |bi|2

)
. (11)
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Table 3: Notation used in the theory section.

Symbol Description Units

λ Wavelength of light in vacuum m
α Spherical particle radius m

nsph Complex index of refraction of spherical particles —
nmed Complex index of refraction of dispersing medium —
Cs Scattering cross-section coefficient of spherical particles m2

Ca Absorption cross-section coefficient of spherical particles m2

Ct Extinction cross-section coefficient of spherical particles m2

σs Scattering coefficient of bulk material m−1

σ′
s Reduced scattering coefficient of bulk material m−1

σa Absorption coefficient of bulk material m−1

σt Extinction coefficient of bulk material m−1

p Phase function of the bulk material sr−1

L(x,ω) Radiance at position x from direction ω Wm−2sr−1

Rf (r) Diffuse reflectance profile value at r m−2

A Internal reflection coefficient —

In Eq. (9) and Eq. (10), the functions πn and τn are related to the Legendre
polynomials Pn as follows:

πn(µ) =
dPn(µ)

dµ
, (12)

τn(µ) = µπn(µ)− (1− µ2)
dπn(µ)

dµ
. (13)

ai and bi are the scattering functions, represented by:

ai =
nmedψ

′
i(ξ)ψi(κ)− nsphψ

′
i(κ)ψi(ξ)

nmedψ′
i(ξ)ζi(κ)− nsphζ ′i(κ)ψi(ξ)

, (14)

bi =
nsphψ

′
i(ξ)ψi(κ)− nmedψ

′
i(κ)ψi(ξ)

nsphψ′
i(ξ)ζi(κ)− nmedζ ′i(κ)ψi(ξ)

, (15)

where nmed and nsph are the refractive indices of the dispersing medium and
spherical particles, κ and ξ are the size parameter incorporating the ratio between
the radius of the spherical particle α and the wavelength of light in vacuum λ:

κ = 2π nmed
α

λ
, ξ = 2π nsph

α

λ
, (16)

and ψ and ζ denote Bessel functions of the second kind. Now, it is clear that
all of the scattering intensity, coefficient, and phase functions depend on the
wavelength λ, and the refractive indices nmed and nsph, which are also dependent
on λ.
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The cross-section coefficients for scattering, absorption, and extinction are
denoted by Cs, Ct, and Ca, respectively. They are calculated as follows:

Cs =
λ2e−2Im(κ)K

2πγ|nmed|2
, (17)

Ct = 4πr2Re
(
S(0)

κ2

)
, (18)

Ca = Ct − Cs, (19)

where
γ =

2 (1 + (a− 1)ea)

a2
, a = 2Im(κ), (20)

and S(0) = S1(0) = S2(0) is the amplitude in the forward direction of the scat-
tered light. The absorption coefficient of the dispersing medium σa,med expressed
as a function of the imaginary part of the complex index of refraction of medium
n∗med and wavelength, is required:

σa,med =
4πIm(n∗med)

λ
. (21)

Consequently, σs, σt, and σa, the absorption coefficients of bulk material, are
expressed as:

σs = Csr
−3D, (22)

σt = Ctr
−3D + σa,med, (23)

σa = σt − σs, (24)

where D represents the density parameter, equivalent to the volume fraction of
spherical particles in a unit volume of the bulk material.

The correlation between spectral scattering and the physical properties of
materials is profound. Different materials have unique scattering properties due
to their distinct σs, σt, σa, and the phase function p along side the incident
light with wavelength λ, allowing for material-specific spectral signatures. This
unique relationship is a cornerstone in our approach to material classification
through spectral subsurface scattering imaging.

B GRISM

Grism for spectral dispersion. Spectral dispersion for multispectral imaging has
traditionally relied on optical prisms [2]. Yet, prism-based systems encounter in-
herent refractive distortions that challenge accurately capturing scattering ker-
nels. Moreover, the refracted light paths necessitate an angled camera setup,
complicating the focusing process. Ensuring high resolution in the spectral axis
with strong dispersion necessitates a thicker prism, which will even deteriorate
those problems. To circumvent these limitations, we combined a transmissive
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diffraction grating with a prism, creating a grism. A grism is a combination of
a prism with a grating to spectrally disperse and refract incoming light. When
light from the scene passes through the diffraction grating first, it splits the
light into its spectral components, which are then refracted by the prism. The
behavior of light through the grating is governed by the grating equation:

mλ = d(sin(θm)− sin(θi)), (25)

where m denotes the diffraction order, λ the wavelength of light, d the grating’s
groove spacing, θm the angle of the diffracted beam, and θi the angle of incidence
relative to the grating’s normal. Given that the prism is placed after the grating,
the diffracted light enters the prism at an angle θm and refracts at an angle θr.
Then, Snell’s law, which describes this refraction, is given by:

n1 sin(θm) = n2 sin(θr), (26)

where n1 and n2 are the refractive indices of air and the prism, respectively. For
a right-angle prism with an apex angle of θp, if the refracted angle θr equals to
θp, then the light will exit the prism perpendicularly. By searching the proper
combination of the prism’s apex angle θp and the grating’s groove density d, we
can engineer the grism to direct the first-order diffraction (m = 1) along the
incoming light’s path as shown in Fig. 5. Our configuration uses a right-angle
prism with an apex angle of 30◦ and a diffraction grating with 300 lines per
millimeter.

C Justification of the single-shot technique

In this section, we aim to present the details of Sec. 4.1. We demonstrate the
feasibility of the single-shot approach by showing the comparable optimization
results obtained from our simulated single-shot approach against those derived
from multishot S4 imaging. We employed the Farrell model, Eq. (2), as the
physics model to be fitted from the spectral scattering data derived through the
two S4 approach. This process involved a comparison between two models, one of
them was optimized using multishot S4 images, and another one was optimized
using single-shot S4 images simulated from the multishot images.

Utilizing the multishot imaging setup, we initially compiled a dataset of 11
materials—namely ceramic, egg, cotton, foam, milk, copy paper, coated paper,
toilet paper, plastic, rubber, and wet wipe. Given the assumption that the mea-
sured kernel km(x, y, i) is symmetric along the x and y axes, the diffuse re-
flectance in the i-th channel of multispectral subsurface scattering can be refor-
mulated by a coordinate transformation as follows:

Ri
f,d(r) = km(r, i), where r =

√
x2 + y2. (27)

Here, we assume that the origin of the kernel, where r = 0, (x, y) = 0, is the center
point of the kernel. We extracted the diffuse reflectance Rf,d at each channel
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along with the distance from the center point of illumination. We averaged the
scattering kernel over rotations around r to mitigate noise.

As a first optimization, we fitted the Farrell model to the extracted multi-
spectral diffuse reflectance from the multishot images. The Farrell model defined
for the optimization could be expressed as:

Rf,m(r, σ′
s, σa, A, S, C) = S ×Rf (r, σ

′
s, σa, A) + C, (28)

where S is the scaling factor accounting for the normalization of the captured
data, and C is the offset value for pixel values on the background. Each opti-
mization was performed by minimizing the following loss functions for i − th
channel:

min
σ′
s(i),σa(i),

A(i),S(i),C(i)

∥∥Ri
f,d(r)−Rf,m1(r, σ

′
s(i), σa(i), A(i), S(i), C(i))

∥∥2
2
. (29)

As a second optimization, we simulated single-shot S4 images using the dif-
fuse reflectance from multishot data and optimized the Farrell model with the
simulated images.

min
σ′
s,σa,A,S,C

∥P (Rf,d)− P (Rf,m2(σ
′
s, σa, A, S, C))∥

2

F . (30)

Here, as illustrated in Fig. 13, P is an operator that simulates single-shot S4

images from the diffuse reflectance and can be illustrated as:

P (Rf,m) =

16∑
i=1

R̃i
f,m(x− s× i, y), where R̃i

f,m(x, y) = Ri
f,m(

√
x2 + y2). (31)

Here s is a dispersion step size for each channel.
After finishing the optimization process, we computed the distance between

the diffuse reflectances from the measurements and the optimized Farrell models.
The distance was computed as:

d(Rf,d, Rf,m) =

√√√√ 16∑
i=1

∥∥∥Ri
f,d −Ri

f,m

∥∥∥2
2

/√√√√ 16∑
i=1

∥∥∥Ri
f,d +Ri

f,m

∥∥∥2
2
. (32)

Projection

Ro
tate Multispectral

Diffuse reflectance profile

Multispectral

Fig. 13: Simulation of single-shot image

The comparative analysis of the dis-
tance is illustrated in Fig. 6. It is im-
portant to note that d(Rf,d, Rf,m1)
represents the minimum achiev-
able distance between Rf,d and
Rf,m2. Observing the results, we
find that d(Rf,d, Rf,m2) values are
sufficiently small and exhibit a com-
parable scale to d(Rf,d, Rf,m1) across all materials, despite the complexity intro-
duced by the image dispersion operation P . Specifically, d(Rf,d, Rf,m2) values
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range from being only 1 to 2 times larger than d(Rf,d, Rf,m1). This proximity in
values leads us to conclude that our single-shot S4 imaging method is capable
of accurately representing the diffusive reflectance model, thereby encapsulating
the unique optical properties of the materials under the measurements.

Anisotropic scattering. This paper would benefit from a discussion of anisotropic
scattering, seen in biological tissues, crystals and minerals. Our dataset didn’t
include such materials; so our analysis assumed an isotropic scattering and ex-
tracted the scattering profile by averaging the scattering kernel over rotations
around the center of illumination and fit a single scattering profile. However, it
is possible to fit an anisotropic case by adding one more parameter for fitting,
which is the anisotropy coefficient g included in the reduced scattering coefficient
σ′
s = (1− g)σs, where σ′

s is scattering coefficient. The g is a varying parameter
based on the angle from the illumination center.

D Spectral variation of scattering kernel shape for
material classification

Our S4 imaging method captures two key physical properties of materials: (1)
the spectral reflectance, indicated by the variations in the intensity values of the
scattering kernel across the spectral domain, and (2) the variations in the spatial
shape of the scattering kernel across the spectral domain. We can derive blurred
information of the first property, spectral reflectance, as S2 measurement by
integrating the projection of our single-shot S4 image along the row axis (spec-
tral axis). In contrast, S3 measurements, as discussed in Sec. 4.2, offer only
broadband scattering information. This is because projecting and integrating S4

image on the column axis aggregates the scattering kernel across all wavelengths,
thereby omitting the detailed spectral variations of each scattering kernel. To
rigorously assess the value of these spectral variations of scattering kernel, sep-
arate from reflectance information, we have executed a series of experiments
detailed in this section.

D.1 S2 + S3 measurement.

To evaluate the significance of the scattering kernel’s spectral variations in its
shape, we conducted an initial experiment comparing the classification accuracy
using S2, S3, and S4 against a combined S2 + S3 measurement. The S2 + S3

notation represents the concatenation of S2 and S3 vectors, resulting in a dimen-
sionality of 2048 + 1200 = 3248. Given that this concatenated vector could not
reconstruct an image of the original S4 size as described in Sec. 4.2, we applied
SVM and MLP classifiers, which accept vector inputs. Utilizing the same 25-
class white material dataset as in the preceding experiment, we performed PCA
to reduce the feature dimensionality to 375. The results, presented in Tab. 4,
reveal that the combined S2 + S3 measurement achieves higher classification
accuracy than either S2 or S3 alone, yet it falls marginally short of the S4 data
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Table 4: Averaged classification accuracy from 3-fold cross-validation for S2, S3, S2

+ S3, and S4 with different classifiers.

S2 S3 S2 + S3 S4

SVM 40.53% 46.93% 49.33% 52.27%
MLP 41.33% 52.53% 53.06% 55.20%

Normalize 
each column

-

Fig. 14: Sample image (stone-jade) of S4 and S4 − S2 measurements. S4 − S2 data
can be derived by normalizing each column of S4 image, solely encoding variation of
scattering kernel shape in spectral axis.

accuracy. The superiority of S4 beyond S2 + S3 indicates the importance of
the detailed spectral variations of scattering kernel separate from the spectral
reflectance information for material classification.

D.2 S4 − S2 measurements

The second experiment was aimed explicitly at ascertaining the informativeness
of spectral variation in the shape of the scattering kernel. We derived S4 − S2

measurements by normalizing each column within the S4 image, as shown in
Fig. 14, thus isolating the spectral subsurface scattering information from the
spectral reflectance. As indicated in Tab. 5, the S4 − S2 data outperformed S3 in
terms of classification accuracy. This result underscores the value of integrating
spectral shape variations of the scattering kernel into the classification process,
providing an enhancement over solely broadband scattering data.

E Ablation study

E.1 Search for the most informative spectral bands.

To identify the most informative spectral bands for material classification, we
conducted an ablation study. We cropped the S4 and S4 − S2 images into 16
spectral bands, each representing a different wavelength range. We then per-
formed classification using each of the 16 spectral bands with the same CNN
model and compared the classification accuracy. The results are presented in
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Table 5: Averaged classification accuracy from 3-fold cross-validation for S2, S3, S4

− S2, and S4 with the best classifier for each measurement.

S2 S3 S4 − S2 S4

41.33% (MLP) 54.13% (CNN) 56.80% (CNN) 58.80% (CNN)
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Fig. 15: Classification accuracy of each spectral band cropped from S4 and S4 − S2

images. The 6th to 9th bands (pixel location in the spectral axis: 640 to 1151) showed
the highest classification accuracy for both measurements.

Fig. 15. Both measurements showed the increased classification accuracy 6th to
9th bands (pixel location in the spectral axis: 640 to 1151), which corresponds
to the wavelength range of around 635nm to 791nm. This region has the highest
signal values resulting from the spectrum of our light source and the sensitivity
of our camera. The results indicate that beyond spectral information, higher
SNR from brighter spectral bands is crucial for material classification with S4

imaging.

F Additional results
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(a) (b) (c)with Ridge with MLP with CNN 

Fig. 16: Scattering plot of predicted and actual coffee concentrations from 2-fold cross-
validation results for S2, S3, and S4 data with the best regression models.

Fig. 17: Averaged white materials classification accuracies by downsampling the spec-
tral axis in the single-shot images.
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