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Abstract—Acquisition of high-dimensional spatially-varying bidirectional reflectance distribution functions (SVBRDFs) is extremely
challenging for scenes that exhibit high-frequency angular effects—in particular, iridescence—that requires dense sampling across
spatial and angular dimensions of reflectance. This is further complicated by the need to illuminate and observe the material along
grazing angles, where the effects of Iridescence are often most prominent. This paper proposes an imaging system for acquiring the
reflectance associated with such iridescent materials. Our system uses an imaging setup, consisting of an ellipsoidal mirror and a light
field camera, that can acquire a dense slice of the SVBRDF across spatial and observation angle axes from a single image, including
at grazing observation angles. We use an active illumination setup to sparsely sample the incident illumination angles, thereby
providing an acquisition setup that only requires a few (light field) photographs. To compensate for the lack of density in the incident
angles, we train a neural model that implicitly represents the SVBRDF, creating a light-weight data-driven reflectance function that
enables interpolation of the missing measurements. We show that our imaging system can reconstruct textures that exhibit
spatially-varying iridescence stemming from diffraction as well as structural coloration.

Index Terms—Spatially-varying reflectance, Neural rendering, Iridescence, Structural coloration
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1 INTRODUCTION

CHARACTERIZING the complex ways in which light
interacts with the world around us is a challenging

problem. Many materials exhibit particularly intriguing re-
flectance phenomena that prove especially difficult to both
capture and digitally represent. This is particularly true
of iridescent objects, where the observed color of the ob-
ject varies significantly with viewpoint and illumination
changes, presenting a challenge for data capture, for we
would need to capture every possible combination of ob-
servation and illumination directions to fully represent the
reflectance characteristics. Additionally, this poses a diffi-
culty for representation, for the color variation occurs at
high frequency in angle, can be produced through different
underlying physical mechanisms (such as thin-film inter-
ference, diffraction and structural coloration), and exhibits
characteristics not found in standard reflectance models that
focus on diffuse and specular modes.

As a result, recent research in reflectance acquisition
has revolved around faster data capture techniques and
improved representations that allow for both reduced mem-
ory and input data footprint. However, many of these
techniques achieve their excellent results through sacrificing
one or more elements that make up the full characterization
of the scene, whether that be spatial information, high-
frequency reflectance representation, or illumination vari-
ance. This makes it difficult to fully represent scenes with
highly complex visible phenomenon such as iridescence.

In this paper, we propose an imaging system capable
of efficiently capturing dense measurements in space, ob-
servation angle, and illumination angle paired with a neu-
ral spatially-varying bidirectional reflectance distribution
function (SVBRDF) that can be utilized to capture complex
materials with high-frequency features in both space and
angle. A summary of the proposed pipeline is introduced
in Figure 1. The imaging system is built based on the wide-
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baseline light field camera introduced by [1], which employs
an ellipsoidal mirror and light field camera to capture light
field images of scenes over a broad set of angles. Each
resulting image captures a large solid cone from each scene
point, up to rays at grazing angles to the surface of the scene.
They argue that this enables shape and normal estimation
using modified shape from focus/defocus algorithms, along
with a suite of other classic light field processing results.
We apply the wide baseline of these light field images to
the purpose of reflectance capture, as it enables the capture
of spatial information over a broad range of observation
angles in a single exposure, as shown on the left in Figure
1. Pairing this capability with dense illumination control,
we are able to efficiently capture measurements over the
entire gamut of the SVBRDF. This paper proposes such
illumination control, along with optics to extend the range
of observation angles, to optimize the wide-baseline light
field camera for reflectance capture. In addition, owing to
the high dimensionality of our captured data, we develop a
neural SVBRDF representation to reconstruct the reflectance
of highly complex materials.

1.1 Contributions
This paper extends the usage of the wide-baseline light field
camera to reflectance capture. In particular, we make the
following contributions:
• Efficient SVBRDF Capture using Wide-Baseline Light Field

(WBLF) Camera. We improve upon the capabilities of
the WBLF camera by adding illumination control and
increasing the range of capture angles to allow for efficient
SVBRDF capture.

• Neural SVBRDF Modeling. We build a neural architecture
that is capable of characterizing high-frequency informa-
tion in space and angle. This model is utilized in other
renderers as a texture map of BRDF features.

Our system is capable of scanning objects that exhibit rich
iridescence, including the eye of a peacock’s feather that
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Fig. 1. A summary of the contributions of this paper. We first measure the SVBRDF of various complex materials through wide-baseline light field
measurements, optimizing the imaging system for efficient data capture. We then represent this large dataset as a neural SVBRDF, which can
be applied to reconstruct the appearance of the captured materials. We show that this system is capable of capturing and reconstructing highly
complex and spatially-varying iridescent reflectance.

shows structural coloration and craft materials that have
diffractive light dispersion similar to what is observed from
a grating. Such results present an advance in our ability to
scan materials that exhibit extremely high-frequency vari-
ations in spatial and angular dimensions of its reflectance.
The code and data associated with results can be accessed
at the project website [2].

1.2 Limitations

Several key limitations of this work are driven by the size
of the ellipsoidal mirror used, which dictates the spatial
extent of the materials that can be measured—this limit is
20×20mm2 in our setup, with reconstruction quality fading
some toward to outer extreme of that range. Large ellip-
soidal mirrors are also extremely expensive to manufacture,
especially at the surface quality typically seen in imaging
instruments. Consequently, our system, which is built out
of a significantly lower-quality mirror, requires painstaking
calibration; despite this, the quality of results we obtain is
still adversely affected by deviations from the ideal shape
and reflectance of the mirrored surface. Another limitation
induced by the ellipsoidal mirror is the shallowness of
the depth of field on the target, which limits us to planar
targets. We additionally share limitations from the use of
the light field camera, which dictates a space-angle trade-
off in measuring capabilities. While the mapping through
the ellipsoidal mirror changes how this is realized, we still
fall short of theoretical limits on angular and spatial reso-
lution based on this trade-off. Finally, while we introduce
additional optics in the form of a Fresnel lens to extend the
angular range of the system, the resulting system still fails
to provide a complete sampling of the reflectance cone.

2 PRIOR WORK

There are two broad categories of work that broadly in-
tersect with the proposed work: acquisition systems for
reflectance and neural representations for the same. We
briefly discuss both.

2.1 Systems for Reflectance Measurements

Complete measurements of the BRDF are classically
achieved using a gonioreflectometer, where rotation con-
trol of the illumination and sample with a fixed detector
is utilized to capture all possible illumination/observation
angle pairs [3]. Assuming a uniform material allows for a
reduction in capture time and data requirement by using
a camera to simultaneously measure from multiple surface
points at once [4], [5], including for anisotropic materials
[6]. These systems don’t account for spatial variance in
the material samples, instead using the spatial extent cap-
tured by the camera to generate additional samples of the
uniform material. We can account for the spatial variance
with additional hardware, such as using a light stage [7],
[8], [9], [10] comprising of multiple cameras, light sources
and projectors. These systems are resource intensive, often
consisting of tens to hundreds of devices that need to be
mechanically secured and calibrated.

An alternate approach, more geared for low-cost appli-
cations, is to use a catadioptric camera, which adds mirrored
optics to an imaging system. One catadioptric design uses a
kaleidoscope to scan the scene [11], [12], [13]; in principle,
the kaleidoscope acts like a multi-camera system, providing
a plethora of novel views of the object which can be used to
reconstruct the geometry and appearance of objects. Smooth
mirror geometries provide continuous measurements of ma-
terial reflectance as opposed to the sparse captures from
multiview imaging or kaleidoscopes. In particular, the use
of ellipsoidal [14], [15] and parabolic [16], [17], [18] mirrors
takes advantage of the focal points of these geometries to
get many observations of a single point at once, providing
dense BRDF measurements over a broad angular range.
However, the measurements all come from the focal point,
so they do not account for spatial variance. The wide-
baseline light field camera introduced by De Zeeuw and
Sankaranarayanan [1] combines the ellipsoidal mirror with
a light field camera to capture a large range of angular
and spatial measurements; they apply these measurements
to 3D shape reconstruction and other standard light field



processing tasks. This work expands on this design in two
distinct ways: first, the incorporation of active illumination
to enable reflectance acquisition; and second, the incorpo-
ration of additional optical elements to avoid large missing
angular cones in the reflected light.

2.2 Neural BRDF Representations
Traditional BRDF representations are usually either model-
based [19] or data-driven [4], [20]. Neural networks provide
a way to either improve interpolation of large datasets or
learn representations with less input data.

Much of the research in this space involves using neural
networks to learn SVBRDF parameters like diffuse albedo,
specular albedo, glossiness, and more [21]. These techniques
are able to learn these parameters from very few images, but
are limited to materials that match their model assumptions.
More complex materials, like iridescent objects, are unable
to be captured either due to the limited data missing the
regions of interest or the limitations of the model itself.

Recent work in implicit neural 3D scene representations
[22], [23] is able to reconstruct more general shape and
appearance information. Much of this work is focused on
recovering the scene geometry and appearance, and does
not focus on illumination variation or producing BRDF
representations that can be rendered in other settings. Yariv
et al. [24] use a signed distance function (SDF) to (neurally)
represent the shape and a reflectance network to capture
the viewpoint-dependent appearance of the object. The sep-
arability of these networks allows the reflectance network
to be transferred to alternate geometry, though the illumi-
nation conditions are baked into the representation. Zhang
et al. [25] allow for explicit illumination modeling so as to
decompose “appearance” more broadly into its physically-
meaningful constituents, namely, lighting and BRDF; how-
ever, the underlying representation of the scene is still via
volumetric radiance fields, which are not transferrable be-
yond the trained scene. Yariv et al. [26] and Wang et al. [27]
provide a hybrid volume-surface representation to address
this gap between shape and volumetric radiance, with the
eventual goal of a principled handling of reflectance and
illumination.

Our approach aims to leverage the generalizability of im-
plicit scene representations to create a neural representation
of the SVBRDF itself. Our architecture is most similar to the
reflectance network in IDR [24], with the added measures
of illumination control, input reparameterization, and im-
proved high-frequency response. This has the added benefit
of allowing our learned SVBRDFs to be easily rendered on
trained IDR geometry.

3 IMAGING OVERVIEW

This section outlines the core principles for efficiently mea-
suring the SVBRDF using a wide-baseline light field camera.

3.1 Wide-baseline Light Field Imaging
We utilize the base design proposed by [1] which employs
an ellipsoidal mirror to optically map the desired wide-
baseline light field at the object to a measurable light field at
the sensor. The left side of Figure 2 shows the optical design
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Fig. 2. We use an ellipsoidal mirror to map the light field from the object
at one focal point to a light field camera at the other. The light field
camera consists of a microlens array mounted in front of an imaging
sensor, with an aperture mask aligned to each lenslet to minimize
measurement blur. Due to the ellipsoidal geometry, the central cone
of light is not measured; however, we mount a Fresnel lens within the
ellipsoidal mirror imaging system to expand the angular range that we
can measure. We optimize the lens placement to limit occlusion and to
achieve the desired spatial coverage. The design parameters used in
the text are defined on the diagram.

and how this mapping behaves for a scene point located at
the focal point of the ellipsoid. Rays originating at one focal
point and reflected off the interior surface will converge
at the other focal point. This general focusing applies to
points around the focal point as well, though without full
convergence. The net effect is the wide-baseline light field
near one focal point being mapped to a far narrower light
field at the sensor. We measure this mapped light field by
placing a microlens array directly over the image sensor.
To ensure that each measured pixel corresponds to a single
light field ray, an aperture is added over each lenslet. We
defer to prior work for a detailed analysis of this design.

3.1.1 Extending the measurement cone

This analysis highlighted the missing central cone of the
measured light field as a key limitation of this design.
Not only are these rays not being measured, but there
is an empty region within each lenslet view of the light
field camera corresponding to this missing region. We can
use these blank pixels to help fill in the missing cone by
mounting a lens in the space between the mirror and the
camera. In particular, using the lens placement detailed in
Figure 2, we can fill a large portion of the missing cone for
the focal point at the cost of a small amount of occlusion due
to the lens mounting. This occlusion along with the now-
utilized central pixels of each subaperture view are shown
in Figure 3.

Since the light field camera employs a pinhole array
to prevent blurring, we can adjust the focal length and
placement of this lens to adjust the space-angle tradeoff
for these rays. The pinhole array design takes what would
otherwise be defocus blur and turns it into spatial sampling,
so we can increase the defocus to broaden the area that
we can measure. The placement options discussed here are
visualized in Figure 2.
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Fig. 3. The Fresnel lens mounting and the illumination arm both in-
troduce occlusion in our measurements. The occlusion from the illu-
mination arm varies as the arm is moved through its range, while the
Fresnel lens mounting is fixed. However, this occlusion earns us dense
illumination control and many measurements of the central cone.

To get the optimal light collection and limit occlusions,
we aim to mount a large-diameter lens in the widest gap
between currently measured rays as observed in the figure.
This gap occurs at height 73.21mm above the object with
a width over 5 inches in diameter, beyond the size of most
standard lenses. So, we use a Fresnel lens, as the pinhole
array also helps mitigate aberrations found in such a lens.
Considering available Fresnel lenses that would be nearly
in focus at this location, we use a lens with a 4 inch (d =
101.6mm) diameter and a focal length of 71.12mm.

For our first lens mounting option, we consider this lens
placed in focus between the sensor and the object, as in the
left ray diagram in Figure 2. Using the focal length equation,
we set f = 71.12mm, h = 508.0mm, and v1 = h − u1 to
find mounting height y1 = u1 that would bring this lens to
focus on the object:

y1 = u1 =
h−

√
h2 − 4fh

2
= 85.52 mm (1)

To consider the spatial extent of the measured light field,
we can use the magnification of this lens placement, since
we are in focus. We consider the size of a full-frame sensor
(using the half-width s = 17.5mm) magnified down to the
object plane (producing total width w1 = 2x1):

x1 =
u1

v1
s, (2)

w1 = 2x1 = 7.08 mm (3)

This spatial extent is smaller than the extent achieved
through the ellipsoidal mirror, where we aim for a target
object size of 20×20mm2. To more closely align these ex-
tents at the cost of angular resolution, we move the lens
down to the gap in the rays mentioned previously, with
y2 = 73.21mm, as shown on the right in Figure 2. We use
the defocus to broaden our spatial extent due to the narrow
aperture used in front of each microlenslet, which causes
each light field camera pixel to approximately measure just
a single light field ray. To compute the new spatial extent
w2 = 2x2, we utilize additional similar triangles shown in
green and orange on the diagram:
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w2 = 2x2 = 20.02 mm. (6)
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Fig. 4. We mount an LED strip over the object within the ellipsoidal mirror
to provide dense illumination control. This provides discrete illumination
control in elevation with spacing γ ≈ 8◦ and continuous illumination
control in azimuth via a rotation stage. The LEDs are 50mm away from
the sample, so they must be calibrated as nearby point light sources.

This provides a similar spatial extent as the ellipsoidal
mapping, which allows us to utilize this new information in
a similar way. We move forward with this configuration and
use it throughout our experiments.

3.1.2 Illumination control
The previous optical design, even considering the new lens
addition, is only capable of measuring different observation
angles and has no illumination control. Thus, we extend the
measuring capabilities by mounting a small strip of LEDs
over the object inside of the mirror, as shown in Figure 4.
We mount 12 LEDs in a circular arc 50mm away from the
sample, which gives us γ ≈ 8◦ spacing in elevation. The
LEDs are mounted on a rotation stage to provide full illu-
mination control in azimuth revolving around the primary
optical axis. As with the mounting of the lens, this comes
with the cost of a small amount of occlusion, observed in
Figure 3. This primarily limits us for retroreflective mate-
rials, where the observation directions of interest co-align
with the illumination direction.

Contrary to typical light stage designs for illumination
control, our LED mounting is forced to be very close to the
object by the mirror geometry. This forces us to consider
each light source as a nearby point light source as opposed
to a directional light source. We account for this through ad-
ditional calibration, where each point light source location
is triangulated by a set of measurements. The individual
lighting directions for each spatial location can then be
computed from these points.

3.2 Analysis of Measured Light Field

We show that the coverage that we can achieve of the
desired observation and illumination directions is very near
to the desired full-hemisphere coverage. To visualize this,
we place a color pattern of size 20mm × 20mm at the focal
point of the ellipsoidal mirror. Figure 5 shows a visualiza-
tion of the resulting light field as observed by the camera.
We observe that each spatial point is measured by multi-
ple pixels, with lenslets closer to the center of the image
(therefore also closer to the upper focal point) converging
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Fig. 5. Visualization of the captured light field. We place a color-coded plane at the object focal point and capture a wide-baseline light field image.
The far right column shows this captured image, which highlights the spatial extent of our measurements. The middle two columns visualize the
angular information encoded in the captured light fields; we color-code the captured object-space azimuth angle θ and elevation angle ϕ according
to the convention defined in the diagram. The added Fresnel lens provides additional measurements within each lenslet view and extends the
angular range of ϕ, as observed in the center of each lenslet view. Note that we closely consider only one lenslet view each for θ and ϕ; the angular
measurements are nearly uniform across different lenslets with only minor variations that are indistinguishable in this visualization.

closer to the lower focal point. The range of angles that we
observe is large as well, from 0 < θ < 2π in azimuth and
0 < ϕ < π/2 in elevation. This angular range paired with
the spatial mapping indicates a large span of measurements
of the object-space light field. The effect of the added fresnel
lens is apparent as well, as the central set of pixels in each
lenslet image corresponds to the mapping done by the lens.

Additionally, we consider our measurements on a point-
by-point basis. Figure 6 visualizes the continuous region of
rays that reach our sensor from a scene point at the focal
point along with three points shifted by 5mm away from the
focal point along each coordinate axis. The darker patches
within each region correspond to the actual measurements
once the space-angle tradeoff is taken into account, where
the aperture mask creates sparser measurements in space at
the sensor plane. This corresponds to measuring over small
discrete regions which effectively cover the entire visible
region. We observe that while the measurement distribution
changes and reduces as we move away from the focal point,
we are still capturing a broad set of angles from each point.
This includes measurements through the Fresnel lens, which
appear at the apex of the hemisphere under consideration.
Our mounting placement for this lens does not fill the entire
missing cone, but it does allow measurements through the
lens even as we shift away from the focal point.

4 NEURAL SVBRDF REPRESENTATION

In this section, we introduce our neural representation for
the SVBRDF, which trains over the data measured with the
previously outlined optical system.

4.1 Network overview
Capturing a full dataset with this optical design with 20◦

illumination spacing in azimuth illumination measurements
produces 9172877× 18× 12× 3 measurements (our calibra-
tion produces 9172877 measured rays from the light field
camera, the illumination accounts for 18×12 measurements,
and we capture three color channels for each measurement).

x

y

z

5mm5m
m

5mm

Fig. 6. Given a full hemisphere of possible observation directions from
a single point, we visualize the subset of this space that can actually be
measured using the imaging system that we propose. We analyze this
region for one point at the object focal point and three points shifted by
5mm away from the focal point along each coordinate axis, illustrated on
the left. Accounting for the space-angle tradeoff of the light field camera,
the dark points within each region specify the actual measured rays.

This prompts us to develop a representation of the data
that is equally as expressive but requires less storage. We
achieve this with the neural architecture shown in Figure
7. The network consists of four fully-connected layers of
size 512, comparable to the rendering network employed
in Implicit Differentiable Rendering (IDR) [24]. We pass as
inputs for each measured pixel p the (x, y) coordinates on
the observed plane, the viewing direction v, the set of m
observed lighting directions {ℓi|i ∈ 0..m}, and the surface
normal n of the observed plane. The network outputs the
set of predicted RGB colors {ci|i ∈ 0..m} for each lighting
direction m, which is trained based on the set of ground
truth RGB observations {Ii|i ∈ 0..m}. This setup allows the
network to be used as a BRDF texture map, where (x, y) act
as the texture coordinates. This makes it easy to transfer and
render our material captures on other geometries.
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Fig. 7. Overview of the network design to represent the SVBRDF. We
take as input the captured image data, one image per illumination direc-
tion, along with the calibrated light rays for each light field pixel and the
illumination direction for each pixel p and illuminant i. The observation
and illumination angles are transformed by the block P along with the
surface normal n to produce the reparameterized features ĥ and d̂ for
each pixel. The spatial coordinates (x, y) for each pixel are encoded
into Fourier features (x̂p, ŷp) by the block F . The resulting input vector
is of size 34. The main network consists of four fully connected layers
of size 512 (light blue), with a sinusoid activation function between each
layer (dark blue). The final output is a standard tanh activation (green),
producing the predicted color c at a given pixel p for each illumination
direction i (color values during training are mapped from [−1, 1]).

4.2 Encoding High-Frequency Features

The fully-connected network should be able to model the
complexity of the desired BRDFs, but as Sitzmann et al.
[28] and Tancik et al. [29] have shown, the network tends
to learn low-frequency representations of the data. To im-
prove the reconstruction of high-frequency details, the latter
work employs spatial encoding via Fourier features, which
have become common in neural scene representations. This
involves encoding the inputs (such as the spatial coordi-
nates) as a series of sines and cosines of these inputs with
increasing frequencies. We found that while this technique
does improve high-frequency reconstruction for spatial lo-
cations, it struggles to reconstruct high-frequency features
in reflectance when used on viewing or lighting direction
inputs. Instead, we employ the Siren activation function
technique [28], which has also been shown to similarly
improve high-frequency performance. This technique uses
a sinusoid activation function between layers as opposed to
the more common ReLU activation. We observed that Siren
improved our reconstruction of high-frequency reflectance
features, but failed to do the same for spatial textures. Ul-
timately, we employed both techniques; we applied spatial
encoding to our texture coordinates (x, y) and utilized the
Siren activation function throughout our network. Section
6.5 goes into detail on our observation that the combination
of spatial encoding and Siren activation functions performs
best for both complex reflectance and complex texture.

4.3 Input Parameterization

To further improve our ability to model the SVBRDF, we use
the half-angle reparameterization of [30], which is known
to improve the reconstruction of high-frequency reflectance
functions. Given the direction to the light source ℓ and the
viewing direction v, we compute the half-angle vector h and
difference vector d as follows. First, we define a coordinate
system on a given point using its surface normal n̂, a

surface tangent t̂, and the surface bi-normal b̂ = (n̂ × t̂).
Next, we transform ℓ and v into this coordinate system,
producing the incoming and outgoing rays wo and wi,
respectively. Finally, we compute the half-angle vector h and
the difference vector d:

h =
wo +wi

||wo +wi||
, d = rotb̂,−θh

rotn̂,−ϕh
wi, (7)

where (θh, ϕh) are the spherical coordinates of the half-angle
vector in the n̂−t̂−b̂ coordinate system. The spherical coor-
dinates of the difference vector (θd, ϕd) define the difference
in angle between h and wi in the same coordinates. The
rotation functions shown represent the rotation by the given
angle (−θh or −ϕh) around the given axis (b̂ or n̂).

To account for the cyclical and fixed-magnitude nature
of the vectors h and d, we represent them as vectors of the
sines and cosines of the azimuth and elevation angles for
each vector:

ĥ = [sin θh, cos θh, sinϕh, cosϕh] , (8)

d̂ = [sin θd, cos θd, sinϕd, cosϕd] . (9)

In place of passing the surface normal n̂, the viewing
direction v, and the lighting direction ℓ to the network,
we instead pass only ĥ and d̂. This improves our high-
frequency reflectance performance.

5 IMPLEMENTATION

We show the wide-baseline light field camera prototype
used in this work in Figure 8. The primary components
consist of the ellipsoidal mirror and the light field camera,
which is constructed by stacking a microlens array and
aperture mask on the sensor of a Nikon Z6 camera. The
sensor is placed at the upper focal point of the ellipsoid,
with room to place the scene to be imaged at the lower
focal point. A strip of LEDs is mounted in an arc over
the object imaging area inside the mirror, with the base of
the mounting connected to a rotation stage to provide full
illumination control. An additional shield of dark material
is mounted around the LED strip to reduce caustics directly
reflecting off the mirror and reaching the sensor, particularly
when the fresnel lens is added. This fresnel lens is mounted
above the object as described in Section 3.1.1, using minimal
mounting hardware to minimize the occlusions to the mir-
ror measurements. The mirror, lens, and light sources are
calibrated with the aid of an added helper camera aimed at
the lower focal point of the system and a small LCD placed
around the lower focal point.

5.1 Calibration
The need for individually estimated rays for each light field
pixel is straightforward in simulation, where the mirror
shape and alignment are known. However, practical diffi-
culties in manufacturing ellipsoidal mirrors at the desired
scale limit the reliability of its ellipsoidal shape. Therefore,
we designed a novel calibration procedure to map directly
between light field pixels and object-space light rays.

We utilize a small LCD and the calibrated helper camera
aimed at the object-space focal point. First, we display a
checkerboard on the LCD captured by the helper camera to
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Fig. 8. Optical prototype of the wide-baseline light field camera for
measuring SVBRDFs. The ellipsoidal mirror is positioned with the object
at the lower focal point and the light field camera at the upper focal
point. A calibrated helper camera and LCD aid in calibration and plane
detection. On the right are close-ups of the key additions to the design:
illumination control via an LED strip (top) and extended measurement
range via a Fresnel lens (bottom).

determine the location of the screen in camera coordinates
using standard techniques. We then display a series of 8-
bit graycode patterns on the display, capturing eight images
on the light field camera for LCD rows and eight images
for columns. Based on the sequence captured by a given
light field pixel, we determine the corresponding pixel on
the LCD. This, in turn, corresponds to a 3D point defined
in camera coordinates. Through shifting the LCD through
a series of different orientations and locations, we produce
a set of 3D points for each pixel on the light field camera.
Since each pixel maps to a ray in object-space, these points
should fall along this ray. Fitting a ray to these 3D points
produces the desired pixel-to-ray mapping. Given the com-
mon presence of outliers introduced by different sources of
errors in our measurements, we perform this fitting using an
iterative algorithm based on the Huber loss function, which
appropriately fits to inlier points.

Once we have calibrated each light field pixel to a
corresponding object-space ray, we project these rays to
the measurement plane. This plane is determined by once
again displaying a checkerboard on the LCD and capturing
its location with the helper camera. The materials that we
scan are placed on this display so that the object plane is
known. The measured rays are propagated to this plane,
providing 2D texture coordinates (x, y) based on the inter-
section location. These spatial coordinates paired with the
observation direction of each ray form the main input to the
BRDF network. The calibrated plane also means the surface
normal n is known and passed to the network as input as
well.

The final input required is the illumination direction ℓ
for each captured image. Since we are using nearby point
light sources, we need to calibrate the precise 3D location of

Iridescent A Pattern

Hologram Iridescent B

Peacock Butterfly

Fig. 9. Objects used for evaluation: peacock feather (Peacock ), uniform
iridescent material (Iridescent A), patterned origami paper (Pattern),
holographic dove from a credit card (Hologram), spatially-varying irides-
cent material (Iridescent B), and butterfly hair clip (Butterfly ).

each LED. We perform this calibration by imaging a reflec-
tive sphere of known diameter through the helper camera.
The observed reflection of each light source through this
sphere provides a ray that observes the desired 3D point.
By repeating this process for each light source and with
several sphere positions, we produce a set of rays observing
each light source. We find the 3D location of each LED by
triangulating these rays to find the intersection point closest
to each ray. The illumination direction for each observed ray
can be computed by the difference between the intersection
point of the observed ray with the object plane and the
light source location. Any measured rays occluded by the
illumination arm are masked and omitted from training for
that particular lighting position.

6 RESULTS

We show a range of results for reflectance with high-
frequency variation in space and/or angle using the ob-
jects shown in Figure 9. We produce visualizations of the
learned SVBRDF for different input parameters along with
renderings of the objects under novel viewpoints and illu-
minations. Finally, we show reproductions of the captured
materials rendered on alternate geometry by texture map-
ping our learned SVBRDF onto these objects.

6.1 Learned SVBRDF Visualization
We first analyze our results by visualizing the learned
SVBRDF. We fix the spatial coordinates at (x, y) = (0, 0) and
visualize the observed color at every observation angle over
the hemisphere for a set of different illumination conditions.
Figure 10 shows these results for five different material
captures under three different novel illumination directions.
We observe that we capture the different ways that irides-
cent material can present itself, with the objects Iridescent
A, Iridescent B, and Hologram displaying different iridescent
diffraction effects. Also, the mostly-diffuse Pattern object
shows consistent diffuse reflectance when the illumination
elevation angle is high (columns one and two) but behaves
more specularly at grazing angles, consistent with known
behavior.

Some artifacts do appear in these results, particularly
noticeable for the diffuse Pattern object. First, there is a
noticeable color shift moving toward the upper portion
of these plots. This is due to the differences in imaging
between the lens (upper portion of plot) and the mirror
(lower portion). The quality of the Fresnel lens does tend to
degrade the color reproduction in practice, leading to more
washed out colors in the upper portion of the plot.
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Fig. 10. Visualization of the SVBRDF learned for various input materials. We fix the spatial coordinates at (x, y) = (0, 0) and plot the observed
color at viewing direction v by parameterizing v according to its azimuth angle θ and elevation angle ϕ, as defined in the illustration on the right.
Each column is generated with a different fixed illumination direction ℓi.

Fig. 11. Renderings with a fixed viewpoint while moving the illumination
in an arc over the object from right to left (see diagram). Note that
the dove’s left wing is more extended when illuminated from the right
(orange) and more retracted when illuminated from the left (green). This
creates an effect where the dove appears to rotate in space.

6.2 Novel Renderings

We next consider our SVBRDF representation by producing
novel renderings of the captured material planes. Figure 17
shows a set of renderings at different viewpoints with two
different illumination directions. We render a 20mm×20mm
area of the captured material. These results highlight the
angular and spatial effects that we are able to reproduce. We
can reconstruct materials with either high angular frequency
(Iridescent A), high spatial frequency (Pattern), or both (Iri-
descent B, Hologram) Particularly, the Hologram, a common
security feature on many credit cards, is exemplary of the
capabilities of the proposed method. The dove appears in
iridescent color in certain observation/illumination condi-
tions, but completely disappears into the background in
others, which is consistent with the observed effect from
our ground truth observations.

We further render the Hologram under a fixed view-
point with varying illumination. Figure 11 shows this set
of renderings, which reveal the holographic nature of this
material. The dove is designed to appear to rotate slightly
under changing illumination, which we observe in this set
of renderings as well. Capturing this result requires the
measurement of fine details in both space and angle, which
our design delivers in an efficient way.

We observe some artifacts from errors in the object plane
estimation; due to the very shallow depth of field of the
wide-baseline light field camera, small errors in plane esti-
mation lead to computed intersection points (x, y) having

Fig. 12. Renderings with a fixed illumination direction while moving the
viewpoint in an arc in elevation (see diagram). We note the increase in
artifacts as we move closer to a head-on view; this is due to the relatively
limited number of observations from these angles and the optical quality
of the Fresnel lens. However, we only achieve these viewpoints at all
due to the addition of the Fresnel lens.

errors that are most significant at these grazing angles.
These artifacts are most apparent near the outer range of
the material, most visibly on the Pattern object. This is
expected due to the fall-off in the number of measurements,
as mentioned in Section 3.1.1 when determining the spatial
extent. The quality of the reconstruction is also dependent
on the observation elevation angle. Figure 12 shows a set
of renderings with fixed illumination at various observation
elevation angles. As we move into the previously missing
central cone, which we aimed to fill with the Fresnel lens,
additional artifacts appear. Relative to the wider set of
angles captured through the mirror, we capture far fewer
measurements in these regions. Some degradation in results
is expected therefore, but the filled cone allows for any
observations in this range at all, as discussed in Section 6.5.
Overall, the central region reproduces the captured material
faithfully and the full area is captured with some artifacts.

6.3 Material Transfer
Finally, we demonstrate the applicability of our captured
SVBRDFs by rendering them as BRDF texture maps on
different geometry. Figure 13 shows each captured material
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Fig. 13. We render pre-existing geometric models using our captured
SVBRDFs as texture maps. This tests our reconstruction over a range
of different surface normals and observation angles, and we see both
the iridescent effects and the spatial textures successfully rendered.

rendered on the skull geometry from a pre-trained IDR
network [24], where we replace the rendering network with
our own trained SVBRDF representation. This shows the
captured materials under a range of different observation
angles and surface normals that were not part of training.
The illumination is set to shine top-down in these images;
note that we do not model self-occlusion in these renderings.

6.4 Validation

We validate our learned SVBRDF model by leaving captured
illuminations out of training and then reconstructing the
original data. Figure 14 shows this process performed with
different quantities of training data. We first consider a
data set of the full 198 captured images under different
illumination conditions. Using 197 of these images, we train
the SVBRDF model and apply this model to reconstruct the
missing data image. We analyze the reconstruction quality
in terms of peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM).

The figure shows this experiment performed with 198,
27, and 9 images, with one image in each case left out for
validation. We visualize the reconstructed SVBRDF in the
same way as Figure 10 along with two renderings under
novel viewpoint and illumination conditions. We further
show the ground truth and reconstructed data for the left-
out data image, with a close-up provided of one sub-
aperture view. This reveals the quality at which we are able
to reconstruct the high-frequency features present in this
missing data. Even when training with only 26 images, we
are able to reconstruct most of the image features present
in our measurements. The PSNR and SSIM values back up
these observations, as we note high values for each until a
drop-off once we utilize only 8 images in training.

6.5 Ablation Study
These results exemplify the capability of our proposed
imaging system and neural SVBRDF representation. We
consider the impact of particular design elements on our
reconstructions, shown in Figure 15.

The material transfer results in particular highlight the
impact of the Fresnel lens addition on our ability to capture
on model these materials. We observe how the lack of
this lens prevents the reconstruction of the central cone of
light leaving each scene point. This cone corresponds to
the ability to reconstruct the appearance of surface normals
oriented toward the observer.

The use of positional encoding ensures that high-
frequency spatial features can be faithfully reconstructed.
Without it, even with the Siren activation function, neigh-
boring spatial regions are combined and treated as angular
variation, leading to the BRDF plots shown.

The Siren activation technique improves our angular
reflectance reconstruction. We observe the loss of many
high-frequency reflectance elements when we revert back
to just using spatial encoding to treat the angular features.

7 CONCLUSION

We introduced an imaging system and neural SVBRDF
representation capable of capturing and reconstructing the
reflectance of complex materials. Our proposed imaging
system extends the capabilities of a wide-baseline light
field camera to capture observations over a full hemisphere
surrounding the material in a single exposure, enabling
efficient reflectance measurements. The light field imaging
capability also provides measurements in space along with
these diverse angular measurements in the same exposure.
We additionally utilize an illumination system to provide
illumination control over a full hemisphere. This imaging
system provides efficient high-quality measurements that
we can use to train a neural SVBRDF representation for a
broad range of complex materials. We show that we are
capable of reconstructing complex, high-frequency details
in angle (iridescence) and space (spatial textures).

7.1 Limitations and Future Work
We conclude by considering the limitations of our approach
and outlining avenues for future work. We noted at the start
of this paper several limitations, including the size of the
capture area, limitations in quality imaging optics, and stan-
dard light field space-angle trade-offs. These limitations are
largely fixed into the optical design based on the ellipsoidal
mirror and light field camera parameters, though further
refinement of the calibration techniques could overcome
limitations in imaging optics.

Our technique is also affected by a loss in spatial resolu-
tion that is endemic to light field acquisition using lenslet
arrays. We use a sparse pinhole array on the light field
camera with a pitch of approximately 2.2mm; one approach
to increase resolution to move the camera by small amounts
to measure light in the gaps between the pinholes (similar
to the Jitter camera [31]). Another approach, borrowing
ideas from hybrid imaging [32], is to take a high resolution
2D image of the material and using it to regularize the
reconstruction.
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Fig. 14. Validation of the learned SVBRDF model. We train our model with different numbers of illumination conditions: 198 (left), 27 (center),
and 9 (right). In each case, we consider illumination conditions from the LED spaced fairly evenly over the hemisphere of observations. For each
experiment, we train our model with one data image left out for validation. We visualize the reconstructed SVBRDF (top) and novel view synthesis
(second row) along with the ground truth and reconstruction of the left-out data image, with a focus on one sub-aperture view to highlight the
differences. We observe high-quality reconstruction with the full dataset, and fairly high-quality reconstruction even when reducing to 27 illumination
observations. Our results degrade beyond that, as applying only 9 illumination conditions does not provide the expressiveness that our model
requires to interpolate between the known observations. These quality observations are confirmed through peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) calculations between the reconstructed and ground truth left-out data images.

Full 
Result

No Siren 
 Activation

No Fresnel 
Lens

No Positional 
Encoding

Iridescent A Pattern

Fig. 15. The impact of major design decisions on reconstruction results. We show a BRDF plot, rendering, and material transfer for two materials
(Iridescent A and Pattern) both with and without the added Fresnel lens, positional encoding, and Siren activation. The addition of the lens fills in
the missing central cone from the ellipsoidal mirror, allowing the results to actually be used in rendering over a full set of viewpoints. Siren activation
ensures that we can characterize high-frequency angular effects like iridescence; without it, we lose all of these effects but still maintain the ability
to reconstruct spatial texture through the positional encoding. Without the positional encoding, the reflectance of each point is accumulated from a
large area of neighboring points, removing our ability to reconstruct high-frequency effects in either angle or space.

We further note that we are limited in our capture to
planar materials, as we do not reconstruct any geometry
information in our training. This creates problems when
reconstructing even mostly-planar materials, as our depth
of field is very shallow. Figure 16 shows the attempted
reconstruction of a butterfly hairclip. While mostly planar,
the varying heights on the surface prevent quality recon-
struction at these different depths. We are able to reconstruct
several features, including the texture of the flowers and the
iridescent star, but many details not on the level with the
flowers are lost. We limit ourselves to planar objects due to

the high-frequency details we aim to capture in angle. This
makes common shape reconstruction techniques, which rely
on color consistency across observations, difficult to apply
to our data. Future work in this space could develop the
ability to model geometry variation along with reflectance
for improved modeling of objects like this.
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Fig. 16. Renderings of Butterfly (top) and reference images of the clip
(bottom). Due to the varied surface height of different elements and the
limited depth of field of our imaging system, we are unable to resolve
each element in focus with our current technique.
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Fig. 17. Renderings of four different material captures under novel viewpoint and illumination conditions. The first and second rows for each object,
labelled ℓ1 and ℓ2, show two different sets of novel viewpoints under two distinct illumination directions. The third row, labelled ref, shows reference
captures of the object using a color camera and directional light source. This serves as our visual reference, though the exact observation angles
and illuminations of these captures are not necessarily identical to the rendered results as the camera and light source were not calibrated. However,
we observe the same iridescent phenomenon in our renderings that are seen in the reference images. In particular, the Hologram had sufficient
spatial information to nearly align our rendered images with the ground truth; as a result, we produce a matching rendering for each object view.
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