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Abstract

The world around us is �lled with complex visual phenomena that we may wish to understand or

recreate. Iridescence, intricate geometry, and complex spatial texture are all examples of such phenom-

ena that can be challenging to both capture and represent. In order to characterize them, we need to

consider how light interacts with di�erent spatial points over a broad range of incoming and outgoing

directions. Light �eld cameras provide a framework for capturing this spatial and angular information in

a single image exposure; however, traditional hand-held light �eld cameras only observe a small fraction

of the cone of light emitted by a given scene point. As a consequence, the study of interesting angular

e�ects like iridescence are beyond the scope of such cameras.

The aim of this thesis is to present a novel light �eld imaging device capable of measuring over a

wide baseline and to explore the space of applications that would signi�cantly bene�t from such light

�eld data. We motivate why and how wide-baseline light �elds (WBLFs) open up many exciting new

capabilities in light �eld processing, 3D shape reconstruction, and iridescent re�ectance capture.

The core contribution of this thesis is the imaging system design for a WBLF camera. We achieve

a wide-baseline by imaging the scene indirectly through an ellipsoidal mirror. The combination of a

light �eld camera and the ellipsoidal mirror provides rich measurements in space and angle. We further

analyze the captured light �elds to understand the system’s capabilities, including considerations of

resolution, angular range, coverage, and depth of �eld. Additionally, we develop a novel calibration

procedure to account for the unique challenges present in such an imaging system.

We show this WBLF camera in action through a set of di�erent applications that bene�t from our

data. First, we develop a suite of geometric processing algorithms to provide a parallel to the tech-

niques employed in traditional light �eld imaging, including viewpoint synthesis, refocusing, and shape

reconstruction. In particular, our shape reconstruction technique leverages the unique bene�ts of the

WBLF camera to jointly estimate 3D shape and surface normals. Second, we develop a network sim-

ilar to state-of-the-art 3D scene representations to train over WBLF data and produce 3D shape and

re�ectance reconstructions for small objects with varied appearance. Finally, we show that our system

is capable of measuring the high dimensionality of the spatially-varying bidirectional re�ectance dis-

tribution function (SVBRDF) e�ciently. We additionally develop a neural SVBRDF representation to

render the captured data over a broad range of novel viewpoints, illuminations, and geometries.

In total, these contributions provide a signi�cant advance to light �eld imaging by establishing the

foundation for wide-baseline light �eld imaging and its applications.
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1Introduction
As our eyes observe the world around us, we see a signi�cant amount of visual complexity and diversity.

From a bevy of vibrant colors to ever-changing visual appearances as we move through the world, the

light that we observe contributes to our understanding and admiration of the things that we see. The

nature of this interaction with light for many things in this world is often highly complex and can

reveal interesting characteristics of the objects involved. What if we could design a camera that could

e�ectively capture this complexity to add to our understanding of the world?

Everything we see is constantly interacting with light in interesting ways; light traversing a scene

reaches a point in the scene and is then redistributed according to that point’s material properties and

geometric information. The angular cone of light that is emitted by that point often captures rich insights

into the nature of this interaction with light. From a fairly mundane encoding of the surface’s re�ectance,

be it Lambertian or specular, to more exotic phenomena like iridescence caused by di�raction, thin-�lm

interference, or structural coloration, measuring the radiance of light over a large solid angle—perhaps,

even a hemisphere—can play a pivotal role in understanding shape and re�ectance.

Standard 2D cameras only capture one perspective of each scene point’s re�ectance, which does

not allow for a full understanding of the scene. Recently, light �eld cameras have been developed to

sacri�ce some amount of spatial resolution in exchange for sampling in the angular domain. However,

such designs only measure a small portion of the cone of light emitted by a scene point. For example, a

camera observing a scene point that is a meter away from a lens with a light gathering diameter of 5 cm

measures a small cone that has an angular spread of ∼ 3◦. Even using a powerful microscope objective

with a numerical aperture of, say, 0.5 only allows us to measure a cone of light with a spread of 60◦. A

multi-camera light stage, or perhaps a kaleidoscope, can be used to surround the object of interest to

capture a larger cone of angles; yet, the number of measurements per scene point scales linearly in the

number of cameras/viewpoints, which results in a sparse measurements of light rays over the angular

cone of interest. Hence, current systems are woefully inadequate when it comes to providing a dense
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measurements of the wide angular cone of light emitted by a scene.

This thesis proposes a novel design for the acquisition of wide-baseline light �elds, i.e., a system

that measures a large fraction of the cone of light emitted by scene points. We achieve this by using

a standard light �eld camera that observes the scene of interest, not directly, but through an ellipsoidal

mirror. This design relies on the observation that the ellipsoidal mirror morphs the wide cone of light

from one of its foci to a much smaller cone at the other focus point; hence, placing the scene at one

focus and the camera at the other allows us to acquire a wide-baseline light �eld. We show that the

design is, in principle, capable of obtaining a larger cone of light than prior designs, often close to a

hemisphere for many scene points. The measurement of wide-baseline light �elds can signi�cantly

enhance conventional uses of such signals while enabling a bevy of new capabilities.

1.1 Thesis Contributions

The aim of this thesis is to present a novel light �eld imaging device capable of measuring over a wide

baseline and to explore the space of applications that would signi�cantly bene�t from such light �eld

data. Most literature on light �eld capture and processing is focused on narrow-baseline imaging sys-

tems, as these systems present the most common form of single-shot light �eld capture. However, this

thesis presents motivation for why and how wide-baseline light �elds open up many exciting new ca-

pabilities in light �eld processing, 3D shape reconstruction, and re�ectance estimation.

In particular, this thesis makes the following contributions, highlighted in Figure 1.1:

• Wide-Baseline Light Field Camera Design (Chapter 3). We propose a design for a catadioptric

device using a light �eld camera and an ellipsoidal mirror for capturing wide-baseline light �elds.

We analyze our device to consider the sampling, resolution, and coverage of our captured light �elds.

We also consider design variations that extend the capabilities of our system, including additions

for illumination control and extended angular range. The use of an ellipsoidal mirror provides unique

challenges for calibrating our system, so we develop a suite of novel calibration procedures in Chapter

4 to achieve our desired results.

• Geometric Light Field Processing from WBLF Data (Chapter 5). We demonstrate that our cap-

tured light �elds can be processed using conventional light �eld processing techniques to refocus

the scene at di�erent depths, reconstruct the shape of objects, and generate synthetic images from

novel viewpoints. Additionally, the larger angular cone can dramatically enhance these capabilities

by providing extremely shallow depth of �elds and the ability to image the backside of an opaque ob-
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Refocusing View Synthesis 3D Shape + Normals

Geometric Light Field Processing
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Standard Light 
Field Camera Ours
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Figure 1.1: Summary of thesis contributions. We propose an imaging design for a wide-baseline

light �eld camera and show that it is capable of measuring a much larger cone of light compared to

conventional light �eld imaging techniques. This imaging system provides rich measurements in both

space and angle. We apply this camera system for three main contributions. First, we parallel tradi-

tional light �eld processing techniques by developing a suite of geometric processing algorithms on our

wide-baseline light �eld data, including refocusing, viewpoint synthesis, and 3D shape and normal es-

timation. Second, we extend the 3D reconstruction capabilities of our system by employing an implicit

neural scene representation; this improves our 3D shape estimation, especially for real scenes, and en-

ables rendering from both novel viewpoints and novel illumination conditions. Finally, we apply the

wide-baseline light �eld camera to capturing dense measurements of the spatially-varying bidirectional

re�ectance distribution function (SVBRDF); paired with a neural re�ectance representation, we show

that we are able to reconstruct spatially-varying iridescent materials, which exhibit high-frequency re-

�ectance details in both spatial and angular domains.
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ject. Furthermore, by using visibility as a physical cue, we can estimate the surface normals of scene

points; such a capability, especially in the absence of any active illumination or strong assumptions

on the scene illumination, is unique to our setup.

• Neural 3D Reconstruction from WBLF Data (Chapter 6). We observe that state-of-the-art neu-

ral scene representations bene�t from our captured data. These bene�ts include more continuous

sampling relative to the sparse 2D input images used along with single-shot capture of 3D geometry

and re�ectance. We implement an implicit neural scene representation with added illumination con-

trol to produce high-quality 3D reconstructions of geometry, novel viewpoint synthesis, and novel

illumination synthesis for both synthetic and real scenes.

• Reconstructing Spatially-Varying Iridescent Re�ectance fromWBLF Data (Chapter 7).

Our wide-baseline light �eld camera provides dense measurements in space and angle over a broad an-

gular range. By further adding dense illumination control, our setup is capable of e�cient measuring

across the full gamut of the spatially-varying bidirectional re�ectance distribution function (SVBRDF).

In particular, our measurement capabilities over a broad range of angles, including grazing angles to

the scene surface, enables us to capture high-frequency angular e�ects like iridescence. Combined

with the spatial measurements that our system provides, we are able to capture spatially-varying iri-

descent re�ectance phenomena, which may be caused by di�raction or structural coloration. The high

data output and lack of fully expressive iridescent models leads us to further develop a neural SVBRDF

representation, which we train over our wide-baseline measurements. We show that we are able to re-

construct complex iridescent materials that exhibit high-frequency e�ects in both spatial and angular

domains.

1.2 Thesis Layout

The remainder of the thesis is organized as follows.

Chapter 2 outlines the fundamentals of light �eld imaging, including prior techniques for capturing

such information. We motivate why we aim to extend the e�ective baseline of light �eld capture with

our imaging setup.

Chapter 3 details the optical design of the wide-baseline light �eld camera. We describe the optical

qualities that enable this design and consider the capabilities of our imaging system. We further consider

additions to this design that were made to support additional applications of our camera. Chapter 4

establishes the required calibration techniques for our imaging system.
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Chapters 5-7 showcase our three primary applications of the wide-baseline light �eld camera: geo-

metric light �eld processing, neural 3D reconstruction, and spatially-varying iridescent re�ectance.

Chapter 8 concludes this thesis, highlights the impact of this work on the �eld of light �eld imaging,

and notes avenues for future work in this space.





2Wide-Baseline Light Field Imaging

In this thesis we aim to measure the light that is propagating from a scene over a broad range of outgoing

angles. These broad angles provide rich insight into the characteristics of the scene, including geometry

and re�ectance information. In this chapter, we consider the basics of representing and capturing this

information.

2.1 Light Fields

Light �elds are a useful structure for de�ning how light is propagating through space. [Gershun, 1939]

de�ne the light �eld as a mapping of the geometry of the space of 3D rays to the radiometric properties

of light present along a given ray. The properties measured can be any quantity, but a typical usage of

the light �eld de�nes this as the radiance of light L propagating along the ray. The geometry of the 3D

rays is most simply de�ned by the plenoptic function, de�ned by [Gershun, 1939] as L (x ,y, z,θ ,ϕ), a 5D

function de�ning rays originating at any 3D point (x ,y, z) and propagating in spherical direction (θ ,ϕ).

This 5D function can extend to higher dimensions by considering time, wavelength, and polarization.

Most simply, we extend to include wavelength by considering the intensity of light within red, green,

and blue channels that align with the spectral response of the imaging system.

If we assume that the light �eld is propagating through empty space and that the intensity of light

along a ray does not experience any changes while propagating through this space, then we can simplify

the 5D plenoptic function to four dimensions. To limit the degrees of freedom of the light �eld function

to these four dimensions, we have several options for parameterization. [Levoy and Hanrahan, 1996]

de�ne a 4D parameterization of the light �eld as the propagation of light rays between two parallel

planes, as shown on the left in Figure 2.1. This parameterization allows for simple resampling for novel

renderings and aligns well with light �eld imaging systems that measure the incoming light �eld along

a plane. However, this system is less well-suited for light �elds propagating over a broader angular
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range, as the spatial extent required on the two planes would increase dramatically as we move toward

grazing angles. An alternative approach is to parameterize the light �eld as two intersections with a

sphere of known radius and position in 3D space [Camahort et al., 1998], illustrated in the center of

Figure 2.1. Each ray propagating within the sphere will intersect with it at two locations; representing

these locations by the spherical angles (θ ,ϕ) creates four dimensions across which to consider the light

�eld. This parameterization considers the entire light �eld for bounded scenes, including at grazing

angles; however, it aligns less closely with more conventional image projection operations. Finally, we

can simply consider the 5D plenoptic function at points along a 2D plane; this produces 2D intersection

coordinates (x ,y) and 2D spherical angles for the direction (θ ,ϕ). This is shown in the �gure on the

right. We generally consider our imaging system in the context of this �nal parameterization. This

allows us to consider how a light �eld at one plane (e.g. the object plane) propagates to the light �eld

at another plane (e.g. the sensor plane). Separating the representation into a spatial location and an

angular component makes analysis of spatial and angular resolution simpler and more intuitive.

2.1.1 Light Field Imaging

Since light �eld information is present in the full range of light ray directions present in the scene,

measuring the full light �eld is a daunting task. Most light �eld imaging systems therefore capture just

a portion of the full light �eld; most commonly, this involves capturing a narrower range of light �eld

angles or sparsely measuring the light �eld with discrete cameras. Several techniques exist for light �eld

imaging, including microlens array-based cameras, multi-camera arrays, and other multi-view imaging

techniques. Figure 2.2 summarizes the di�erences between these techniques and our proposed imaging

system.

Microlens array-based light �eld cameras [Lippmann, 1908, Ng et al., 2005] provide a compact optical

design for resolving the scene focused on the image plane of a lens into spatial and angular dimensions.

Light �elds acquired from such devices have been studied extensively for refocusing [Ng, 2005] as well

as estimation of shape and re�ectance [Wang et al., 2016]; the interested reader is referred to [Levoy,

2006] for a survey on light �elds, and [Georgiev et al., 2006] for a study of space-angle tradeo�s with

such designs. The angular range of the light �eld that these devices are capable of capturing is limited

by the aperture of the main objective lens. A standard aperture of 5 cm imaging a scene from a meter

away captures a cone with an angular range of only 3◦.

Light �elds have also been studied in the context of microscopy [Levoy et al., 2006, Lin et al., 2015].

Unlike traditional photography, microscopes do gather a larger cone of light from scene points; crucially,
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Figure 2.1: Di�erent parameterizations of the light �eld. Light �elds characterize the propagation

of a �eld of light rays through space. This propagation can be parameterized in di�erent ways based

on the application. First, we show a classic two-plane parameterization of the light �eld (left). This

representation denotes light rays propagating from a point (u,v) on one plane to a point (s, t) on another,

resulting in a light �eld de�ned by L(u,v, s, t). This system performs well for light �eld rays that all

generally propagate in the same direction. Second, we show a spherical parameterization (center). In

this case, light �elds are recorded based on the spherical coordinates of the two intersections of a ray with

a sphere, resulting in a light �eld de�ned by L (θ1,ϕ1,θ2,ϕ2). This system does well to represent light

�elds within an enclosed space, de�ned by the sphere. Finally, we show a point-angle parameterization

(right). Here, light �eld rays are denoted with an origin (x ,y) and direction (θ ,ϕ), resulting in a light

�eld de�ned by L (x ,y,θ ,ϕ). This system enables consideration of angle and space separately for light

�elds where the plane of consideration is of importance. It also represents a broad angular range of light

rays easily.

the large spatial magni�cation of the microscope results in commensurate compression of the angular

cone—a property that is shared with our design. However, even these devices are limited in angular

range. Assuming a numerical aperture of 0.5 for a powerful microscope objective, the light �eld micro-

scope still would only cover an angular range of 60◦. Attempting to expand this angular range further

would require objective lenses that have impractically large numerical apertures.

Camera arrays [Wilburn et al., 2005] provide a di�erent approach to acquire light �elds; their large

baseline provides a synthetic aperture that excels in focusing through complex occluders [Vaish et al.,

2006]. Closely related to camera arrays are light stages [Debevec et al., 2000], used extensively for shape

and re�ectance acquisition, and kaleidoscopes, used for acquiring light �elds [Manakov et al., 2013] as

well as 3D shape [Ahn et al., 2021, Lanman et al., 2009, Xu et al., 2018]. All of these techniques produce

multiple view points—real or virtual—that fully surround an object; yet, each view point only observes
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Figure 2.2: Comparison of di�erent light �eld imaging techniques. We show the ray mapping

for several common light �eld imaging techniques along with our proposed imaging system, which

will be discussed further in Chapter 3. First is a traditional microlens array-based light �eld camera,

which measures only a very narrow cone of the object light �eld. Second is a light �eld microscope,

which captures a much larger cone due to the large spatial magni�cation of the system. However,

these devices miss out on any grazing angles of the light �eld. Third is a kaleidoscope, which utilizes

a con�guration of planar mirrors to produce a wide range of synthetic viewpoints of the object. These

devices do cover a broad angular range, but they do so sparsely and discretely, leaving large gaps in the

angular extent due to self-occlusion and mirror geometry. Finally, we show our imaging design, which

utilizes an ellipsoidal mirror to continuously map a large angular range of the light �eld to our sensor,

which is a microlens-based light �eld camera design.
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each scene point a single time, producing just one additional measurement direction. Thus, we obtain

a very sparse aliased sampling of the cone of light from any scene point. Additionally, kaleidoscope

designs that produce a large number of virtual view points, many of these views are severely occluded

by the mirror geometry or the object itself. This further limits the number of times a particular scene

point is observed.

Closely related to the proposed imaging of wide-baseline light �elds is a body of work that aims

to acquire wide �eld of view (FoV) light �elds. [Taguchi et al., 2010b] image an array of spherical mir-

rors with a conventional camera; here, each spherical mirror provides a wide FoV image with a slightly

di�erent perspective, thereby mimicking a camera array. Moving the camera axially in front of a sym-

metric mirror has also been shown [Taguchi et al., 2010a] to produce wider FoV devices. Similar designs

for expanding the FoV, using refractive optics, were considered in [Dansereau et al., 2017]. While these

works are conceptually similar to ours, enhancing the FoV of the camera is signi�cantly di�erent from

capturing a larger cone of light from scene points. Expanding the FoV is equivalent to expanding the

angular range of the measured light �eld at the sensor plane. This does not expand the angular range of

the measured light �eld at the scene.

2.1.2 Wide-Baseline Light Field Imaging

This thesis proposes a device capable of measuring light �elds over a broad angular range, as shown in

Figure 2.2. Through the use of an ellipsoidal mirror, we are able to continuously map a broad cone of

the light �eld from the object to a narrower, measurable cone at the sensor. We describe this design is

more detail in Chapter 3.

2.2 Catadioptric Imaging

Since our imaging design utilizes an ellipsoidal mirror to achieve the desired angular range, we consider

other prior uses for such imaging optics. Our proposed approach falls under the class of catadioptric

cameras, where mirrors are used to augment the refractive optics found in consumer devices. Baker and

Nayar [Baker and Nayar, 1998] study the family of mirror shapes that can alter the �eld of view of a

perspective camera, and ellipsoidal mirrors are among the shapes that they analyze; our work can be

interpreted as a specialized application of these ideas, when a scene and a light-�eld camera are placed

in the two foci of such a mirror.

The large light collection area of mirrors has been used extensively to study re�ectance properties of

materials, using ellipsoidal [Mukaigawa et al., 2007, 2009] as well as parabolic mirrors [Dana and Wang,
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2004, Ghosh et al., 2007, Zhang et al., 2015]. In particular, our use of ellipsoidal mirrors is motivated

from Ghosh et al. [Ghosh et al., 2007] and Mukaigawa et al. [Mukaigawa et al., 2007, 2009], where

the BRDF of a material sample is measured over a large angle. All of these works apply the re�ective

properties of curved mirror surfaces with focal points. For light originating or passing through one of

these focal points (ellipsoidal geometries have two, parabolic geometries have one), the re�ection o�

the mirror behaves in a highly controlled manner (ellipsoidal mirrors focus this light to the other focal

point, parabolic mirrors parallelize this light). This leads these works to solely focus on the re�ectance

of a single scene point. Considering these works in terms of the light �eld L (x ,y,θ ,ϕ), these devices

densely measure a broad range of θ and ϕ but measure from just a single point (x ,y).

Moving outside the focal point loses the controlled re�ective mapping, but these light rays still

propagate similarly to the others; the geometry is smooth in both cases, so small changes away from

the focal point will have small changes in the resulting mapping. Our work combines the angular range

provided by these mirrored devices with the spatio-angular measurements provided by a light �eld

camera. By placing a light �eld camera within our system, we consider light �eld rays beyond just the

focal point of the scene. This enables us to retain the angular measurements that capture re�ectance

information while additionally considering multiple views of di�erent spatial points in the scene. We

can apply this additional information to reconstruct the scene geometry and consider spatially-varying

re�ectance. The next chapter details our optical design that utilizes both an ellipsoidal mirror and a light

�eld camera.
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In this chapter, we introduce a novel optical design for capturing wide-baseline light �elds.

As we discussed in Chapter 2, conventional designs for capturing light �elds lack full coverage of

the hemisphere of observation directions surrounding a scene. Whether this is due to the limited cone

of light captured by a light �eld camera or due to the sparse measurements from a multi-camera or

kaleidoscopic imaging setup, this proves detrimental to a variety of light �eld processing tasks. Our

proposed light �eld imaging setup is capable of capturing wide-baseline light �elds in a single exposure.

We achieve this by using a standard light �eld camera that observes the scene of interest, not directly,

but through an ellipsoidal mirror. This design relies on the observation that the ellipsoidal mirror morphs

the wide cone of light from one of its foci to a much smaller cone at the other focus point; hence, placing

the scene at one focus and the camera at the other allows us to acquire a wide-baseline light �eld. We

show that the design is, in principle, capable of obtaining a larger cone of light than prior designs, often

close to a hemisphere for many scene points.

Furthermore, we analyze the properties of our wide-baseline light �eld camera, including resolution,

depth of �eld, coverage, and more. In this, we consider the unique ways that the ellipsoidal mapping

impacts the measured light �eld. This impact provides particular bene�ts that we can utilize and lim-

itations that we aim to mitigate. To overcome some limitations, we introduce variations to the optical

design, including illumination control and additional imaging optics. The design considerations for

these variations will be discussed here, with the applications discussed in Chapters 5 - 7 using di�erent

variations based on the target applications.

Contributions. In total, this chapter introduces a new methodology for capturing wide-baseline light

�elds, making the following key contributions.

• Wide-baseline light �eld camera design. We design a catadioptric device using a light �eld camera and

an ellipsoidal mirror for capturing wide-baseline light �elds.
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• Wide-baseline light �eld analysis. We derive notions of resolution, depth of �eld, coverage, and more

analytical tools to better understand the optical mapping of the ellipsoidal mirror.

• Variations for illumination control and extended angular range. We develop variations to the optical

design to better �t the imaging setup to particular applications.

3.1 Imaging Overview

We now describe an overview of our imaging system.

3.1.1 Imaging Through an Ellipsoidal Mirror

The key optical element of our imaging design is an ellipsoidal mirror, as shown in Figure 3.1. The

geometry of an ellipsoid is driven by the radii in each of the three coordinate directions. Since we aim to

apply the ellipsoidal to mapping the light �eld from a scene to a sensor, we limit our consideration to the

subset of ellipsoids known as spheroids. In this case, two radii are set to be equivalent, meaning our 3D

geometry is formed by revolving a 2D ellipse around its major axis. The geometry is therefore de�ned

by the major and minor radii of the 2D ellipse, which we have denoted as a and b, respectively. Together,

they de�ne the overall shape of the ellipsoid along with the location of two focal points, separated by a

distance c = 2
√
a2 − b2.

Ellipsoids have several unique properties, most notably that any ray originating at one focal point

that is re�ected o� the inner surface of the ellipsoid will end up reaching the other focal point. This

makes the ellipsoid very useful as imaging optics, as it acts very similarly to a very large aperture lens

between these two points. This property has led to the ellipsoid being popularly employed in re�ectance

measurement devices, as outlined in Chapter 2.

We apply this property of the ellipsoid to the mapping of the light �eld from a scene at one focal

point to a sensor at the other. The center illustration in Figure 3.1 shows how this mapping occurs for

rays leaving the lower focal point. Note in particular that light rays that exit the lower focal point at

broad angles (more perpendicular to the primary optical axis between the focal points, shown in green)

are mapped to far narrower angles at the upper focal point and vice versa. For the full broad cone of

light leaving the lower focal point, a far narrower cone reaches the upper focal point. This is important,

as most imaging and sensor optics operate best when imaging narrower cones. Thus, the broad cone

leaving the scene, which could not be measured by any one camera with refractive optics, is mapped

to a cone that can be measured by such means. This is the core of our imaging technique and lends
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Figure 3.1: Imaging setup. Illustration of our imaging setup using an ellipsoidal mirror and a light

�eld camera. The left hand side shows the overall geometry of the ellipsoidal mirror. Our setup uses

an ellipsoid with major and minor radii of a = 287.87mm and b = 135.47mm respectively. The two

focal points of the ellipsoid are spaced c = 508.0mm apart. Ellipsoids map rays originating at one focal

point to the other point through re�ection with the interior surface, as shown in the center. Through

the ellipsoid, wide angles at the object plane are mapped to narrow angles at the sensor plane while

narrow angles at the object plane are mapped to wide angles. The right hand side shows the setup with

a section of the ellipsoidal mirror that maps to the measurable cone of light for the light �eld camera. The

corresponding light �eld mapping is shown in green, which illustrates the mapping of a wide-baseline

light �eld (53.3◦ over the horizon ×180◦ in azimuth) to a measurable light �eld (45.3◦ cone in diameter).

The red cone in the center corresponds to the missing cone centered on the major axis of the ellipsoid.

the "wide-baseline" descriptor to our camera design, since the measurement of these light rays would

otherwise require a light �eld imaging setup with a large baseline between multiple sensors. Conversely,

the narrower central cone of light leaving the scene, once re�ected o� the mirror, will reach the sensor at

extreme angles, as shown in orange in the �gure. We discuss the impact of these rays in future sections.

The speci�c geometry of our imaging setup is largely driven by the market availability of image-

quality ellipsoidal mirrors. Among the limited available options, we prioritized mirrors that could re�ect

to the widest possible cone of light measurable at the sensor to limit the size of the unmeasurable cone,

with a second priority of having a large enough size to sample a larger spatial extent. The considerations

led us to an ellipsoidal mirror with the geometry de�ned in Figure 3.1. As seen in the �gure and discussed

previously, the ellipsoidal mirror will re�ect a wide cone of light from the scene to a narrow cone of light



16 CHAPTER 3. WIDE-BASELINE LIGHT FIELD CAMERA

at the sensor. Since light rays that re�ect o� the upper region of the ellipsoid will be at wide angles on

the sensor, they cannot be measured. So, our �nal imaging setup uses just a section of the ellipsoid

instead. This results in the mapping shown on the right in Figure 3.1, where a cone of the light �eld that

spans a 53.3◦ angle above the horizon and 180◦ in azimuth gets mapped to a 45.3◦ cone at the sensor,

which is able to be measured using standard imaging optics.

We also consider this mapping in terms of solid angle to provide a sense for the density at which the

broader cone is being mapped into the narrower cone. The cone of light leaving the lower focal point as

de�ned in Figure 3.1 covers a solid angle of 5.04 sr, while the cone that reaches the sensor covers a solid

angle of 0.44 sr. This leads to a measurement density 11.56× greater than the measured light �eld, which

allows us to measure a broader cone in a single exposure but imposes limitations on angular resolution.

We discuss these limitations further in Section 3.2.

3.1.2 Light Field Camera

The previous section describes the mapping through the ellipsoid that occurs between the two focal

points. While this provides a useful baseline for analysis, it does not consider the mapping of the entire

light �eld. As we consider scene points further from the focal point, the mapped light �eld will be

dispersed farther from the sensor focal point as well, and the focus-to-focus mapping will break down.

However, the geometry of the ellipsoid will still focus these rays towards the sensor focal point, even

if not to an exact point. This allows us to measure these various rays through the use of a light �eld

camera placed at this focal point. Per the discussion in Chapter 2, we utilize the light �eld design of

a microlens array placed in front of an imaging sensor. This sacri�ces spatial resolution at the sensor

plane for measured angular resolution at the same plane; we consider the impacts on the corresponding

object plane light �eld measurements in Section 3.2.

The choice of design parameters of this microlens-based light �eld camera is driven by the need to

measure the 45.3◦ cone of light propagating to the sensor based on the mirror geometry; this requires

a microlens array with an f -number close to one. Based on this target and available optical elements,

we choose an array with 2.2mm lenslet diameters and a 3mm focal length. The large diameter of these

lenslets introduces a signi�cant amount of spatial blurring. Further, due to the non-uniform mapping of

rays through the ellipsoidal mirror, this blurring crosses di�erent ranges of space and angle at the scene

based on the angle and location at the sensor. This is not ideal for resolving this blur or applying these

measurements to multiple applications. Thus, to limit spatial blur, we mount a pinhole array aligned

with the center of each lenslet on top of the microlens array; a detailed justi�cation for the use of the
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Figure 3.2: Simulated imaging. Example images rendered from a simulation of our imaging setup,

including a close-up of two sub-aperture views for each scene. The black disk at the center of each

sub-aperture is a consequence of the missing cone, highlighted in Figure 3.1.

pinhole array is presented in Section 3.2.1.

3.1.3 Full Optical System

By placing this light �eld camera at the upper focal point of the previously described ellipsoidal mirror

section, we are able to capture wide-baseline light �elds from the scene. Figure 3.2 shows simulated

data of the captured light �eld images. Under each lenset, we observe a di�erent subset of the light

�eld via a di�erent view of the ellipsoidal mirror below. Di�erent textural elements from the surface of

the object are transformed into these di�erent views, revealing the spatial measurements of this camera.

Various angular e�ects of the scene re�ectance are observed as well, revealing the angular measurement

capabilities. We thus observe that our optical design is capable of measuring light �eld information over

a broad range of angles; further analysis of the capabilities of this camera is shown in the next section.
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3.2 Analysis

The use of the ellipsoidal mirror in our setup maps the wide-baseline light �eld at the scene to a measur-

able light �eld captured by our sensor. This section details the speci�c characterizations of this mapping

and analyzes the impact on the coverage, resolution, angular range, and depth of �eld of our camera.

3.2.1 2D Propagation Analysis

We begin with an analysis of a 2D version of our setup. Since our ellipsoidal mirror is rotationally

symmetric along the optical axis, this 2D approximation provides a convenient foundation for our un-

derstanding. The 2D equivalent of our setup is a mirrored section of a 2D ellipse mapping rays from the

scene to the sensor. We derive a closed form equation to describe the propagation of a light ray at the

object plane to a light ray at the sensor plane.

We start with the equation of an ellipse centered at the origin (xc ,yc ) = (0, 0), with a being the

major axis, b being the minor axis, and the major axis being oriented along the y-axis of the coordinate

system. We use simple ray tracing to propagate an object-plane light ray (x1,θ1) to its corresponding

sensor-plane light ray (x2,θ2). In all of the following equations, y1 = −254mm is the height of the object

focus and y2 = 254mm is the height of the sensor focus. The ellipse equation is

x2

b2 +
y2

a2 = 1. (3.1)

We then use a standard time-parameterized ray equation on both x and y:

xt = x1 + t cosθ1, yt = y1 + t sinθ1 (3.2)

We use the subscript t to denote the location (xt ,yt ) as well as the time t for an intersection with

the ellipsoidal mirror. This is found by plugging the above equations into the equation for the ellipse to

get
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(x1 + t cosθ1)
2

b2 +
(y1 + t sinθ1)

2

a2 = 1 (3.3)

a2x2
1 + 2a2x1t cosθ1 + a

2t2 cos2 θ1

+b2y2
1 + 2b2y1t sinθ1 + b

2t2 sin2 θ1 = a2b2 (3.4)

t2 (
a2 cos2 θ1 + b

2 sin2 θ1
)

+t
(
2a2x1 cosθ1 + 2b2y1 sinθ1

)
+

(
a2x2

1 + b
2y2

1 − a
2b2) = 0. (3.5)

Equation 3.5 takes the form of a quadratic function on t , so we can solve the quadratic equation

t̂ =
−v ±

√
v2 − 4uw
2u

, (3.6)

u = a2 cos2 θ1 + b
2 sin2 θ1, (3.7)

v = 2a2x1 cosθ1 + 2b2y1 sinθ1, (3.8)

w = a2x2
1 + b

2y2
1 − a

2b2. (3.9)

We write out the two terms in the square root as

v2 =4a4x2
1 cos2 θ1 + 8a2b2x1y1 cosθ1 sinθ1

+ 4b4y2
1 sin2 θ1 (3.10)

4uw = − 4a4x2
1 cos2 θ1 − 4a2b2x2

1 sin2 θ1

− 4a2b2y2
1 cos2 θ1 − 4b4y2

1 sin2 θ1

+ 4a4b2 cos2 θ1 + 4a2b4 sin2 θ1. (3.11)

Combining these cancels several terms, leaving

v2 + 4uw = 8a2b2x1y1 cosθ1 sinθ1 − 4a2b2x2
1 sin2 θ1

− 4a2b2y2
1 cos2 θ1 + 4a4b2 cos2 θ1 + 4a2b4 sin2 θ1, (3.12)

which simpli�es to



20 CHAPTER 3. WIDE-BASELINE LIGHT FIELD CAMERA

v2 + 4uw = 4a2b2
(
α̂(θ1) + β̂(x1,θ1)

)
(3.13)

α̂(θ1) = a2 cos2 θ1 + b
2 sin2 θ1 (3.14)

β̂(x1,θ1) = 2x1y1 cosθ1 sinθ1 − x
2
1 sinθ1 − y

2
1 cosθ1. (3.15)

We plug this back into Equation 3.6 to sove for t̂ , using w = α̂(θ1) and de�ning γ̂ (x1,θ1):

t̂(x1,θ1) =
γ̂ (x1,θ1) ± ab

√
α̂(θ1) + β̂(x1,θ1)

α̂(θ1)
(3.16)

γ̂ (x1,θ1) = −a
2x1 cosθ1 − b

2y1 sinθ1. (3.17)

This t̂ value provides the time for the ray propagation to the intersection point with the mirror.

Propagating from this point to the sensor is simply using the ray propagation equations again:

x2 = xt + t2 cosθ2, y2 = yt + t2 sinθ2, (3.18)

where θ2 is the angle after re�ecting o� of the mirror. Since y2 is a �xed height at the location of the

sensor, we can solve for the propagation time t2:

t2 =
y2 − yt
sinθ2

, (3.19)

which leads to the following solution for the sensor-plane intersection location x2:

x2 = xt +
y2 − yt
sinθ2

cosθ2

= x1 + t̂(x1,θ1) cosθ1 +
y2 − (y1 + t̂(x1,θ1) sinθ1)

tanθ2
. (3.20)

Finally, we need to de�ne the new ray angle θ2. We utilize the equation for the angle ϕ of the tangent

of the ellipse at point (xt ,yt ):

ϕ = tan−1
(
ytb

2

xta2

)
. (3.21)

The equation for the re�ection angle θ2 is therefore
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θ2 = π − θ1 + 2ϕ

= π − θ1 + 2 tan−1
(
b2(y1 + t̂(x1,θ1) sinθ1)

a2(x1 + t̂(x1,θ1) cosθ1)

)
. (3.22)

In total, we have derived an expression for the measured light ray (x2,θ2) as a function of the object-

space light ray (x1,θ1) and the mirror geometry. We utilize this expression to determine coverage and

resolution properties in 2D space.

Propagated Light Field

We �rst consider the portion of the outgoing light �eld from the scene that is propagated to our imaging

sensor. Figure 3.3 shows a visualization of this propagation for both a full ellipse and a section of the

ellipse, which corresponds to the section of the ellipsoid used in our imaging setup. The object-plane

light �eld is color coded, with brightness corresponding to spatial location and color corresponding to

angle. The plot shows how those color-coded light rays propagate to the sensor plane. The measurable

region, assuming a 1 inch sensor and a microlens array capable of imaging a 45◦ cone of light, is shown

on the plot. This highlights the key bene�t of the ellipsoidal mirror, which maps the grazing angles

(close to 0◦ [red] and 180◦ [blue]) to the measurable region at the expense of other angles.

Spatial and Angular Resolution

The limitations of resolution on the sensor propagate to the measured light �eld in particular ways. We

perform gradient analysis on the propagated 2D light �eld formulation de�ned previously to quantify

how changes at the sensor plane (corresponding to the achievable spatial and angular resolution) prop-

agate back to the object plane. Based on the expression in (3.20, 3.22), we derive the changes in x2 and

θ2 based on changes in x1 and θ1 as:


∆x1

2
∆θ1

2

 =

∂f1
∂x1

∂f1
∂θ1

∂f2
∂x1

∂f2
∂θ1


−1 

∆x2

∆θ2

 (3.23)

We can also �x x1 = 0 and vary y1 in our equations for x2 and θ2. We then take the derivatives with

respect to y1 instead:


∆y1

2
∆θ1

2

 =

∂f1
∂y1

∂f1
∂θ1

∂f2
∂y1

∂f2
∂θ1


−1 

∆x2

∆θ2

 (3.24)
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Figure 3.3: Light �eld propagation. Plot of the light �eld propagation from the object plane to the

measurement plane for a complete (lower left) and partial (lower right) ellipse. Rays at the object plane

are color coded according the the plot in the top left, and the corresponding mapping to the measurement

plane is the location of that color on the lower plots. The measurable region, assuming a 1" sensor and

a 45◦ measurable cone, is marked on the axes and highlighted. The actual section of the ellipse used in

our imaging system omits primarily the unmeasured light rays, resulting in the mapping in the bottom

right. This section preserves the wide angular range that we are looking for at the expense of the central

cone of light most commonly captured in other setups.

To evaluate these expressions, we de�ne ∆x2 as the size of the aperture used over the microlens

array, for this indicates the size of one spatial “pixel”. We test this value over multiple possible aperture

sizes, which would be implemented in practice as an aperture array. We approximate ∆θ2 as the pixel

pitch of the sensor divided by the focal length of the microlens: ∆θ2 ≈
5.94µm

3mm = 0.00198 = 0.113◦. Using

these values and computing the partial derivatives of f1 and f2 based on their de�nitions in (3.20, 3.22),

we can analyze the resulting object-plane resolution for various portions of our object-plane light �eld.
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Figure 3.4 plots di�erent object-plane resolutions for three aperture sizes de�ned in the �gure. We

consider the spatial resolution both in terms of y1 and x1. The plots show the theoretical resolution for

the entire 180◦ range of outgoing angles propagated through a complete ellipse. Our imaging setup only

captures outgoing angles up to about 50◦, which corresponds to approximately 0◦ − 50◦ and 130◦ − 180◦

on the plots; this does not include angles close to 90◦ that observe worse spatial resolution. These regions

are highlighted in the �gure.

Focusing on these regions of interest, we can see that using no aperture on the microlens array

results in very poor resolution in both space and angle. Adding a 200µm aperture improves the angular

resolution to between 0.1◦ and 0.5◦, the typical horizontal spatial resolution |∆x1 | to less than 100µm,

and the vertical spatial resolution |∆y1 | to ∼ 10 to 80 µm. Adding a 10µm aperture maintains a similar

angular resolution and improves the spatial resolution further, but this comes with the risk of signi�cant

di�raction blur that is not modeled by our ray tracing. In this case, we see the typical horizontal spatial

resolution |∆x1 | < 10µm and the vertical spatial resolution |∆y1 | ∼ 1 to 8 µm. Note that the grazing

angles in the center row of plots (near 0◦ and 180◦) exhibit signi�cant worsening of spatial resolution.

This is due to the fact that at these angles, small changes in the incoming ray will cause large changes

in the intersection of this ray with the object plane, which is de�ned oriented upwards toward the other

focal point. In other words, by �xing y1 and only considering resolution in terms of x1, our spatial

resolution de�nition inherently punishes grazing rays. Our analysis in terms of y1 with a �xed x1 does

not have these signi�cant variations and is thus a more suitable metric for the resolution of our system.

Choice of Aperture

Based on our resolution analysis, reducing the aperture size greatly improves spatial resolution and has

minimal impact on angular resolution beyond the 200µm aperture size. These theoretical limits provide

an understanding of the impact of the aperture choice; however, other considerations, including di�rac-

tion e�ects and achievable calibration accuracy, suggest that the smallest apertures will not introduce

practical improvements. At a high level, we would consider a theoretical spatial resolution less than

100µm to be su�cient, which is achieved with the 200µm aperture. We consider this choice empirically

as well by simulating spatial textures with or without an aperture. Figure 3.5 shows a simulated image

capture of a di�use textured sphere with no aperture and with a 200µm aperture. The added aperture

prevents the blurring of textural elements in the image capture that are needed for various process-

ing techniques. We implement the chosen aperture as a pinhole array aligned with the centers of each

lenslet.
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Figure 3.4: Spatial resolution. Plots of the object-plane angular and spatial resolution at (x1,y1) =

(0mm, 0mm) as a function of θ1. The resolution is strongly dependent on the spatial blur resulting from

the chosen aperture size ∆x2, where di�erent sizes are represented in the di�erent columns. The top

row plots the absolute value of the object-plane vertical spatial resolution |∆y1 |, the middle row plots

the absolute value of the object-plane horizontal spatial resolution |∆x1 |, and the bottom row plots the

absolute value of the object-plane angular resolution |∆θ1 |. In our formulation, the smaller the resolution

the better. We observe that the spatial resolution depends on the plane of consideration; for our wide

angular range, |∆y1 | aligns more with the rays that we are measuring.

2D Depth of Field Analysis

Continuing our 2D analysis, we consider the depth of �eld of our imaging system. For conventional

camera systems, the depth of �eld is determined by the aperture and focal length of the main lens.

For light �eld cameras, the measurement of di�erent angles allows for refocusing and rendering of
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Figure 3.5: Aperture study. Simulated image captures with no aperture (right) and with a 200µm

aperture (left). Adding the aperture preserves textural details in the image capture, as evident in the

magni�ed areas shown.

images from di�erent aperture sizes in post-processing. To the extreme, these light �eld cameras can

be processed to produce all-in-focus images, with extremely large e�ective depths of �eld. While this

can be useful for producing aesthetic images, practical considerations often lend preference to narrow

depths of �eld; consider applying a focus stack, readily obtained from light �eld data, to solve depth

from focus/defocus. In this case, narrower depths of �eld lead to better depth resolution. To this end,

traditional single-shot light �eld cameras are again limited by the maximum aperture of the main lens.

Our imaging system captures wide-baseline light �eld images, which capture an angular cone rang-

ing up to the full hemisphere of observation directions. Theoretically, this gives us an in�nitely small

depth of �eld. We illustrate this through a simple 2D example shown in Figure 3.6. In this example, we

consider the imaging of a textured surface. In particular, we consider the measurement of the light �eld

passing through a point of interest at distance d from the surface, shown in red. If we are capable of

measuring a light �eld with cone width θ , we de�ne s as the size of a virtual sensor positioned f away

from the point that would measure this cone. For our imaging setup, we aim to have θ approach 180◦,

while other light �eld cameras would have θ be much smaller. The defocus observed as we move o�

the surface is dependent on the size of a surface texture element T , which is mapped to an area on the

sensor of size bT . From similar triangles, we can de�ne the relationship between these variables in the

following:
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Figure 3.6: Depth of �eld. Illustration of the derivation of depth of �eld as a function of measured

angular range. We test a point (in red) some distance d above the surface of the scene to see if it resolves

in focus. If we are able to measure a light �eld with angular range θ , then we can produce a virtual

sensor plane of size s at distance f from the point. With this geometry, a texture element of size T on

the surface will project to size bT on the virtual sensor. When this projected texture �lls the virtual

sensor, we will still resolve the point of interest without defocus blur.

s = 2f tan
(
θ

2

)
,

d

T
=

f

bT
. (3.25)

We can see that as d decreases with all the other variables �xed, the projected texture size bT would

increase. The point of interest would be considered in focus when all of the measurements on our virtual

sensor correspond to the same point, which occurs when bT = s . If this occurs at a distance d > 0 from

the surface, then we know that refocusing from our light �eld data to the patterned surface will be in

focus for all points located ±d from the surface. At the in focus point when bT = s , the angle subtended

by a texture element of size T on the test point d units away is equal to θ , the angular span of the light

�eld. We plug this into the similar triangle expression in Equation 3.25 to �nd the maximum distance d

at which the algorithm would consider a point to be in focus. The depth of �eld is twice this distance,

meaning

dmax =
T

2 tan
(
θ
2

) , dof = 2dmax =
T

tan
(
θ
2

) . (3.26)

As θ approaches a full hemisphere of 180◦, dmax approaches 0. So, if we are able to measure a full
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hemisphere of light above every surface point, there are no theoretical limits to the minimum depth

of �eld with our imaging system. Instead, the achievable depth of �eld is limited only by the span of

the angular cone that we measure (which changes at di�erent spatial locations) and the quality of the

measured rays, which are constrained by our imaging resolution along with the limitations of the optics

used in our hardware setup. We consider these factors further in Section 3.2.2.

3.2.2 3D Ray Propagation Analysis

The 2D analysis performed in the previous section provides a useful baseline of understanding for the

optical mapping through the ellipsoidal mirror and establishes several theoretical system capabilities.

We extend this analysis to 3D; rather than derive the ray propagation equations, we simulate our optical

design and visualize the captured light �eld in di�erent ways. We �rst consider the distribution of light

rays captured by the light �eld camera. To visualize this, we place a color pattern of size 20 mm × 20 mm

at the focal point of the ellipsoidal mirror. Figure 3.7 shows a visualization of the resulting light �eld as

observed by the camera, including the spatial measurements of the color pattern as well as colormapped

visualization of the azimuth and elevation angles θ and ϕ of the observed rays at the object plane. We

observe that each spatial point is measured by multiple pixels, with lenslets closer to the center of the

image (therefore also closer to the upper focal point) converging closer to the lower focal point (center

of the blue region). We note the large range of angles observed as well, from 0 < θ < 2π in azimuth

and ∼ 0.19π < ϕ < π/2 in elevation, which paired with the spatial mapping indicates a large span

of measurements of the object-space light �eld. These simulated measurements align with the known

geometry of the ellipsoid and the corresponding size of the outgoing cone of light.

Additionally, we consider our measurements on a point-by-point basis. Figure 3.8 visualizes the

continuous region of rays that reach our sensor from a scene point at the focal point along with three

points shifted by 5mm away from the focal point along each coordinate axis. This continuous mapping

is a key bene�t of the ellipsoidal mirror. The darker patches within each measured region correspond

to the actual measurements once the space-angle tradeo� is taken into account, where the aperture

mask creates sparser measurements in space at the sensor plane. This corresponds to measuring over

small discrete regions which e�ectively provides samples over the entire visible region. We additionally

observe that while the measurement distribution changes (and reduces in size) as we move away from

the focal point, we are still capturing a broad set of angles from each point. This illustrates the nature

of the breakdown of focus-to-focus mapping as we move away from the focal point The light �eld

camera design, particularly the lenslet spacing and focal length, dictates how this distribution is actually
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Figure 3.7: Visualization of captured light �eld. To showcase the space-angle coverage of our setup,

we place a color-coded plane at the object focal point and capture a wide-baseline light �eld image. The

far right column shows this captured image, which highlights the spatial extent of our measurements.

The middle two columns visualize the angular information encoded in the captured light �elds; we

color-code the captured object-space azimuth angle θ and elevation angle ϕ according to the convention

de�ned in the diagram. Note that we closely consider only one lenslet view each for θ and ϕ; the

angular measurements are nearly uniform across di�erent lenslets with only minor variations that are

indistinguishable in this visualization.

measured.

Considerations of the angular range measured by our setup here are a useful framework, but the

ellipsoidal mirror does not map each region of the measured cone to the sensor equally. So, we also

consider visualizing our coverage via histograms of the captured spatial and angular information. Figure

3.9 shows a 2D histogram of spatial measurements at the object plane along with histograms for the

azimuth and elevation angles θ and ϕ, respectively. The spatial histogram is shown in log2 scale and

covers a 20 mm × 20 mm area. We observe that we capture a large number of measurements across this

entire region, with more measurements being taken near the focal point in the center. This fall o� in

observations will dictate the choice in scene size for the various applications in Chapters 5 - 7.

The angular histograms illustrate the non-uniform mapping of the ellipsoidal mirror. In elevation

angle, we capture relatively fewer grazing angles than we do higher angles. This is due to the mirror

geometry, which is ultimately mapping these measurements to a disc on the sensor, as observed in

Figure 3.2. The grazing angles get mapped to the center of this disc, while the higher angles get mapped

to the outer region of the disc. This creates a larger area of pixels that are measuring the higher angles

than the grazing angles, though we still capture many measurements of each. Our measurements in

azimuth are generally uniform, as the ellipsoidal mirror is rotationally symmetric. The only variation

is introduced by the sensor size, which is rectangular. This produces peaks when aligned to the corners
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Figure 3.8: Point-wise coverage. Given a full hemisphere of possible sample directions from a single

point, we visualize the subset of this space that can actually be sampled using the wide-baseline light

�eld camera. We analyze this region for four points: one at the object focal point and three points shifted

by 5 mm away from the focal point along each coordinate axis, illustrated on the left. Accounting for

the space-angle tradeo� of the light �eld camera, the dark points within each region specify the actual

measured rays. Note that there are no dark points for the point at the object focal point; here, the entire

cone is mapped to a single point on the sensor and is able to be measured completely through one lenslet.
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Figure 3.9: Measurement coverage histograms. We consider the coverage of space and angle that

our imaging system provides. We consider the density of measurements for di�erent spatial locations

over a 20 mm × 20 mm area on the left. We note that due to the breakdown of focus-to-focus mapping,

we observe a fall-o� in measurement density as we move away from the focal point. This limits the

measurement range of our system. We further plot the density of measurements over the range of

angular measurements, de�ned by the same spherical angle notation used previously. In the center,

we plot the measurement density over elevation angles ϕ; note that the non-uniform mapping of the

ellipsoidal mirror leads to sparser measurements of grazing angles relative to the rest (ϕ → π
2 ). On

the right, we plot the measurement density over azimuth angles θ ; here we observe generally uniform

measurements due to the rotational symmetry of the mirror. The only variation is introduced by our

rectangular imaging sensor, which breaks the rotational symmetry.

and valleys when aligned with the sides, with di�erent valley depths based on the di�erent dimensions

of the rectangular sensor.

Comparison to Common Light Field Setups

It is illustrative to compare the measurements of our setup with those achieved by other light �eld

imaging techniques. Figure 3.10 visualizes a setup where two light �eld cameras are placed 12.5cm from

the sample with a light collection area of 5cm; these numbers approximately correspond to the shortest

focusing distance and entry aperture of the Lytro Illum. We can immediately observe the di�erence in

angular coverage between the two setups; for example, the proposed imaging setup captures light rays

along the horizon that the light �eld cameras miss. We observe on the right the e�ect of this di�erence in

coverage. We illustrate the coverage of measurements of a surface point on a simulated textured sphere.

Our imaging system is capable of diverse measurements that include the re�ectance of the scene point

(red glossy material with two observed specular highlights) as well as measurements that are occluded by

the rest of the measured object (lower corners of the plot). The light �eld cameras capture far narrower
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Figure 3.10: Light �eld measurement comparison. Comparison of the light �eld measurements

of our setup versus that of a pair of light �eld cameras. The left shows a plot of the coverage of the

hemisphere of outgoing rays from the central scene point for each con�guration. The right shows this

coverage visualized on a 2D plot of the spherical angles (azimuth θ and elevation ϕ). In this case, we

show the measurements of a textured sphere in simulation with a surface point aligned with the central

measurement point of our system. Note that our system provides rich measurements of this scene, with

many observations of the re�ectance of the scene point (red) as well as observations occluded by the

rest of the sphere (texture in the bottom corners of the top plot). We utilize this rich information in

particular in Chapter 5. The two light �eld cameras (bottom) capture far narrower cones that miss both

re�ectance information (no specular highlights) and geometric information (no occluded observations).

cones of the light �eld that miss large amounts of this information. This di�erence in coverage a�ects

subsequent processing of the light �eld for a variety of applications, which we explore in Chapters 5-7.

Depth of Field Computation

We can extend the depth resolution analysis from Section 3.2.1 to account for the pixel pitch and non-

uniform measurements of our camera. In that section, we derive a theoretical depth of �eld approaching

0 for a device capable of measuring the full hemisphere of light above each surface point. In practice,

due the blurring caused by our pixel pitch and aperture along with the sparse and non-uniform mea-

surements inherent with our imaging setup, we do not achieve this theoretical limit. To compute a more

practical depth of �eld, we simulate a plane with a checkerboard pattern that is tilted slightly relative to

the main axis of the ellipsoid. We then render an image perpendicular to the main axis using the light

rays measured from our setup. The resulting rendering is shown on the top of Figure 3.11.

To compute the depth of �eld, we de�ne the region of this image that is in focus, shown by the

two red lines in the �gure. This width corresponds to the horizontal extent of the intersection of the
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Figure 3.11: Depth of �eld computation. Illustration of the depth of �eld computation process. A

rendering of a tilted plane is depicted on top, with the geometry of the tilted plane shown below. The

triangle formed by intersection of the tilted plane with the depth of �eld is shown on the bottom left.

tilted plane with the depth of �eld, as shown in the bottom of Figure 3.11. This intersection forms the

triangle shown in the bottom left of the �gure. Since the in-focus region covers 8 squares, we compute

the hypotenuse of this intersection triangle as 8 times the width of one square: h = 8w , withw = 125µm.

Using this value, along with the angle θ = 88.85◦ describing the tilt of the plane, we compute the depth

of �eld d in Equation 3.27.

d = h cosθ = 20µm (3.27)

So, our setup has a simulated depth of �eld of 20µm. For our camera prototype, this may be further

impacted by imperfections in the optical setup, which also impact the sharpness of in-focus regions.

The Missing Central Cone

A drawback of using an ellipsoidal mirror to remap wide-baseline light �elds is that the span of angles

that we measure is not continuous. Speci�cally, the imaging setup does not measure the cone of light

from the scene that is centered around the major axis of the ellipsoid. This missing cone, marked in

Figure 3.1, results in the dark central disk in the sub-aperture images in Figure 3.2. The missing central

cone a�ects the performance of the shape estimation and rendering algorithms that we describe later.
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Perhaps ironically, this is the very cone of light that is (easily) captured by a traditional light �eld camera

via the use of its objective lens. However, since we observe both the gap in observed rays near the scene

and the gap in pixels on our light �eld camera, we can consider applying additional optics within this

region to help �ll in the missing central cone. We consider a design for this in Section 3.4.

3.3 Implementation

We aim to produce the capabilities of the previously described imaging system in a lab prototype. In

this section we describe the details of this prototype.

3.3.1 Lab Prototype

To implement this imaging setup, we use components based on the outline of the imaging setup de�ned

earlier. For the light �eld camera, we use a Nikon Z6 camera with a hexagonally-packed microlens

array mounted one focal length away from the sensor. Each lenslet has a diameter of 2.2mm and a focal

length of 3mm. We additionally mount an aperture array above the microlens array, where each 200µm

pinhole of the aperture aligns with the center of each lenslet. This camera as a whole is mounted above

the object at the approximate location of the second focal point of the ellipsoidal mirror. The section

of ellipsoidal mirror is mounted around the object, which is placed at the approximate location of the

�rst focal point. The full setup is shown in Figure 3.12. For illumination, we create a small spotlight to

illuminate the object without adding specular artifacts by re�ecting o� the mirror. With this base design,

we do not calibrate or control the location of this light source. Section 3.4 discusses several variations

on this optical design that include calibrated illumination. The �gure also shows an additional camera

and projector added to the setup to aid in calibration, which is discussed in Chapter 4. Further details

about each component of this prototype are outlined in Table 31.

3.3.2 Light �eld camera construction.

A key element of the optical design is the light �eld camera. As noted previously, we modify a Nikon

Z6 camera with a mounted microlens array and aperture mask to create this camera. We brie�y discuss

the modi�cation procedure below.

We �rst open up the Z6 to gain access to the optics directly in front of the sensor. The lowpass

IR/UV cut �lter and dust reduction system are removed from in front of the camera sensor to reduce the

thickness of the glass in front of the sensor. This allows the microlens array to be placed directly onto

this glass at the proper focusing distance from the sensor. We 3D print a small spacer to place between
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Figure 3.12: Prototype. Images of the real imaging setup. On the left is the entire camera, with the

ellipsoidal mirror section below, the light �eld camera above in the center, and a helper camera and

projector mounted around the apparatus for calibration. On the right are two views from the camera

toward the mirror for two di�erent objects. Each object is set on top of a vertical translation stage at the

focal point. A list of components is provided in Table 31.

the sensor and the microlens array to ensure this focusing distance is achieved. The aperture mask,

which aligns with the hexagonal packing of the microlens array, is placed directly onto the microlens

array. This optical stack is held in place by the lens mounting ring on the Z6 and an additional 3D

printed frame. The mounting ring presses the entire assembly stack (spacer - microlens array - aperture

mask - frame) and holds it in place.

This mounting keeps the microlens array and aperture mask placement secure while limiting occlu-

sions of the imaging sensor. Early results from this prototype utilized an alternative to the 3D printed

frame, where several small, slightly compressible spacers were placed between the edges of the aper-

ture mask and the frame of the mounting on the front of the camera. When the lens mounting ring is
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Table 31: Components for the Light Field Camera

Component Details

Light Field Camera See individual components below.

Camera Nikon Z6 mirrorless camera.

Microlens array Hexagonally-packed microlens array from Fresnel Technologies with

2.2mm diameter lenses with a 3mm focal length (item #300).

Aperture mask Custom-printed photomask. The aperture mask was designed to align

each aperture opening with the center of each lenslet in the microlens

array. Each opening was a square with a side of 200µm.

Helper Camera Grasshopper with Nikkor 105mm macro lens

Helper Projector Sony laser projector (MP-CL1A)

Ellipsoidal Mirror Modi�ed Optiforms o�-the-shelf elliptical re�ector E509F. The mirror

was modi�ed to have the bottom cuto� align with the focal point.

tightened back into place, these spacers hold the microlens array and aperture mask together against

the glass in front of the image sensor, producing the desired optical stack with some occluded regions.

Figure 3.13 shows captured light �eld images from this previous mounting scheme and the current 3D

printed technique. The prior mounting was used in several results in this thesis, which can be noted by

the occlusions present in the light �eld photographs.

3.4 Design Variations

The previous sections detail an imaging system capable of measuring wide-baseline light �elds. This

design was the implementation used in Chapter 5. However, several key limitations of this design,

including the lack of illumination control and the missing central cone, limit the possibilities when

moving to additional applications such as neural 3D reconstruction (Chapter 6) or iridescent re�ectance

capture (Chapter 7). This section outlines several modi�ed designs
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Figure 3.13: Comparison of microlens mounting technique. Light �eld images captured using

older compressible spacer mounting technique (left) and more recent 3D printed mounting frame (right).

We note the di�erence in the occlusion of measured light �eld rays.

3.4.1 Sparse Illumination Control

The base WBLF camera design does not provide for calibrated illumination; images are collected in

uncalibrated illumination conditions. However, to avoid caustics caused by the illumination re�ecting

o� the mirror, we use a collimated LED light source to illuminate the scene. We extend this idea to

illumination control by mounting three calibrated LEDs around the upper rim of the ellipsoid, as shown

in Figure 3.14. The light sources are calibrated via the helper camera, discussed further in Chapter 4.

The other components of the prototype are identical to the prior setup, though we remove the helper

projector in favor of alternate calibration techniques, also highlighted in Chapter 4. We utilize this

system for sparse calibrated illumination for our work in Chapter 6.

3.4.2 Dense Illumination Control

Uncalibrated or sparsely-calibrated illumination is well suited for the primarily geometric applications

in Chapters 5 and 6. However, our re�ectance reconstruction work in Chapter 7 aims to capture high-

frequency re�ectance information in both space and angle by densely measuring the spatially-varying

bidirectional re�ectance distribution function (SVBRDF). This requires far more dense illumination con-

trol, including providing illumination to angles that are covered by the ellipsoidal mirror. We therefore

introduce an illumination arm within the mirror itself, sacri�cing some occluded rays for our target

illumination control.

We mount a small strip of 12 LEDs over the object inside of the mirror, as shown in Figure 3.15. These
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Figure 3.14: Prototype 2.0. Optical prototype of the wide-baseline light �eld camera. The ellipsoidal

mirror is positioned with the object at the lower focal point and the light �eld camera at the upper focal

point. Calibrated illumination and a calibrated helper camera provide the additional information needed

in this technique. On the right are an example capture of a blue resistor and a close-up image showing

the mirror in more detail.
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Figure 3.15: Dense illumination control. We mount an LED strip over the object within the el-

lipsoidal mirror to provide dense illumination control. This provides discrete illumination control in

elevation with spacing γ ≈ 8◦ and continuous illumination control in azimuth via a rotation stage. The

LEDs are 50 mm away from the sample, so they must be calibrated as nearby point light sources.

LEDs span a circular arc 50 mm away from the sample, which gives us γ ≈ 8◦ spacing in elevation. The

illumination arm is mounted on a rotation stage to provide full illumination control in azimuth revolving

around the primary optical axis. This does come with the cost of a small amount of occlusion, observed

in Figure 3.16. This primarily limits us for retrore�ective materials, where the observation directions of

interest co-align with the illumination direction.

Contrary to typical light stage designs for illumination control, our LED mounting is forced to be very

close to the object by the mirror geometry. This forces us to consider each light source as a nearby point

light source as opposed to a directional light source. We account for this through additional calibration,

where each point light source location is triangulated by a set of measurements. This procedure is

described more fully in Chapter 4.
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Figure 3.16: Lens and illumination occlusion. The Fresnel lens mounting and the illumination arm

both introduce occlusion in our measurements. The occlusion from the illumination arm varies as the

arm is moved through its range, while the Fresnel lens mounting is �xed. However, this occlusion earns

us dense illumination control and many measurements of the central cone.

3.4.3 Extending the Measurement Cone

The analysis in Section 3.2 highlighted the missing central cone of the measured light �eld as a key

limitation of this design. Not only are these rays not being measured, but there is an empty region

within each lenslet view of the light �eld camera corresponding to this missing region. We can use

these blank pixels to help �ll in the missing cone by mounting a lens in the space between the mirror

and the camera. In particular, using the lens placement detailed in Figure 3.17, we can �ll a large portion

of the missing cone for the focal point at the cost of a small amount of occlusion due to the lens mounting.

This occlusion along with the now-utilized central pixels of each lenslet view are shown in Figure 3.16.

Since the light �eld camera employs an aperture mask of a pinhole array to prevent blurring, we can

adjust the focal length and placement of this lens to adjust the space-angle tradeo� for these rays. The

pinhole array design takes what would otherwise be defocus blur and turns it into spatial sampling, so

we can increase the defocus to broaden the area that we can measure. The placement options discussed

here are visualized in Figure 3.17.

We �rst choose a starting placement and focal length based on the widest gap in the existing mea-

sured light rays. This gap occurs at height 73.21 mm above the lower focal point of the ellipsoid, with the

total gap between focal points being h = 508.0 mm. Using the focal length equation, with u = 73.21 mm

and v = 508.0 − 73.21 = 434.79 mm, we �nd

f =
uv

u +v
= 62.66 mm (3.28)

To get the optimal light collection, we aim to �ll nearly the entire width of the gap in rays with a
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Figure 3.17: Optimal lens placement for extended measurements. We use an ellipsoidal mirror

to map the light �eld from the object at one focal point to a light �eld camera at the other. The light

�eld camera consists of a microlens array mounted in front of an imaging sensor, with an aperture mask

aligned to each lenslet to minimize measurement blur. Due to the ellipsoidal geometry, the central cone

of light is not measured; however, we mount a Fresnel lens within the ellipsoidal mirror imaging system

to expand the angular range that we can measure. We optimize the lens placement to limit occlusion

and to achieve the desired spatial coverage. The design parameters used in the text are de�ned on the

diagram.

mounted lens, which would require a focal length of f = 62.66 mm and a diameter of over 5 inches,

which is unachievable with spherical lenses. So, we use a Fresnel lens, as the aperture array also helps

mitigate aberrations found in such a lens. Considering available Fresnel lenses that would be nearly in

focus at this location, we use a lens with a 4 inch (d = 101.6 mm) diameter and a focal length of 71.12 mm.

For our �rst lens mounting option, we consider this lens placed in focus between the sensor and the

object, as in the left ray diagram in Figure 3.17. Using the focal length equation, we set f = 71.12 mm,

h = 508.0 mm, and v1 = h − u1 to �nd mounting height y1 = u1 that would bring this lens to focus on

the object:
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y1 = u1 =
h −

√
h2 − 4f h
2

= 85.52 mm (3.29)

To consider the spatial extent of the measured light �eld, we can use the magni�cation of this lens

placement, since we are in focus. We consider the size of a full-frame sensor (using the half-width

s = 17.5 mm) magni�ed down to the object plane (producing total width w1 = 2x1):

x1 =
u1

v1
s, (3.30)

w1 = 2x1 = 7.08 mm (3.31)

This spatial extent is smaller than the extent achieved through the ellipsoidal mirror, where we aim

for a target object size of 20×20 mm2 shown in Figure 3.9. To more closely align these extents at the

cost of angular resolution, we move the lens down to the gap in the rays mentioned previously, with

y2 = 73.21 mm, as shown on the right in Figure 3.17. We use the defocus to broaden our spatial extent

due to the narrow aperture used in front of each microlenslet, which causes each light �eld camera pixel

to approximately measure just a single light �eld ray. To compute the new spatial extent w2 = 2x2, we

utilize additional similar triangles shown in green and orange on the diagram:

b =
u2 − y2

u2

d

2
, a =

u2

v2
s, (3.32)

x2 =
y2

u2
a + b =

y2

v2
s +

u2 − y2

u2

d

2
, (3.33)

w2 = 2x2 = 20.02 mm. (3.34)

This provides a similar spatial extent as the ellipsoidal mapping, which allows us to utilize this new

information in a similar way.

We consider the addition in measurements that this lens addition provides. Similar to the analysis

visualized in Figure 3.7, we visualize the capture of a color-mapped 20 mm × 20 mm plane by our light

�eld camera. Figure 3.18 shows this analysis for the imaging system with the addition of the Fresnel

lens. We observe that the angular range of the measurements is increased; in particular, we extend the

range of elevation angles to 0 < ϕ < π/2. The azimuth measurements and spatial measurements have

similar ranges to those observed previously, but they feature additional measurements within that range

captured by the lens.

Additionally, we consider our measurements on a point-by-point basis, similar to the analysis of

Figure 3.8. Figure 3.19 visualizes the continuous region of rays that reach our sensor from a scene
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Figure 3.18: Visualization of captured light �eld with added Fresnel lens. We place a color-coded

plane at the object focal point and capture a wide-baseline light �eld image, similar to Figure 3.7. The

far right column shows this captured image, which highlights the spatial extent of our measurements.

The middle two columns visualize the angular information encoded in the captured light �elds; we

color-code the captured object-space azimuth angle θ and elevation angle ϕ according to the convention

de�ned in the diagram. The added Fresnel lens provides additional measurements within each lenslet

view and extends the angular range of ϕ, as observed in the center of each lenslet view. Note that we

closely consider only one lenslet view each for θ and ϕ; the angular measurements are nearly uniform

across di�erent lenslets with only minor variations that are indistinguishable in this visualization.

point at the focal point along with three points shifted by 5mm away from the focal point along each

coordinate axis. The measurements through the Fresnel lens appear at the apex of the hemisphere under

consideration. Our mounting placement for this lens does not �ll the entire missing cone, but it does

allow measurements through the lens even as we shift away from the focal point.

3.4.4 Prototype with Dense Illumination and Additional Lens

We implement a prototype using the dense illumination control and extended measurement cone for

capturing SVBRDFs in Chapter 7. This prototype is shown in Figure 3.20. The strip of LEDs is mounted

in an arc over the object imaging area inside the mirror, with the base of the mounting connected to a ro-

tation stage to provide full illumination control. An additional shield of dark material is mounted around

the LED strip to reduce caustics directly re�ecting o� the mirror and reaching the sensor, particularly

when the fresnel lens is added. This fresnel lens is mounted above the object as described previously,

using minimal mounting hardware to minimize the occlusions to the mirror measurements. The mirror,

lens, and light sources are calibrated with the aid of an added helper camera aimed at the lower focal

point of the system and a small LCD placed around the lower focal point, detailed in Chapter 4.
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Figure 3.19: Point-wise coverage with added Fresnel lens. Given a full hemisphere of possible

observation directions from a single point, we visualize the subset of this space that can actually be

measured using the imaging system that we propose with the addition of the Fresnel lens, similar to the

analysis of Figure 3.8. We again consider this region for one point at the object focal point and three

points shifted by 5mm away from the focal point along each coordinate axis, illustrated on the left.

Accounting for the space-angle tradeo� of the light �eld camera, the dark points within each region

specify the actual measured rays. The e�ect of the added Fresnel lens is observed in each plot, as we �ll

in a portion of the central cone for each point; the amount of the cone that we can �ll in is relatively

small to allow us to achieve greater spatial coverage with the lens.
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Figure 3.20: Prototype 3.0. Optical prototype of the wide-baseline light �eld camera for measuring

SVBRDFs. The ellipsoidal mirror is positioned with the object at the lower focal point and the light

�eld camera at the upper focal point. A calibrated helper camera and LCD aid in calibration and plane

detection. On the right are close-ups of the key additions to the design: illumination control via an LED

strip (top) and extended measurement range via a Fresnel lens (bottom).
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3.5 Discussion

In this chapter, we introduced a wide-baseline light �eld camera design that utilizes the unique properties

of an ellipsoidal mirror. We additionally analyzed the resulting light �elds captured with this imaging

system, including properties of resolution, angular range, coverage, and depth of �eld. To implement

this optical design, we presented a prototype and detailed the necessary components. Finally, we pre-

sented several variations to the optical design that add illumination control and extend the measurement

capabilities of the system at the cost of additional capture time or occluded measurements.

Limitations. The proposed setup inherits a number of limitations stemming from its use of mirrors

and light �eld cameras. The ellipsoidal mirror presents a number of di�erent constraints. Its size de-

termines the spatial extend of the light �eld that we can measure; as Figure 3.9 shows, we experience a

fall-o� in measurement density as we move away from the focal point of the ellipsoid. This limits us to

scenes with dimensions around 1 or 2 cm in each direction. The quality of the measured light �eld also

relies on the optical quality of the ellipsoidal mirror and the light �eld camera, both of which have lim-

ited commercial options. This produces often signi�cant abberations in the mapping of the light �eld;

we aim to account for this through extensive calibration described in Chapter 4. Further, the use of

ellipsoidal mirrors to relay the light �eld from one focus to another naturally results in a missing cone,

which we mitigate through the addition of the Fresnel lens. However, this only covers an incomplete

portion of the missing cone. Finally, a di�erent set of limitations stem from the use of light-�eld cameras,

which have implicit tradeo�s in achievable spatial and angular resolutions; we inherit these tradeo�s as

well, and they a�ect the resolution and measurement density compared to theoretical possibilities.
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In the previous chapter, we discussed the optical design and implementation for the wide-baseline light

�eld camera. The optical mapping through the ellipsoidal mirror provides key bene�ts in the mea-

surements we can achieve, but introduces key challenges in the calibration of the imaging system. For

synthetic data, this is performed simply by knowing the exact geometry and alignment of the ellipsoidal

mirror along with other imaging optics. However, practical limitations in ellipsoidal mirror manufac-

turing along with strict alignment requirements for ray tracing the system result in di�cult calibration.

For example, Figure, 4.1 shows a light �eld image captured of the material shown on the left using

our lab prototype. With a proper ellipsoidal geometry for the mirror, we would expect these straight

lines on the material to map to smooth curves in the light �eld image, similar to the straight lines of

the checker pattern depicted from simulation data in the �gure. However, these lines are not producing

smooth curves based on small deformations in the geometry of the mirror. Calibrating this geometry in

such a way as to be able to directly ray trace from the light �eld camera to the object is an intractable

task. Instead, we introduce a novel calibration procedure that directly �ts object-space light rays to

each pixel of the light �eld camera, thereby bypassing any need to know the exact mirror geometry or

alignment.

Contributions. In total, this chapter introduces a novel calibration algorithm that allows the wide-

baseline light �eld design to be used for practical applications beyond simulation. In particular, we make

the following contributions.

• Direct pixel-to-object ray calibration. Attempting to trace light �eld rays from our light �eld camera

to the scene space relies on a detailed understanding of the geometry and positioning of all optical

components, which is unreliable. Instead, we develop a novel pixel-to-ray calibration technique that

directly maps light �eld camera pixels to the corresponding measured ray in the scene space.
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Figure 4.1: Impact of the mirror quality. We show a light �eld image captured of the patterned

paper shown on the left along with a close-up of a lenslet view. We observe that the straight lines of

the scene do not get mapped to smooth curves as expected; rather, the deviations in mirror geometry

produce deviations in the light �eld mapping that need to be accounted for in calibration.

• Iterative calibration to optimize grazing angle results. We �nd that limitations of the imaging system

aiding in calibration leads to unreliable ray estimations, particularly when calibrating grazing angles.

We introduce an iterative calibration technique that jointly optimizes for the scene space ray param-

eters as well as the unreliable calibration parameters produced by our helper camera. This produces

more reliable calibrated rays from our imaging system.

• Calibrated illumination Several applications of our imaging system apply active illumination control

to enhance the measurements of our system. We introduce the techniques required to calibrate these

sources of illumination for both sparse and dense illumination control.

4.1 Pixel-to-Object Ray Calibration

We aim to directly connect pixels on the light �eld camera to rays in the object space. We achieve this

by �rst determining a set of 3D points through which the rays from each pixel pass through. Once

we have this set of points, we �t a ray passing through these points for each pixel. This gives us the

desired pixel-to-object ray calibration. The following sections go into more detail about the procedure

and hardware used.
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4.1.1 3D Point Mapping

To determine a set of 3D points observed by each pixel, we produce calibration patterns on a set of known

3D planes in the object space. To achieve this in practice, we utilize a small LCD and the calibrated helper

camera aimed at the object-space focal point. First, we display a checkerboard on the LCD captured

by the helper camera to determine the location of the screen in camera coordinates using standard

techniques. This gives us our known 3D plane location and creates a mapping from LCD pixel to 3D

camera coordinate, since this checkerboard is displayed on a known set of LCD pixels.

We then display a series of 8-bit Gray code patterns on the display, capturing 16 images on the light

�eld camera for LCD rows and 16 images for columns. We capture two images per bit, displaying the

Gray code pattern for one and the inverse of the Gray code pattern for the other. By comparing the

two, we produce a more robust decoding of the Gray code bit sequence. The Gray code patterns and

corresponding captured images are shown in Figure 4.2. This creates a unique 16-bit binary sequence

for each pixel of the display. Each pixel on our light �eld camera, which is observing a single point on

the display, should image the binary sequence corresponding to the pixel at that point. By decoding

these sequences for each light �eld pixel, we generate a correspondence between light �eld pixels and

LCD pixels. Since we know the correspondence from LCD pixel to 3D point from the checkerboard, we

now have a correspondence from light �eld pixel to 3D point.

We repeat this process for a large number of LCD plane positions. The di�erent ray intersections

with each plane produces a full set of 3D points for each light �eld pixel.

4.1.2 Points to Rays

To turn these 3D points into calibrated rays, we �t the best ray through the observed points for each

light �eld pixel. While this should be a simple task, the presence of outliers in the 3D point data requires

us to utilize a robust line �tting algorithm. We have employed both a RANSAC algorithm based on SVD

line �tting (Algorithm 1) and an iterative line �tting based on the Huber loss function (Algorithm 2). We

use the Huber loss between data x and target y with parameter δ de�ned as

` = H (x ,y,δ ) =


0.5 · (x − y)2, if |x − y | < δ

δ · (|x − y | − 0.5 · δ ) , otherwise
(4.1)

We use δ = 0.1 for the Huber loss in Algorithm 2. The Huber loss combines the bene�ts of the

mean-squared error loss and the L1-loss. The δ -scaled L1 loss when |x − y | ≥ δ reduces sensitivity
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Figure 4.2: Captured sequence of 8-bit Gray code. We show two lenslet views of the captured light

�eld images for each bit of the 8-bit Gray code sequence. These images encode the pixel location on the

LCD. The entire light �eld image for one bit is shown below for reference. A similar sequence of eight

images is captured oriented row-wise to complete the encoding.
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to outliers, which is crucial for our setup, and the squared loss when |x − y | < δ ensures smoothness

around |x − y | = 0.

In practice, we �nd that the iterative line �tting algorithm outperforms the SVD line �tting algorithm,

as the resulting rays are not constrained to pass the a given point. SVD line �tting produces a ray that

must pass through the zero-mean point of a set of points. By using RANSAC, we promote outlier-free

sets of points, but this zero-mean point may still not be ideal. Our iterative algorithm is more �exible to

the data, though it comes at the cost of computation time.

4.1.3 Sources of Error in 3D Point Estimation

Many sources of error introduce challenges into the calibration process. The �rst source of error is

the homography estimate from the helper camera to the captured checkerboard. At the scale we are

operating in (within a few centimeters), any small errors in the detected 3D location of the checkerboard

plane can propagate signi�cantly through the remaining calibration. In particular, we �nd that the z-

coordinate of the 3D location (along the helper camera’s optical axis) experiences the most noticeable

errors. Due to practical constraints, we have to mount our helper camera at a distance from the scene

much greater than the size of the scene. This leads to imaging a narrow �eld of view over a small range

of locations, so our helper camera is operating in a nearly orthographic setting; thus, we do not observe

much di�erence in the projected size of the checkerboard squares at di�erent depths from the camera.

We observe this error most prominently when using calibration planes of di�erent orientations.

The second source of error is Gray code decoding errors along borders between changing pixels. This

error is limited to begin with by using Gray codes instead of a standard binary sequence; this forces only

one bit of the pattern to change for sequential locations. We further mitigate this error by using long-

run Gray codes, which maximize the distance between changes for a particular bit. This corresponds

to wider patterns being displayed on the LCD, which reduces the number of edges at which errors

can occur. In practice, this works well to reduce this source of error, and our use of outlier-sensitive

algorithms ensures that it does not impact the �nal calibrated rays.

Finally, we observe errors due to LCD pixel pitch limitations. Our light �eld camera is capable of

resolving very �ne spatial di�erences, even down to the pixel pitch of our LCD in certain areas. This

produces artifacts in the measured data, where additional lines corresponding to gaps between pixels

and color-shifting observations of the pixel colors appear, as shown in Figure 4.3. We mitigate this error

by capturing robust Gray code data. We capture both regular and inverted Gray codes and compute

our binary bit based on the relative intensity of the captured measurements for these two patterns. The
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ALGORITHM 1: SVD Line Fitting with RANSAC
input : P — A set of 3D point correspondences of size p × n × 3, where p is the number of light �eld pixels in

image I and n is the number of observed planes.

output: O — A set of ray origins of size p × 3

D — A set of ray directions of size p × 3.

for p ∈ I do

points← Pp ; /* Get the set of point correspondences at pixel p */

numValid← valid(points); /* Number of valid points (rays do not hit all n planes) */

if numValid < 6 then

continue; /* With too few points, we continue and mask out this pixel p */

end

for α ∈ [0.8, 0.4], β ∈ [0.8, 0.6] do

/* Perform two passes of RANSAC algorithm, first with a larger subset ratio α

and a more strict inlier requirement β. Attempt a second pass if the first

pass fails with reduced α and β. */

for i ∈ 1..20 do

m ← α · numValid;

subPoints← subset(points,m); /* Choose random subset of m points */

subPoints← subPoints −mean(subPoints); /* Set to zero mean */

[U , S,V ] ← svd(subPoints); /* Perform SVD on these subPoints */

rayDir← V [:, 0]; /* Get ray direction from first column of V */

numInliers← inliers(points, rayDir); /* Count number of inlier points */

if numInliers > β · numValid then

Op ← mean(subPoints);

Dp ← rayDir;

success← True;

break; /* For success, store ray information and break */

end

end

if success then

break; /* For a successful fitting, continue to next pixel p */

end

end

end
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ALGORITHM 2: Iterative Line Fitting
input : P — A set of 3D point correspondences of size p × n × 3, where p is the number of light �eld pixels in

image I and n is the number of observed planes.

output: O — A set of ray origins of size p × 3

D — A set of ray directions of size p × 3.

for p ∈ I do

/* We perform this iteration for each pixel p here. In practice, this is

vectorized to operate on all pixels at once. */

points← Pp ; /* Get the set of point correspondences at pixel p */

o ← mean(points); /* Initialize ray origin */

for α ∈ 1..10 do

x ← subset(points, 2); /* Choose two random points */

dα ← normalize(di�(x)); /* Find normalized direction vector between two points */

end

d ← median(dα ); /* Initialize ray direction as median of 10 point differences */

for i ∈ 1..1000 do

pDi� ← points − o; /* Compute difference between points and ray origin */

res← norm (pDi� − (pDi� • d) · d); /* Compute residuals between points and ray */

` ← huberLoss(res, 0); /* Compute Huber loss between the residual and zero */

[∆o,∆d] ← gradients(`); /* Compute gradients */

o ← o − ∆o · lr; /* Update origin with learning rate lr */

d ← d − ∆d · lr; /* Update direction with learning rate lr */

end

Op ← o; /* Save final origin and direction for pixel p */

Dp ← d

end
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Figure 4.3: Aberrations in captured calibration images. We show the captured light �eld of one

Gray code sequence along with a closer look of one lenslet view. We observe aberrations due to the

broad angular range and our ability to resolve �ner spatial features than the LCD pixel pitch.

artifacts impact the overall intensity of the measurements, but the relative intensity between the regular

and inverted codes still successfully correlates to the displayed pattern.

4.2 Iterative Calibration Optimization

Due to these various errors, successful calibration proves challenging. In particular, the homography

estimate mapping the LCD plane to camera coordinates is unable to match the precision needed, es-

pecially along the helper camera’s optical axis. So, we develop a joint optimization approach to both

solve for the best-�t ray for each pixel’s corresponding 3D points as well as update the estimated plane

parameters of the display. We continue to employ the Huber loss to update both the best �t rays and

the parameters of the planes. This optimization is described in detail in Algorithm 3 and is summarized

in Figure 4.4.

We visualize the Huber loss through various stages of our optimization in Figure 4.5. As noted in

Algorithm 3, we initialize the line �t for every light �eld pixel using Algorithm 2. This provides the

initial ray origins and directions by �tting to the noisy, erroneous plane parameters. Then, we perform

the alternating optimization outlined in the rest of Algorithm 3. Due to memory and time constraints,

particularly when performing the global update of plane parameters, we perform batch gradient descent

with 1000 light �eld pixels at a time. This creates the stochastic noise found in the batch loss on the right.
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ALGORITHM 3: Iterative Line Fitting with Plane Parameter Updates
input : P — A set of 3D point correspondences of size p × n × 3, where p is the number of light �eld pixels in

image I and n is the number of observed planes.

N — A set of surface normals for the observed planes of size n × 3.

X — A set of origin points for the observed planes of size n × 3.

output: O — A set of ray origins of size p × 3

D — A set of ray directions of size p × 3.

[O,D] ← lineFit(P); /* Initialize ray origin and direction using Algorithm 2 */

while not converged do

points← subset(P , 1000); /* Get a random subset of 1000 pixels */

o← subset(O, 1000);

d← subset(D, 1000);

points← update(points,N ,X ); /* Update points based on updated plane parameters */

for i ∈ 1..10 do

pDi� ← points − o; /* Compute difference between points and ray origin */

res← norm (pDi� − (pDi� • d) · d); /* Compute residuals between points and ray */

` ← huberLoss(res, 0); /* Compute Huber loss between the residual and zero */

[∆o,∆d] ← gradients(`); /* Compute gradients w.r.t. rays */

o← o − ∆o · lr; /* Update origin with learning rate lr */

d← d − ∆d · lr; /* Update direction with learning rate lr */

end

pDi� ← points − o; /* Compute difference between points and ray origin */

res← norm (pDi� − (pDi� • d) · d); /* Compute residuals between points and ray */

` ← huberLoss(res, 0); /* Compute Huber loss between the residual and zero */

[∆N ,∆X ] ← gradients(`); /* Compute gradients w.r.t. plane parameters */

N ← N − ∆N · lr; /* Update plane normals with learning rate lr */

X ← X − ∆X · lr; /* Update plane origins with learning rate lr */

Osubset ← o; /* Update output origin and direction for the given subset */

Dsubset ← d;

end
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Figure 4.4: Iterative calibration algorithm. Illustration of our calibration procedure. Consider the

two rays originating from di�erent pixels on the sensor, shown here in blue and orange. To determine

the ray parameters in the object-space (at the bottom of the ellipsoid), we need to determine a set of

points that fall along the ray. We place a series of planes along each ray, as shown in the target frame in

the bottom right. Using a helper camera, we determine the parameters of these planes, and we display

graycodes on each plane to allow us to determine the intersection point with each plane based on the

sequence of intensities measured by the camera. In an ideal world, this would produce the geometry

shown in the target frame. However, due to the small scale of our measurement area, small errors in the

computed homography between the helper camera and each plane correspond to signi�cant variance

in our calibration measurements, as shown in the bottom left frame. To resolve this, we implement a

two stage optimization algorithm. At each iteration, we �rst �nd the best �t ray for each pixel’s mea-

surements, based on the initial homography and graycode estimates. Then, we update the parameters

of each plane to attempt to align the measured points along each ray. After a step is taken to update

each plane, we recompute the best �t rays and cycle the optimization again. After su�cient iterations,

our measurements more closely align to our expected target.
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Figure 4.5: Calibration loss. We plot the Huber loss for the two stages of iterative calibration. In

Stage 1 (left), we initialize the �tted ray origins and directions according to Algorithm 2. This provides

strong initial conditions but does not account for the errors in plane parameters. In Stage 2 (right), we

alternatively update the best �t rays (per light �eld pixel) and the plane parameters (across all pixels

intersecting a given plane). The batch loss (blue) is computed over the batch of 1000 rays used in each

iteration to enable practical use of memory and time. Every 100 iterations, we additionally compute the

loss over all light rays, which we plot in orange. We observe that the overall loss e�ectively reduces

along with the batch loss even with the reduced number of rays trained over in each iteration.

We additionally compute the global loss over all light rays every 100 iterations. This produces a smooth

loss plot to gauge our optimization progress; we utilize this loss for our convergence testing.

After the iterative calibration procedure has converged, we visualize the impact on the 3D points use

to �t each ray. Figure, 4.6 shows the 3D points for one light �eld ray before and after this calibration.

Note that before calibration, we observe signi�cant deviations of these points from the expected ray.

These deviations exist primarily along one direction (orthogonal to our view in this case), which aligns

with the optical axis of the helper camera. After calibration, the updated plane parameters produce

3D points that fall much more closely to an expected ray. This occurs for all measured light �eld rays,

producing measurements closer to the expected points based on our calibration plane placement. Our

iterative calibration procedure adjusts these 3D points accordingly and produces more accurate �tted

light rays as a result.
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Figure 4.6: Adjusted 3D points following calibration. We plot the 3D points corresponding to a

single light �eld ray both before (blue) and after (orange) the calibration procedure. We note that prior

to calibration, the 3D points exhibit signi�cant variation along one axis (corresponding to the optical

axis of our helper camera). After calibration, the updates to the plane parameters lead to more linear 3D

points; in turn, this produces more precise ray �tting to these points.

4.3 Analysis of Prototype Reprojection

In Section 3.2, we considered a theoretical basis for the spatial resolution of our imaging system. Now

that we are able to properly calibrate our prototype , we consider the spatial resolution of our camera

in terms of the reprojection error of measured light rays. We measure this error by using an LCD

placed at the object focal point of our camera, similar to the calibration procedures outlined previously.

By displaying a checkerboard on this display and capturing an image from our helper camera, we can

determine the 3D location of every pixel on the display along with the parameters of the plane made up

by these pixels.

We next illuminate a single pixel on the LCD and capture the light �eld image created on our sensor.
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Figure 4.7: Reprojection errors. Plot of the reprojection errors for three illuminated points measured

with our lab prototype. On the right, we show the spread of reprojected points of a measured pixel

in blue, red, and green; the size of the measured pixel is shown in purple. On the left, we show the

reprojection error as a function of the ray elevation angle. We observe a dramatic increase in error near

grazing angles, which is expected based on prior analysis. Additionally, we note a peak around ϕ = 0.5

corresponding to the gap in angular coverage between the Fresnel lens and the ellipsoidal mirror.

Due to the low light levels of a single pixel, we use a long exposure and capture images with this pixel

both turned on and o�. The di�erence between these two images reveals the pixels on our light �eld

camera that observe the spot formed by the LCD pixel. The light rays corresponding to these light �eld

pixels should correspond to measurements within the small spatial extent of the LCD pixel (∼ 97.7 µm).

We project these rays back to the calibrated plane formed by the LCD and consider the error between

this projected location and the calibrated location of the illuminated pixel.

Figure 4.7 shows this reprojection for three di�erent illuminated pixels near the lower focal point.

On the right, we observe the spread of reprojected points over a 2 mm × 2 mm area surrounding the

pixel, illustrated in purple. We observe a cluster of points directly surrounding the pixel and a number

of points that are scattered further from this point. On the left, we plot the distance ϵ between the

reprojection and the edge of the pixel with respect to the elevation angle of the measured light ray. We
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bin these ϵ measurements into elevation angles of a given resolution to visualize the trends more clearly.

Similar to the analysis in Figure 3.4, we note a signi�cant increase in the error as we approach

grazing angles (ϕ → π
2 ). This is due to small angular errors or changes producing signi�cantly changed

projection locations when the ray direction is nearly parallel to the projection plane. Additionally, there

is a peak around ϕ = 0.5. This occurs due to the gap in elevation angles measured between the Fresnel

lens and the ellipsoidal mirror, measurements in this region are sparse or non-existent. Beyond these

grazing regions, where resolution would be better considered for a plane of di�erent orientation, we see

errors on the order of 100−300 µm; we �nd that more than 50% of reprojected rays fall within 150 µm of

the measured pixel for all three points. While this is worse than the theoretical analysis, which put our

theoretical spatial resolution along the horizontal axis at less than 100 µm, but the added variability in ray

measurements, even after calibration, adds to this limitation. We consider the average reprojection error

to be comparable to the spatial resolution in this analysis; note that there are additional reprojections that

fall beyond this average, but we start to consider these rays in terms of noise rather than resolution. The

noise present even in these calibrated measurements encourages robust techniques in our applications

explored in Chapter 5-7.

4.4 Illumination Calibration

Both dense and sparse illumination control, introduced in Chapter 3, require the calibration of the input

light sources. We aim to produce calibrated illumination directions ` for each captured image under a

di�erent lighting condition. We introduce the simple procedures required in this section.

4.4.1 Sparse Illumination

The sparse illumination design (Figure 3.14) introduces several directional light sources by collimating

the light from several LEDs. We calibrate these light directions by placing a re�ective sphere of known

diameter at the object plane. We image this sphere through the helper camera, with the �rst image

captured with bright illumination and a longer exposure, as shown in Figure 4.8. This enables the helper

camera to observe the outline of the sphere, which in turn gives us the needed information about its

3D geometry relative to the helper camera. We then image the sphere with a short exposure for each

light source turned on. This produces a single bright spot in the captured image where the light source

re�ects o� the mirror and reaches the helper camera. Based on the location of this bright spot, we can

determine the point on the sphere where the light is re�ecting. Through the use of spherical geometry

and the known camera ray reaching that point from the helper camera, we determine the ray that reaches
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Figure 4.8: Images for illumination calibration. For both sparse and dense illumination calibration,

we capture both long (left) and short (right) exposure images of a re�ective sphere. The long exposure

reveals the shape of the entire sphere, which we use along with the calibrated camera parameters to

determine the 3D location and size of the sphere. The short exposure reveals the observed re�ection

of the light sources; in this case, we observe the dense illumination control of the LED strip. We apply

the known geometry and observed re�ection locations to determine the light ray from the sphere to the

light source. With directional light sources (used in our sparse setup), this calibrates the illumination

direction. With point light sources (used in our dense setup), we repeat this procedure with di�erent

re�ective sphere locations to produce a set of rays observing each light source position. We triangulate

these rays to produce the calibrated point light source.

the light source from the scene. Since we have directional light sources, this corresponds to a calibrated

illumination direction for images captured under that light condition.

4.4.2 Dense Illumination

Since the dense illumination design (Figure 3.15) uses nearby point light sources, we need to calibrate

the precise 3D location of each LED rather than just a single ray corresponding to the direction. We

perform this calibration by again imaging a re�ective sphere of known diameter placed at the object

plane with the helper camera, as in Figure 4.8. We follow the same procedure for determining the

3D geometry of the sphere relative to the helper camera. We set the illumination arm to each desired

illumination position and image the sphere under one illuminated LED. The observed re�ection of each

light source through this sphere provides a ray that observes the desired 3D point of the LED. By moving
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the illumination arm through all desired positions, we produce one ray pointing to each light source.

However, since we aim to calibrate a single point, we need to produce multiple rays that observe each

point. So, we repeat the procedure for several di�erent sphere positions, thereby producing a set of

rays observing each light source. We �nd the 3D location of each LED by triangulating these rays to

�nd the intersection point closest to each ray. To convert this illumination point into the illumination

direction ` for each measured light �eld pixel, we require some understanding of the scene geometry.

This is performed when inputting the calibrated light directions to the network described in Chapter 7;

we discuss the details further in that section.

4.5 Discussion

We have shown progressively more robust calibration algorithms, sacri�cing runtime for better ray �t-

ting, particularly at grazing angles. These algorithms were developed along with the applications shown

in Chapters 5 - 7, meaning that di�erent iterations of these algorithms were applied to the results shown

in these chapters. Applying newer calibration schemes to earlier work would improve our results.
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Light �eld cameras have been shown to enable a bevy of useful post-capture processing techniques [Ng

et al., 2005]. This includes refocusing to di�erent depths in the scene, estimating the geometry of the

scene, or generating synthetic images from novel viewpoints. These are achieved through resampling

the captured measurements based on the known geometric alignment of the imaging components and

the known light rays that contribute to the desired result. Due to this, the achievable results are limited

by the limitations of the captured light �eld itself. First, the narrow cone of light captured by such a

camera limits the minimum depth of �eld for refocusing. Second, the narrow baseline of measurements

provides limited information for 3D shape reconstruction, leading to reconstruction only along one axis

(depth reconstruction). The narrow baseline also limits the range of novel viewpoints that are achievable

from the data. In all, while this data allows for such reconstructions, the limitations are signi�cant.

The measurement of wide-baseline light �elds can signi�cantly enhance these conventional uses of

such light �eld signals while enabling a bevy of new capabilities. Like its narrow-baseline counterpart,

wide-baseline light �elds can be used to refocus the scene at di�erent depths, reconstruct the shape

of objects, and generate synthetic images from novel viewpoints. However, the larger angular cone

can dramatically enhance these capabilities by providing extremely shallow depth of �elds, the ability

to image the backside of an opaque object, and an extended range of measurements from which to

produce novel viewpoints. Additionally, wide-baseline light �elds can provide truly novel capabilities

for geometric light �eld processing. Namely, by using visibility as a physical cue, we can estimate the

surface normals of scene points; such a capability, especially in the absence of any active illumination

or strong assumptions on the scene illumination, is unique to our setup. We use this capability to jointly

estimate the 3D shape and surface normals of objects using our wide-baseline light �eld camera.

Contributions. This chapter introduces a new methodology for processing wide-baseline light �elds.

In particular, we make the following key contributions.
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• Shape and normal estimation. We describe a procedure for shape and normal estimation from wide-

baseline light �elds for reconstructing high-resolution 3D models while independently estimating the

surface normal at each point.

• Traditional applications. We explore applications traditional to light �elds, namely, changing of the

focus and perspective. The wider cones of light that our setup measures allows for some unique

capabilities; for example, we can create focus stacks corresponding to planes with surface normal

perpendicular to the optical axis of the setup.

Limitations. The proposed system shares limitations from the imaging setup. In particular, the size

of the mirror limits our reconstruction area to ∼ 10 mm3. Additionally, the missing central cone results

in non-traditional bokeh as well as reduced performance in normal estimation in some cases. Finally,

the proposed shape and normal estimation algorithms use visibility analysis that relies on scene points

having a supporting hyperplane; this analysis requires that the shapes under consideration are convex.

5.1 Prior Work

Our work builds upon prior work devoted to light �eld processing. Many of the light �eld imaging

designs discussed in the previous chapter are used for light �eld rendering, which resamples the captured

light �eld to produce novel images. In particular, these light �elds are commonly applied to refocusing

and viewpoint synthesis [Levoy, 2006, Ng, 2005, Ng et al., 2005], though the range of novel viewpoints

is limited by the baseline of the light �eld image capture. Larger baseline light �eld techniques provide

a larger synthetic aperture that excels in focusing through complex occluders [Vaish et al., 2006] at

the cost the higher data and equipment requirements of a camera array. Similar light �eld rendering

techniques have been applied to microscopy as well [Levoy et al., 2006, Lin et al., 2015].

Light �eld imaging is also commonly applied to shape reconstruction. Several geometric algorithms

have been introduced to solve this problem, including reconstruction from Epipolar Plane Images (EPIs)

[Ziegler et al., 2007], stereo matching from subaperture viewpoints [Heber et al., 2013], and depth from

focal stacks [Tao et al., 2013]. We refer to [Wang et al., 2024] for a survey of light �eld depth reconstruc-

tion techniques. Our proposed technique is most similar to the class of focal stack techniques, though

we operate within the light �eld ray space as opposed to considering focus on a rendered image.

Multi-view imaging techniques are well established for reconstructing 3D geometry via multi-view

stereo [Seitz et al., 2006]. Light stages similarly provide multiple viewpoints and illumination control

for shape and re�ectance acquisition [Debevec et al., 2000]. These setups capture high-quality geometry
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but require more extensive hardware or multiple image exposures. A comparable single-shot approach

to our work is found in kaleidoscopes, used for acquiring light �elds [Manakov et al., 2013] as well as

3D shape [Ahn et al., 2021, Lanman et al., 2009, Xu et al., 2018]. Kaleidoscopes can provide multi-view

information in a single exposure, but they require the solving of a complex ray labeling problem due to

multiple bounces through the mirror con�guration. Additionally, all these techniques produce sparse

measurements of any given scene point, which can limit viewpoint synthesis reconstruction.

5.2 Overview

We utilize the base wide-baseline light �eld imaging setup described in Chapter 3. We do not implement

the extended measurements via the Fresnel lens or the activation illumination control. The capability of

3D reconstruction under passive illumination is a key result in this work. We show our 3D reconstruction

technique in Section 5.3. We additionally provide results for refocusing and viewpoint synthesis, whose

much simpler algorithms are described brie�y below.

5.2.1 Refocusing

Similar to other light �eld cameras, we are able to produce refocused images at varying depths. How-

ever, our setup can achieve very small depths of �eld due to the wide angular range of captured data.

We follow a simple procedure to generate these images. First, we de�ne a plane at some point and ori-

entation that intersects the object where we wish to produce a focused image. Then, by accumulating

the measured rays that intersect pixels along that plane, we can produce an image focused at that plane.

While other setups are only able to produce focal sweeps along the direction parallel to the optical axis

of the light �eld camera, our imaging setup allows for producing focused images at arbitrary locations

and orientations.

5.2.2 Viewpoint Synthesis

We can also simulate other cameras and imaging setups by resampling the wide-baseline light �eld

data in di�erent ways. We can accumulate light rays that reach a simulated sensor pixel through any

optics that we choose to de�ne, including both pinhole and lens-based cameras. Compared to other light

�eld viewpoint synthesis methods, our imaging setup provides a wider range of possible viewpoints but

generally reduces the measurements available for any given viewpoint.
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5.3 3D Point and Normal Estimation

We now design algorithms for recovering shape, in the form of 3D points and associated surface nor-

mals. We approach shape reconstruction from the mindset of scanning the volume, one voxel at a time,

and establishing whether or not a voxel lies at (or near) the surface of an object. Our approach for de-

termining this relies on an observation on determining the tangent plane to the scene point from light

�eld measurements.

Observation. Consider the example in Figure 5.1 where we visualize the radiance from a point that is

on the surface of a textured sphere; this point under consideration has an amber-color di�use albedo

and is mildly specular. The �gure shows the radiance over a full sphere of outgoing directions, i.e.,

in every possible outgoing direction (θ ,ϕ), where θ and ϕ are azimuth and elevation angles about the

vertical line. This radiance image has two clear segments: a near constant region that corresponds to

light that is emitted by the surface, and a textured region that corresponds to light from other scene

points that occlude the point under consideration when observed along the corresponding direction.

The boundary between the two corresponds to the directions on the tangent plane to the surface at the point

under consideration, and maps to a circle on the unit sphere of directions. When we consider a point that

is even slightly o� the surface—either above or below—as seen in Figure 5.1 (bottom), this behavior

changes completely; in particular, the radiance map is not crisply split into two regions with di�ering

behavior, nor is the separating boundary between them guaranteed to be a circle. The observations do

require the su�ciently rich textures and fairly mild assumptions on the specularity of the surface. More

importantly, this observation provides the basis for identifying between voxels that contain valid scene

points and those that do not; intriguingly, they also allow us to estimate the surface normals.

In essence, our approach for 3D point and normal estimation relies on whether or not we can �nd

a valid surface normal at each candidate voxel; failure to �nd such a normal indicates that there is no

valid 3D point in the voxel.

5.3.1 Normal Estimation

To solve for the surface normal ®n at each point, we utilize the visibility clues that we gain from the wide-

baseline light �eld. In general, an outgoing direction ®v from a point will belong to the hemisphere around

that point’s surface normal if ®v>®n > 0. For convex objects, this hemisphere is the set of direction from

which the point is visible, which means that the radiance of measured rays from within this hemisphere
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Figure 5.1: Light �eld radiance plots. Plot of the entire light �eld of radiance measured along each

outgoing direction (θ ,ϕ) (de�ned in the upper right) from a single point either on (top), above (bottom

left), or below (bottom right) the textured sphere shown in the top right. The ray diagram in the top left

shows how di�erent directions from this single point map to di�erent radiance measurements. When

the point is on the surface, the set of all measured light rays over the hemisphere above that point will

correspond to the re�ectance of that point. This results in the consistent re�ectance observed in the

upper half of the topmost plot. This scene was illuminated using four directional light sources, which

appear as the four specular highlights in the plot. Measured light rays from the hemisphere below the

surface point will actually be measurements from various points on the other side of the sphere, which

results in the varying, checkered re�ectance pattern observed in the lower half of the plot. The transition

between these two regions corresponds to the visibility horizon. When not on the surface, this transition

is not de�ned and so we cannot estimate a surface normal.

will be measurements of the re�ectance at that point. This hemisphere is visualized by the constant

region in the upper half of the plot in Figure 5.1.

Conversely, directions ®v such that ®v>®n < 0 in the lower region correspond to measured directions at

which the surface point is not visible. These directions instead measure the radiance of various points

on the other side of the object.

If the object is textured, as it is in this case, we can describe these two regions as “low variance” (for
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Figure 5.2: Measured light �eld and visibility horizon plane. Plot of the portion of the light �eld

measured by our imaging setup as radiance measured along each outgoing direction (θ ,ϕ) from a single

point, similar to Figure 5.1. The visibility horizon plane, plotted in green, still adheres to the boundary

between high and low variance regions.

the region above the visibility horizon plane) and “high variance” (for the region below the visibility

horizon plane). The measurements in the low variance region all correspond to the re�ectance at a

single point, which has a large amount of consistency across outgoing angles. The measurements in the

high variance region correspond to the re�ectance at a variety of surface points, which all could have

unique re�ectance properties. Therefore, we can consider the plane ®v>®n = 0 as corresponding to the

visibility horizon. In Figure 5.1, the visibility horizon plane corresponds to the transition from the low

variance region in the upper part of the plot to the high variance region in the lower part of the plot.

With our imaging setup, we are not actually able to measure every outgoing ray from every point in

the scene. Instead, for a given point in the scene, the outgoing rays that we can measure would produce

a plot like the one in Figure 5.2. The visibility horizon plane, plotted in green, is still observable as the

boundary between high and low variance regions. To detect this horizon plane for every point analyzed

in the scene, we follow a four-step algorithm, with each step visualized with an example in Figure 5.3.

• First, we color-normalize our measurements, i.e., to ensure that e�ects of shading are not considered

as high variance e�ects, we normalize every measurement by the sum of its color channels.

• Second, we compute a local variance metric for each measured direction. This metric takes measure-

ments from the neighborhood around a given direction and computes the sum of the variances of the

color-normalized red, green, and blue channels.
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Figure 5.3: Normal estimation. Visualization of the four stages of the normal estimation pipeline.

Each plot is consistent with the (θ ,ϕ) axes de�ned previously. A: color normalized re�ectance plot. B:

local variance metric computed for each direction (brighter corresponds to higher variance). C: variance

labels (green is low variance, red is high variance). D: visualization of the �tted visibility horizon plane

(red) along with ground truth visibility horizon plane (green) over the original re�ectance plot.

• Third, we assign a label y for each direction based on a threshold chosen empirically. We set y = 1 for

low variance points and y = 0 for high variance points.

• Fourth, we train a simple classi�er to separate the low and high variance regions. The classi�er net-

work structure is shown in Figure 5.4. The output of the network is a class probability predictor p,

de�ned as

p =
1

1 + e− ®v> ®n
. (5.1)

The connectivity of the network ensures that the input to the logistic function is ®v>®n, so the function

will output a class probability based on whether that dot product is greater than or less than zero, which

corresponds to the visibility horizon plane classi�cation discussed previously. The class probability

p ∈ [0, 1] will be closer to 0 when ®v>®n < 0 and closer to 1 when ®v>®n > 0. We train our network using a

standard binary cross-entropy loss function de�ned as

L = − (y log(p) + (1 − y) log(1 − p)) , (5.2)
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Figure 5.4: Variance classi�er. Network trained to classify high and low variance regions.

where y is the label produced in the third stage. The weights of the network are the elements of the

surface normal estimate ®n once normalized to a unit vector.

This algorithm will estimate a surface normal for any point in the scene. For points on the surface of

an object, the visibility horizon plane corresponds to the delineation of high and low variance regions

in the re�ectance. For points that do not fall on the surface, such a plane does not exist. Therefore, the

ability to detect and estimate an e�ective visibility horizon plane provides depth cues that can be used

to generate a point cloud of the object.

5.3.2 3D Shape Reconstruction

We use the surface normal estimation procedure, described earlier, to determine whether or not a point

belongs to the surface. Given a 3D point under consideration, we �rst identify visible light rays from

it, using the variance metric. Using just these visible rays, we can compute the total variance of rays

above the visibility horizon. If the total variance is below a certain threshold, then we denote that point

as belonging on the surface. If the overall variance is above that threshold, we reject the point as not

belonging to the surface. Similarly, if the normal estimation algorithm does not �nd a large enough set

of rays that are considered visible, we reject the point as likely falling within the object. In either case,

these tests determine whether or not the normal estimation algorithm produced a visibility horizon plane

that successful delineates a signi�cant region of low variance re�ectance measurements. The variance

of the visible region is ultimately a function of a point’s distance from the surface. Figure 5.5 shows a

histogram of the variance of visible rays for a textured sphere as a function of the distance from the

surface. We see that the relationship between distance from the surface and variance holds well, for

moving a small distance away from the surface produces a large jump in variance relative to points on

or very close to the surface.
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Figure 5.5: Total variance histogram. Histogram of the total variance of visible rays as a function

of distance from the surface. Moving away from the surface in either direction results in a signi�cant

increase in variance, so we set a variance threshold to detect point that are on or very close to the surface.

5.3.3 Volumetric Sweep Speedups

Since our depth and normal estimations are computed point by point, we need to perform a volumetric

sweep of our object space. In simulation, our target point cloud resolution is 50µm, while the total

volume considered is 10.8mm×10.8mm×10.8mm. If we were to do a naive volumetric sweep, this would

require over 10 million points. To speed up our processing, we implement a coarse-to-�ne algorithm.

We start with a volumetric sweep at resolution 450µm. This requires the analysis of 13824 points,

which is a very reasonable number for our algorithm. We perform point-by-point depth and normal

estimation as before, but with a slightly higher total variance threshold. Points that are kept in the point

cloud are then used to generate the next level of points at resolution 150µm. For this new level, we only

analyze points that are within 150µm of the points kept at the previous resolution. We again perform

depth and normal estimation with a reduced variance threshold to generate the next level of points at

the �nal resolution of 50µm.

As an example of how this �lls in a densely sampled point cloud, Figure 5.6 shows a this algorithm

applied in simulation. Using a textured bunny model as our object, we �rst scan at 450µm resolution,
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Figure 5.6: Coarse-to-�ne example. Examples of reconstructed point clouds using the coarse-to-

�ne algorithm. The point clouds progress in resolution from left to right at 450µm, 150µm, and 50µm

respectively.

then 150µm, then �nally 50µm. While some gaps remain that were not detected in the �rst stage, as a

whole the algorithm produces a densely sampled point cloud at the desired resolution.

5.3.4 Con�dence Filtering

We can improve our point clouds by considering the calculated variance at each point kept as belonging

on the surface. The lower the computed variance, the higher the con�dence that we can have in that

particular point. So, we can clean up our point clouds by removing points that have nearby points with

much higher con�dence. In particular, our algorithm searches a set of k neighbors around a given point

pi and sample resolution r . Forpi and each pointpj in the neighbor set, we have an associated con�dence

metric ci and c j as well as a distance di j from pi to pj . To �lter out point pi , we search for any point pj

that satis�es:

di j

r
≤ 2c j−ci−1 (5.3)

This removes points that have very close neighbors with a moderate con�dence improvement and

point with slightly farther neighbors with signi�cant con�dence improvement.

5.4 Simulated Results

We evaluate the proposed setup and associated algorithms with simulated measurements.
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Figure 5.7: Point clouds. Comparison of point clouds produced at 150µm resolution for data from a

single exposure and a 6 × 6 grid of exposures. The color map is based on the depth of the points.

5.4.1 Shape Reconstruction

We perform shape estimation using the procedure outlined above. The output of the algorithm is a point

cloud where each point has an associated surface normal and computed variance. To improve the density

of our measurements of the light �eld, we capture results from a 6 × 6 grid of shifted camera positions.

This aids the variance computations by providing more data, which helps improve the reconstructions.

However, capturing with a single exposure can still produce quality results. Figure 5.7 shows a side-by-

side comparison of point clouds generated at 150µm resolution for a single exposure and for the multiple

exposure method. The multiple exposures reduce some artifacts and produce slightly better results, but

the single exposure still captures the shape qualities of the object.

In both cases, we observe that gaps in the point clouds occur due to missed points in the �rst phase

of the coarse-to-�ne volumetric sweep that we perform. These gaps most often occur in areas where the

convexity of the object least holds, for that reduces the size of the cone of light that would be considered

low variance for points on the surface. Occasionally, these gaps occur in other areas as well, which

occurs due to the coarse sampled point that is nearest the surface in that area being very near to a

textural transition, which can introduce more variance.

We run our algorithm on four objects: a sphere, bunny, armadillo, and dragon. Due to the wide
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angle of measured light, we are able to observe points on the far side of these objects from the camera.

However, depending on the shape of the object, the amount of measurements on the backside may

be limited. In particular, the bunny model has a large area on the backside with a surface orientation

directly away from the camera, so we are unable to acquire su�cient measurements there. For the sake

of visualization, we merge point clouds generate from setups con�gured above and below the object to

�ll in the full reconstruction, with each view producing a high quality reconstruction of the side of the

object facing the camera. The sphere, armadillo, and dragon models are su�ciently measured on the

backside to �ll out a 3D reconstruction, so these objects are reconstructed from the single view.

Figure 5.19 shows reconstruction results for these four objects captured in simulation. The objects

were rendered with high frequency di�use textures and analyzed down to a point cloud resolution of

50µm. The top three rows of the �gure show the ground truth normal map visualized on the objects fol-

lowed by two views of the estimated normals visualized on the reconstructed surfaces. We observe that

while some of the high-frequency information from the ground truth surface normals is not preserved,

the overall surface orientations are e�ectively estimated.

The bottom three rows of the �gure show ground truth objects from one view and reconstructed

objects from two di�erent views. The reconstructed objects were generated from the point cloud loca-

tions and normals using MeshLab. We observe that for relatively simple, mostly convex shapes like the

sphere and the bunny, our reconstructions are quite accurate. The method begins to break down as we

try to resolve the �ne shape details and non-convex areas of the armadillo and dragon, but the overall

shape characteristics are reconstructed still.

We consider the accuracy of our directly estimated surface normals compared with those derived

from the reconstructed meshes from the point cloud. Figure 5.8 shows the visualization of the surface

normals on the reconstructed sphere along with a plot of the surface normal estimation errors in degrees

for both methods. We show that our technique is better able to directly reason the surface normals for

convex objects like this sphere. This is supported by the histogram shown in Figure 5.9, which plots

a histogram of the normal reconstruction error for the sphere. The majority of our directly estimated

surface normals have an error less than 1◦, while deriving the surface normal from the shape has a much

higher distribution of errors. This shows that even when our point cloud reconstruction has errors that

introduce shape reconstruction artifacts, our directly estimated surface normals are able to still match

the ground truth e�ectively for convex objects.
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Figure 5.8: Surface normal error visualization. We determine the error between our estimated

surface normals and the ground truth surface normals for the sphere (bottom). We compare these errors

to the surface normals derived from the 3D meshes produced from our point cloud (top). The columns

denote di�erent views of the sphere for a visualization of the surface normals (left) and a visualization

of the normal estimation error (right).

5.4.2 Refocusing

The wide baseline of measured light enables us to generate focal stacks along di�erent directions. Figure

5.10 shows three sweep directions for a two-color di�use textured sphere. Here, our setup allows for

views around the backside of the object from the camera. In the sweep from the side, we have more

measurements in the region toward the camera (on the top of the images), but we still focus on the

texture at the bottom of the sphere.

5.4.3 Viewpoint Synthesis

In addition to refocusing, we can resample our light �eld to generate synthetic views of our objects.

However, the sparse spatial measurements of our light �eld in a single exposure hampers our ability to

produce high quality pinhole views. Similar to shape reconstruction though, we can capture a set of data

with shifted camera positions to �ll in these sparse measurements. Figure 5.11 shows the results of four

di�erent views generated for di�erent objects with di�erent re�ectance properties. Note in particular

the captured variations of the specular highlights of the di�erent objects. The mixed textures are a

random assortment of di�use and specular materials based on those captured from the MERL dataset
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Figure 5.9: Surface normal error histogram. We determine the error between our estimated surface

normals and the ground truth surface normals for the sphere. We plot a histogram of these errors over

the entire mesh for both estimation techniques: direct estimation (blue) and derived from 3D mesh

(orange). We show that our technique is signi�cantly better when reconstructing convex geometry,

though our surface normal estimation in particular relies on this convexity assumption.

[Matusik et al., 2003]. In addition, the bottom row shows a sphere modeled with an iridescent thin �lm

coating. The di�erent synthesized viewpoints observe a wide selection of specular angles that cause the

specular highlight to shift in color according to the model.

5.4.4 Real Results

With the lab prototype, we can capture single-exposure images of wide-baseline light �elds. We use this

data to perform the same set of processing that we showed in simulation.

Shape Reconstruction. The blur that persists in our real imaging system prevents the processing of

more complex objects. However, Figure 5.12 shows a proof of concept of this processing technique on a

planar textured surface. Using the joint depth and normal estimation, we produce the point cloud shown

in the �gure.

Refocusing. We generate focal stacks with a small depth of �eld in the same way that we did for the

simulated results. Figure 5.13 shows results for two objects, all generated with a vertical focal sweep
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Figure 5.10: Refocusing. Simulated refocusing of the sphere model with a di�use texture at di�erent

depths. Each row corresponds to a di�erent focal sweep direction as visualized by the graphics on the

left. All directions are with respect to the light �eld camera direction, which is labeled. The hourglass

artifact in the last row is a consequence of the central subaperture view being aligned with the ellip-

soid focal point; in this case, all rays from this subaperture map exactly to the other focal point, while

neighboring sub-apertures map to points some distance away.

from under the object surface up toward the camera. The �rst object is a ThorLabs resolution chart

printed on glass. The �rst two rows of the �gure show data captured in two di�erent areas of the

chart. For both locations, we observe two apparent focal planes: �rst in column (b), then in column (d).

While column (b) seems less in focus than column (d), we note that it is more in focus than the focal

plane between the two in column (c). This dual focusing is caused by the shadow cast from the printed

pattern through the glass to the plane on which the glass is resting. Column (b) is the depth focused

on this shadow, which is inherently less sharp than the original pattern and is shifted slightly in one

direction according to the direction of the light source. Column (d) is focused on the pattern printed on

the glass, which is sharpest. On either side of these focused planes, the focal sweep quickly defocuses.

The �nal object shown is a blue die. We see that we come clearly into focus in column (d), but fall into

defocus blur in either direction from that point.

As we showed in simulation, we can also perform focal sweeps in di�erent directions as well. Figure
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Figure 5.11: Viewpoint synthesis. Simulated viewpoint synthesis of the sphere and bunny models

with di�erent textures and re�ectances. The gold and mixed texture bunnies were illuminated with four

directional light sources. The sphere model was illuminated with a single light source. The iridescent

sphere was modeled using a thin �lm re�ectance model, which produces angle-dependent changes in

re�ected wavelengths in the specular highlights.

5.14 shows two focal sweep directions for a stack of two small dice, particularly focused on the top

die where we have more measurements. Sweeping from inside the die up through the top toward the

camera, we come into focus in the fourth frame. The second frame is focused on two of the dots on the

side of the die, so the in focus area resolves to a small strip from this view. The sweep from the side of

the die brings a di�erent face of the cube into focus and e�ectively illustrates the narrow depth of �eld.

Since we are not sweeping perfectly square to the side of the cube, one part of the face comes into focus

before the other, as shown in the third and fourth frames. This is true for the �rst two frames as well,

where di�erent parts of the row of three dots on top come into focus in each frame.

Viewpoint Synthesis. In our simulations, we improved the quality of viewpoint synthesis results by

capturing a set of images with a shifted camera. This produced high-quality pinhole images over a wide

range of viewpoints. With our physical setup, we capture just a single image with a stationary camera.

This does not provide the dense measurements needed for these sharp synthetic views. Instead, we
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Figure 5.12: Point cloud. Three views of the reconstructed point cloud of a textured plane (a bayer

pattern printed on paper) with computed surface normals. These images show how the blur in the system

allows proper measurements mostly just in the center of each texture element, as the measurement gaps

follow a regular grid. The estimated surface normals are all fairly consistent with the proper orientation

of the plane, but they do tend to be skewed toward whichever end of the volume the point is on. In the

bottom right, we visualize the point cloud along with a �tted plane.

simulate a lens-based synthetic camera and apply interpolation to the rays we have measured to �ll in

the missing gaps. This produces blurrier images than what we showed in simulation, but we are able

to produce these results from a single exposure. Figure 5.15 shows results for four di�erent objects. In

particular, note how the di�erent views capture the di�erent angular responses to the single light source.

The specular highlight in the third column for blue die and the di�erent illuminated or shadowed side

faces on the green illustrate this behavior e�ectively.

5.5 Discussion

We introduced a novel imaging device that senses wide-baseline light �elds through the mapping prop-

erties of an ellipsoidal mirror. We showed how this data enhances the capabilities of standard light �eld

processing techniques by achieving extremely small depth of �elds and increasing the area of the object
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Figure 5.13: Refocusing. Focal sweeps of real data captured of a ThorLabs resolution chart and a blue

die. Depths are swept from lower to higher in the direction of the light �eld camera.
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Figure 5.14: Refocusing from alternate directions. Focal sweeps in vertical (top) and horizontal

(bottom) directions, as illustrated on the left. We are able to resolve di�erent faces on the die through

the di�erent directions.

that we can observe. Wide-baseline light �elds also open the door to a new set of capabilities. By using

visibility cues, we detailed a procedure for estimating surface normals of scene points and integrated

this ability into a shape reconstruction algorithm. We also demonstrated the ability to capture high-

frequency re�ectance phenomena like iridescence. In total, our proposed camera design pushes into

new territory for light �eld acquisition and analysis.
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Figure 5.15: Viewpoint synthesis. Viewpoint synthesis for a blue die (top row), a small green die

(middle row), and a blue resistor (bottom row). Each view re�ects the angular changes in re�ected light

based on a single illuminant.

Assumptions on object shape . A key highlight of wide-baseline light �elds is their ability to resolve

surface normals from a visibility analysis. This relies on the existence of a supporting hyperplane at

a scene point, such that there are no self-occlusions in the cone of light emitted on one side of the

hyperplane. This property is satis�ed by a convex object. In practice, while this technique does work

on non-convex shapes as seen in Figure 5.19, the reconstruction is worse in regions that are locally

non-convex. We explore this in simulation by using a 3D bowl geometry, as outline in Figure 5.16. We

de�ne a set of di�erent bowl geometries by intersecting spheres of di�erent radii with the planar side

of a cube, enforcing a �xed intersection diameter of 6 mm. We place these di�erent bowls within our

simulated imaging setup and aim to reconstruct the bowl using the techniques de�ned in this chapter.

Figure 5.17 shows the results of this experiment. We show the reconstruction pro�les for seven

di�erent bowl depths, from a �at plane to a fully hemispherical bowl. We observe that we are able to

relax our convexity assumption to an extent and still reconstruct the bowls with accuracy, as noted on

the left side of the �gure. We note average errors less than or equal to 64 µm when the depth of the bowl

is less than or equal to 1.2 mm. Deeper than this, we note average errors in the hundreds of µm and a

complete failure to reconstruct the deepest of bowls. This aligns with our empirical observations, where

we can account for some non-convexity, but signi�cantly non-convex objects can cause di�culties for

our reconstruction.
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Figure 5.16: Convexity experiment setup. We consider the impact of convexity on our recon-

struction results by capturing light �eld images of a spherical 3D bowl. We create the bowl model by

intersecting spheres of increasing diameters with a plane, enforcing a �xed intersection diameter of

6 mm. This forms a set of bowls with di�erent depths d . We further consider the bowls in terms of the

upper hemisphere coverage by considering the percentage of elevation angles that can be observed for

a point at the bottom of the bowl. We compute this metric as p = θ
π × 100%. When reconstructing the

bowl, we consider the depth error ϵ for each point in the bowl.

E�ect of the missing cone of light. As highlighted earlier, light �eld capture using ellipsoidal mir-

rors alone is incapable of measuring the cone of light centered around the major axis of the ellipsoid.

This has important consequences both in shape estimation as well as image-based rendering.

Our shape estimation techniques rely on the large angular span of the measurements, as opposed to

completeness of the measurements in that range. This large angular span allows us to obtain measure-

ments on either side of the visibility horizon plane—which is critical for accurate determination of the

surface normal as well as depth. This is visualized in Figure 5.2, which shows successful normal recovery

from observing a small portion of the light directly on either side of the visibility horizon plane.

The missing cone also results in some artifacts (seen in Figures 5.14 and 6.3) as the rendered images

have unusual bokeh, which we simulate in Figure 5.18 for focus stacks with di�erent orientations. The

upper portion of the plot shows the rendered bokeh for just the basic wide-baseline light �eld camera

used for the results in this chapter. We also show results in the lower portion corresponding to the

variation on the WBLF camera design where an additional lens placed within the ellipsoidal mirror

expanded the angular range of the captured light �eld, as discussed in Chapter 3. We note that when

we �ll in part of the central cone, the bokeh is more �lled in, producing more standard disc bokeh when

refocusing along the optical axis. We still observe an unusual crescent-shaped bokeh when focusing

along a tilted plane, for there is a portion of the hemisphere over these points that falls below the

hemisphere measured by our camera.
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d = 0.57mm
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ϵ̄ = 0.44mm
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Figure 5.17: Convexity experiment results. For seven bowls of di�erent depths and hemisphere

coverage percentage, we reconstruct the bowl geometry using the techniques outlined in this chapter.

We visualize the central pro�le of the ground truth and reconstructed bowls for each depth along with a

visualization of the depth reconstruction error ϵ for every point of the bowl, visualized looking down at

the bowl from above. We further display the average error ϵ̄ over the central pro�le for each depth. We

observe that our technique is able to relax the convexity assumption somewhat (up to bowls of depth

d = 1.2mm), but the more we relax this assumption beyond this point the worse the reconstruction

quality (right side). Note that the bowl depth d and coverage percentage p are de�ned in Figure 5.16.

The missing cone also restricts the view points where we can render perspective images. However,

this is still less restrictive than what’s possible with a standard light �eld camera, where the viewpoints

are limited to the very narrow measured cone.
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Figure 5.18: Bokeh visualization. Focus stacks for a plane near the focal point with �ve green dots

(gamma-corrected). The defocus of these dots reveals the unconventional bokeh resulting from our

setup and measurements. This varies depending on the orientation relative to the mirror, as each row

designates. When straight on, we observe a ring-shaped bokeh when not using the additional Fresnel

lens, but the ring is �lled in to a disc when adding the lens. When considering a tilted plane, we observe a

crescent-shaped bokeh with and without the lens, though the lens does �ll in some missing components

of the bokeh.
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Figure 5.19: Simulated 3D shape reconstructions. Shape reconstructions for the sphere, bunny, ar-

madillo, and dragon models. Using the point clouds with per-point surface normals, we use MeshLab to

generate reconstructed surfaces. To visualize the original surface normal estimates, we reassign the sur-

face normals for each vertex in the reconstructed mesh to equal a weighted sum of the normal estimates

for the ten nearest points in the original point cloud. The left column visualizes the ground truth surface

normals. The second and third columns show two views of each reconstructed object with the estimated

surface normals visualized on the surface. The fourth column shows ground truth renderings of the dif-

ferent models. The �nal two columns show two views of rendered images for the reconstructed meshes.

We also compute the average reconstruction error of the original estimated point cloud for each of the

objects: sphere - 0.116mm; bunny - 0.584mm; armadillo - 0.125mm; dragon - 0.093mm. Each measured

object �ts snugly within a 1 cm3 volume, which means our error range is approximately 1-5%.
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Field Data

In the previous chapter, we discussed the geometric light �eld processing equivalents for wide-baseline

light �elds. This provides a useful baseline for comparison to conventional light �eld cameras, which

can produce limited shape reconstruction, refocusing, and viewpoint synthesis. However, the geometric

3D reconstruction technique is limited by key assumptions. Namely, it relies on generally convex objects

and the presence of high-frequency textural elements. This limits the applicability to general 3D object

scanning, where we do not wish to limit ourselves to these objects. Additionally, our reconstruction

algorithm has to be applied independently at each point, which is time consuming as well as incognizant

of the surface-speci�c properties of the object.

In addition, refocusing and viewpoint synthesis rely on interpolating between measured rays. For

conventional light �eld cameras that have a grid structure to the measurements, this is well established,

as discussed in Chapter 2. For our setup, this is feasible only in simulation, where the exact mirror

geometry and con�guration is known. In this case, it is a simple matter to trace the rays back to the

sensor and perform pixel-based interpolation. However, moving to our optical prototype, we no longer

have any knowledge or con�dence in the geometry of the mirror or its con�guration. This means that

the �nal calibrated output from our camera is an unstructured list of light rays with the corresponding

measurements for each. Interpolating in this space is di�cult, and it is unclear which measure of dis-

tance is proper. For example, do we consider two rays close in angle or two rays close in space to be

more similar? This challenge leads to the artifacts in the viewpoint synthesis results for our previous

geometric processing technique shown in Figure 5.15.

Both of these limitations lead to the conclusion that we need a representation of our data that allows

for shape reconstruction and easier interpolation. This aligns well with a great volume of recent research

on neural scene representations [Mildenhall et al., 2020, Tewari et al., 2022, Yariv et al., 2020], which have

become a popular method for representing the appearance and geometry of arbitrary scenes. However,

most of the research in this space focuses on the model and its outputs, relying on the same input
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methodology: a collection of 2D image captures with viewpoints that are sparsely distributed around

the object. While this method is e�ective at capturing the spatial extent of the scene, each image provides

just a single additional sample from a scene point. In order to fully understand how light interacts with

the scene, we must take measurements of the re�ectance at each point more densely; this requires a

dense collection of images whose acquisition is invariably time and data intensive.

In this chapter, we propose a shape and re�ectance recovery procedure from images acquired from

our wide-baseline light �eld camera. Inspired by recent work on implicit neural representations, we reg-

ularize the inverse problem of shape and re�ectance recovery using an implicit di�erentiable renderer

(IDR) [Yariv et al., 2020]. We utilize the addition of a sparse collection of directional light sources to the

imaging setup to increase the richness of the data capture through illumination control, as discussion

in Chapter 3. The use of implicit functions for shape allows us to bene�t from the robustness of sur-

face smoothness constraints and avoid per-pixel reasoning. This relaxes the need for high contrast and

frequency textures; for example, we are able to successfully scan objects with piecewise-homogenous

materials.

Contributions. This chapter presents a novel application for neural scene representation to model

3D scenes using WBLF data captured using an ellipsoidal mirror and a light �eld camera. In particular,

we make the following contributions:

• Implicit Di�erentiable Renderer (IDR) from WBLF. We build a model based on IDR that operates on

wide-baseline light �eld data as opposed to sparse, 2D image inputs.

• Full Re�ectance Modeling. Wide-baseline light �eld data provides dense measurements of the re-

�ectance from each scene point. This allows for a more accurate renderer based on a learned BRDF

model. In particular, by introducing calibrated illumination and an improved input representation to

the rendering network, we are able to render not only synthetic viewpoints but synthetic illumination

conditions as well.

• High Frequency Re�ectance. Existing neural scene representations struggle to represent high-frequency

visual e�ects, including strong specularities. Our method utilizes the rich angular data from the wide-

baseline light �eld camera to improve the modeling of these high-frequency e�ects.

We characterize the performance of our approach using a set of simulated and real results. These

results show signi�cant improvements over prior work, and lays the foundation of fast re�ectance ac-

quisition of complex visual phenomena.
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Limitations. The limitations of this work are primarily driven by the size of the ellipsoidal mirror

used, which dictates the size of the objects that can be measured—this limit is∼ 10 mm3 in our setup. This

leaves us at a di�erent scale than existing methods, making direct comparisons di�cult. Additionally, we

apply sparse illumination to our imaging system; this limits the expressiveness of illumination synthesis

and causes limitations for objects with strong self-occlusions. These objects may have regions in shadow

for all or most illumination conditions, which negatively impacts the reconstruction quality.

6.1 Prior Work

This chapter builds upon recent advances in implicit neural representations [Sitzmann, [n.d.]] for (in-

verse) rendering of shape and re�ectance [Tewari et al., 2022]. Our work broadly uses the framework

proposed in IDR [Yariv et al., 2020], which uses signed distance function (SDF) to (neurally) repre-

sent the shape and a texture network to capture the viewpoint dependent appearance of the object.

Our approach, due to its reliance on active lighting, requires additional modi�cations. Zhang et al.

[2021] allow for explicit illumination modeling so as to decompose “appearance” more broadly into its

physically-meaningful constituents, namely, lighting and BRDF; however, the underlying representation

of the scene is still via volumetric radiance �elds. Yariv et al. [2021] and Wang et al. [2021] provide a

hybrid volume-surface representation to address this gap between shape and volumetric radiance, with

the eventual goal of a principled handling of re�ectance and illumination. Sang et al. [2023] provide

a framework for shape, illumination and re�ectance using SDFs. Our approach broadly borrows ideas

from these, tailoring them to the speci�cs of our imaging system.

6.2 Overview of Implicit Di�erentiable Rendering

We implement the scene representation based on the optimization techniques of IDR, which we will

outline in brief here. With IDR, we represent the scene using two neural networks, F and M , which

respectively de�ne the scene’s geometry and appearance. The F network, an MLP with weights θ ,

de�nes the scene geometry through an SDF, where the surface of the scene corresponds to the zero

level-set of the SDF. This network takes as input a 3D location x and returns the value of the SDF along

with a feature vector z used for rendering:

F (x;θ ) = (f (x;θ ), z(x;θ )) (6.1)
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The M network, an MLP with weights γ , approximates the surface light �eld radiance L for points in

the scene based on their location x̂, surface normal n̂, direction of observation v, and feature vector z:

L (̂x, v) = M (̂x, n̂, v, z(x;θ );γ ) (6.2)

Performing a forward pass through these networks to render a given ray r = {c + tv | t ≥ 0}

�rst intersects the surface level-set through the sphere-tracing algorithm [Hart, 1996]. This �nds the

intersection point x̂, and the gradient of the SDF produces the surface normal n̂. These vectors, along

with the feature vector z and the input view direction v, are used as inputs to the texture network M ,

which produces the RGB value for that ray.

These networks are trained using a set of input images {I} and corresponding masks {S}. Rays

from the cameras producing these images are traced through the SDF and intersected with the surface

level-set. Whether or not an intersection is found produces an estimated set of masks {̂S(θ )}, and when

an intersection is found (̂S(θ ) = 1) the texture network M is used to produce an estimated RGB value

Lp (θ ,γ ) for a given pixel p. To ensure di�erentiability, an approximation of Ŝ(θ ) is used:

Ŝα (θ ) = sigmoid
(
−α min

t ≥0
f (c + tv;θ )

)
(6.3)

The network is trained end to end using three loss components, with the overall loss computed as

the weighted sum of these terms.

loss(θ ,γ ) = lossrдb (θ ,γ ) + λmask lossmask (θ ) + λeik losseik (θ ) (6.4)

The �rst loss term is the RGB loss between the input image pixels and the rendered RGB values from

the texture network. This operates over the set of pixels p ∈ Pin , where Pin is the set of pixels where

both the ground truth mask S and the estimated mask Ŝ indicate an intersection.

lossrдb (θ ,γ ) =
1
|P |

∑
p∈Pin

��Ip − Lp (θ ,γ )�� (6.5)

The second loss term is the mask loss, which computes the cross entropy loss between the ground truth

and estimated masks over the remainder of the pixels Pout = P − Pin .

lossmask (θ ) =
1

α |P |

∑
p∈Pout

CE
(
Sp , Ŝα,p (θ )

)
(6.6)

The �nal loss term is the eikonal loss, which guides the formation of the SDF by enforcing the gradient

of the SDF to equal 1.

losseik (θ ) = Ex (‖∇x f (̂x;θ )‖ − 1)2 (6.7)
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Figure 6.1: Network architecture. Network design for the base IDR implementation (top) and our

proposed implementation (bottom). The F and M blocks shown are the geometry and texture networks

from IDR, described previously. Here, we include the sphere-tracing in the F block so that it outputs

n̂ and x̂ directly. As opposed to ray tracing from given images and masks, we input from a set of per-

pixel calibrated rays and mask values. Additionally, for each input ray, we obtain a set of n images

corresponding to n illumination directions. The corresponding RGB values and calibrated illumination

directions are included as a set with each individual ray (shown in purple). As such, a single forward pass

produces a rendered RGB vector for each of these inputs per ray. Additionally, we add a parameterization

block P that converts the set of illumination directions {`i |i ∈ 0..n} and viewing direction v into a set

of half-angle parameterizations for each illumination, set in the coordinate frame of the normal n̂.

We can utilize the resulting networks to compute a mesh based on the zero level-set of the SDF as

well as to render synthetic viewpoints by intersecting the desired rays with the SDF and passing the

resulting parameters to the texture network.

6.3 Proposed Method

In this section, we introduce key modi�cations to the IDR algorithm to enable shape and re�ectance

estimation from WBLFs. We introduce a sampling framework for our input as well as calibrated illu-

mination, which requires changes to the IDR’s network design. Figure 6.1 provides an overview of the

proposed technique.
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6.3.1 Network Inputs and Sampling

The existing IDR implementation samples a batch of light rays at each iteration by sampling pixels from

each 2D input image and tracing the ray through that pixel based on the camera pose and intrinsics. In

our method, each pixel on the light �eld camera has a unique ray path based on how it re�ects o� of

the ellipsoidal mirror below. Rather than trying to represent that geometry directly, we provide each

pixel with its corresponding object-space ray through calibration. The network then samples directly

from a list of measured rays, each of which also carries the corresponding observed RGB value of the

pixel along with a foreground/background indicator, which serves the purpose of the masks provided

previously.

Additionally, when using calibrated illumination, each ray is associated with the illumination direc-

tion under which the pixel measurement was taken. We note that since our imaging optics are �xed,

further measurements with di�erent illumination conditions correspond to the same rays as previous

measurements. This has positive and negative e�ects. The primary downside is that we do not gain

any data diversity or expansion despite the additional exposures. To the positive, training can be made

e�cient, with each ray being trained with multiple rendered radiances at once. Thus, when performing

a forward pass through the geometry network, we train using just the set of unique rays and their mask

indicators. When passing through the texture network, we train over all of the observations for the

sampled rays at once. These inputs to the network are depicted in the �rst two sections of Figure 6.1.

6.3.2 Modeling the Spatially-Varying BRDF

The texture network used in IDR approximates a function de�ning the light �eld radiance L(̂x, v). This

is de�ned after integration is performed in the standard rendering equation, with wo = −v:

L(̂x,wo) = Le (̂x,wo) +

∫
Ω
B(̂x, n̂,wo ,wi )L

i (̂x,wi )(̂n ·wi )dwi , (6.8)

where B(̂x, n̂,wo ,wi ) is the spatially-varying BRDF, and Li and Le are the incoming and emitted radi-

ance, respectively. Training the MLP to approximate this equation does well to reproduce the appearance

of the scene and even transfer that appearance to other geometries. However, this bakes the incoming

illumination into the function, rather than treating it as an input. This creates limitations when ren-

dering, particularly when applied to object scanning, where the user may desire to render this object

in novel illumination conditions. To do this requires the network to directly approximate the spatially-

varying BRDF B(̂x, n̂,wo ,wi ), which in turn requires knowledge of the illumination wi . Our optical

con�guration lends itself well to adding calibrated light sources.
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To further improve our ability to model the spatially-varying BRDF, we use the half-angle reparam-

eterization of Rusinkiewicz [1998], which is known to improve the reconstruction of high-frequency

re�ectance functions. Given the direction to the light source ` and the viewing direction v, we compute

the half-angle vector h and di�erence vector d as follows. First, we de�ne a coordinate system on a

given point using its surface normal n̂, a surface tangent t̂, and the surface bi-normal b̂ = (̂n × t̂). Next,

we transform ` and v into this coordinate system, producing the incoming and outgoing rays wo and

wi , respectively. Finally, we compute the half-angle vector h and the di�erence vector d:

h =
wo +wi

| |wo +wi | |
, d = rot̂b,−θh rotn̂,−ϕhwi , (6.9)

where (θh ,ϕh) are the spherical coordinates of the half-angle vector in the n̂ − t̂ − b̂ coordinate system.

The spherical coordinates of the di�erence vector (θd ,ϕd ) de�ne the di�erence in angle between h and

wi in the same coordinates. The rotation functions shown represent the rotation by the given angle

(−θh or −ϕh ) around the given axis (̂b or n̂).

In place of passing n̂ and v to the rendering network M , we instead pass h and d. This both enables

improved high-frequency re�ectance performance and training over calibrated illumination.

6.4 Results

We now evaluate the performance of our technique, in both simulations and real captures. Speci�cally,

we look at reconstructions of shape as well as appearance, both in novel viewpoints as well as illumina-

tion.

6.4.1 Simulation

A primary bene�t of this technique over that of Chapter 5 is the e�ciency of data usage. There, we

capture additional data by shifting the light �eld sensor over the range of the lenslet size (diameter of

2.2mm). Our simulated results for geometric 3D shape reconstruction are generated from a 6 × 6 grid

of shifted views, requiring 36 exposures overall, while viewpoint synthesis required 529 exposures from

a 23 × 23 grid of shifted views. These additional views provided a densely sampled light �eld at the

cost of higher data and time requirements. This technique requires no such shifting of the light �eld

camera, making it akin to a single-shot technique (we apply additional exposures to capture illumination

information, which is not helpful to the prior technique).
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Additionally, our previous shape reconstruction algorithm is a depth-from-focus technique, which

requires textural information in the scene to provide the necessary depth cues. This technique does not

assume anything about the texture or re�ectance found in the scene.

These two key distinctions make our neural technique important for scanning general scenes, where

high-frequency texture is not typically present and fewer exposures are desired. Therefore, we compare

the results with this use case in mind; our scenes contain isolated objects with relatively few materials,

and we perform 3D scene reconstructions based on the set of eight illuminated images captured as

discussed.

Figure 6.5 shows a results comparison of 3D reconstructions from this simulated data. The scale of

these objects is ∼ 10 mm across. Our technique produces e�ective 3D geometry for each object, with

some loss of �ne details but the overall structure preserved. The mean error between our reconstructions

and ground truth is ∼ 70 µm, while the previous technique did not well preserve all parts of the geometry

and had higher average errors ∼ 100 to 500 µm.

Additionally, Figure, 6.6 shows multiple renderings of synthetic viewpoints or synthetic illumination

conditions. Our reconstruction is able to properly reproduce specular highlights on the bunny and

armadillo upper body while still reconstructing the di�use color as well. Some very high frequency

re�ectance, such as that on the legs of the armadillo model, is not able to be reproduced, leaving the

material appearing di�use. Our geometric techniques do not scale down as well to single-shot data

e�ectively, leaving blurry and choppy viewpoint renderings; additionally, we did not have any modeling

of speci�c illumination, so rendering with novel light sources was not possible.

6.4.2 Real Data

Our lab prototype was built with three calibrated light sources, so we capture three images for each

of the depicted results. Figure 6.2 shows a results on measurements from our lab prototype. These

results show that we are able to produce 3D shape reconstructions for real objects using the neural

scene representation in a way that our previous technique could not. One limitation present in these

reconstructions is the spatial extent of our measurements. Note that the pizza cutter object, while quite

small, is still too big for our setup and leads to portions of the reconstruction being cut o�. Additionally,

the three calibrated light sources are all mounted above the mirror; the lack of illumination from beneath

the object constrains the resistor reconstruction to the upper half of the cylindrical shape.

Additionally, we show viewpoint and illumination synthesis in Figure 6.3. Here, we see the materials

of the pizza cutter being well reconstructed; being generally upward facing, each visible scene point is
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Pizza CutterResistorGreen Die

Figure 6.2: 3D reconstruction results. 3D shape reconstruction results for three objects scanned

using our wide-baseline light �eld camera prototype. The penny is shown for scale.

illuminated by multiple of the light sources, which tends to improve the results. The resistor is more

in shadow, which is more di�cult to reconstruct completely. Further, practical constraints on the fre-

quencies that we can model limit the full reconstruction of �ner details, like the colored bands on the

resistor, but they are recovered here with some blur.

Finally, we show a comparison to the viewpoint synthesis presented in Chapter 5 for the green die in

Figure 6.4. While neither technique fully reconstructs high quality appearance, our technique constrains

the renderings by tracing to the surface representation, which leads to a sharp silhouette of the object.

Prior results interpolated directly from the captured rays and were correspondingly blurred over the

entire image.

6.5 Discussion

We introduced a neural scene representation capable of operating on wide-baseline light �eld data to re-

construct 3D shapes and render novel images under di�erent viewing and illumination conditions. This

work improves upon the capabilities presented in prior wide-baseline light �eld research, particularly

in severing the reliance on high-frequency textures and providing illumination calibration for further

expressivity. We applied calibrated illumination to the task of modeling the re�ectance of scene points

through a learned BRDF model, which showcased e�ective modeling of several specular surfaces. As

we built upon the baseline established for wide-baseline light �eld processing, we explored how the rich

angular data being captured provides modeling capabilities with fewer exposures yet equally diverse

measurements.

Future work in this space can build upon the limitations present in the results shown. In particular,
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Figure 6.3: Viewpoint synthesis. Viewpoint synthesis (top row for each object) and illumination

synthesis (bottom) for the pizza cutter and resistor objects. The pizza cutter appearance is well recon-

structed, while the higher-frequency details on the resistor are lost.

Geometric Reconstruction 
(Chapter 5)

Neural Reconstruction

Figure 6.4: Viewpoint synthesis comparison. Comparison of the viewpoint synthesis of a green die

from our neural approach to that of Chapter 5.
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high frequency elements, be they in re�ectance (sharp specular highlights) or in texture (sharp changes

in material or color), proved di�cult to reconstruct in many cases. Additional development is needed

to properly account for these e�ects in the model. Furthermore, the sparse, directional illumination

used in this work provided a simple framework for including calibrated light sources in the model, but

shadowed regions produced as a result of this impacted the reconstruction quality, particularly from our

lab prototype. Devising a more sophisticated scheme for calibrated illumination could provide bene�ts

in the coverage of reconstruction results.
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Figure 6.5: Simulated 3D reconstructions. Simulated 3D shape reconstruction results for our tech-

nique compared to Chapter 5. We visualize the ground truth mesh, the estimated meshes, and the Haus-

dor� distance used to show the reconstruction error. The prior technique requires very high frequency

textural information and fails when presented with re�ectance distribution that are more commonly

encountered, as we have shown here. Using data that is piecewise-continuous in re�ectance, we are

able to reproduce all but the �nest of shape details. Both the bunny and armadillo reconstructions have

a mean error ∼ 70µm. The strongest error is seen on the backside of the bunny, which is the hardest

for our imaging setup to reconstruct as it is oriented away from the sensor. Nevertheless, we are able to

reconstruct full 3D reconstructions from a single perspective.
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Figure 6.6: Simulated viewpoint and illumination synthesis. Simulated viewpoint and illumi-

nation synthesis for our technique compared to Chapter 5. We show ground truth renderings of each

of the novel viewpoints and lighting directions that we are reconstructing, along with the results from

our technique and that of our prior work. We did not have novel illumination rendering previously,

and our novel viewpoint renderings are very coarse without the additional exposures that we applied.

Our results show proper rendering of moving specular highlights, even those that were not observed

by our sensor. In particular, specular highlights with a wider lobe, such as the bunny material or the

golden upper body of the armadillo, are able to be reconstructed quite e�ectively. Very high-frequency

specularities, such as can be observed on the legs of the armadillo, are more di�cult to reproduce. In

all, the interpolation bene�ts of the neural scene representation allow us to render a broader range of

scenes and scene conditions with higher quality.





7Reconstructing Spatially-Varying Iridescent

Re�ectance

Characterizing the complex ways in which light interacts with the world around us is a challenging

problem. Many materials exhibit particularly intriguing re�ectance phenomena that prove especially

di�cult to both capture and digitally represent. This is particularly true of iridescent objects, where the

observed color of the object varies signi�cantly with viewpoint and illumination changes, presenting

a challenge for data capture, for we would need to capture every possible combination of observation

and illumination directions to fully represent the re�ectance characteristics. Additionally, this poses a

di�culty for representation, for the color variation occurs at high frequency in angle, can be produced

through di�erent underlying physical mechanisms (such as thin-�lm interference, di�raction and struc-

tural coloration), and exhibits characteristics not found in standard re�ectance models that focus on

di�use and specular modes.

As a result, most of the recent research in re�ectance acquisition has revolved around faster data

capture techniques and improved representations that allow for both reduced representation size and

less required input data. However, many of these techniques achieve their excellent results through

sacri�cing one or more elements that make up the full characterization of the scene, whether that be

spatial information, high-frequency re�ectance representation, or illumination variance. This makes it

di�cult to fully represent all possible scenes, particularly those with highly complex visible phenomenon

such as iridescence.

In this chapter, we apply the wide-baseline light �eld camera to e�ciently capture dense measure-

ments in space, observation angle, and illumination angle using the modi�ed imaging setup of Fig-

ure 3.20. We pair this with a neural spatially-varying bidirectional re�ectance distribution function

(SVBRDF) that can be utilized to capture complex materials with high-frequency features in both space

and angle. A summary of the proposed pipeline is introduced in Figure 7.1.
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Reconstruction Neural SVBRDF Wide-baseline light field capture 

Figure 7.1: Summary of contributions. We �rst measure the SVBRDF of various complex materials

through wide-baseline light �eld measurements, optimizing the imaging system for e�cient data cap-

ture. We then represent this large dataset as a neural SVBRDF, which can be applied to reconstruct the

appearance of the captured materials. We show that this system is capable of capturing and reconstruct-

ing highly complex and spatially-varying iridescent re�ectance.

Contributions. This chapter presents an optical design and digital re�ectance representation to ex-

tend the usage of the wide-baseline light �eld camera to re�ectance capture. In particular, we make the

following contributions:

• E�cient SVBRDFCapture usingWide-Baseline Light Field (WBLF) Camera. We show how the extensions

of the WBLF camera for dense illumination control and extended angular range e�ciently measure

the broad gamut of the SVBRDF.

• Neural SVBRDF Modeling. We build a neural architecture that is capable of characterizing high-

frequency information in space and angle. This model is utilized in other renderers as a texture map

of BRDF features.

Our system is capable of scanning objects that exhibit rich iridescence, including the eye of a peacock’s

feather that shows structural coloration and craft materials that have di�ractive light dispersion similar

to what is observed from a grating. Such results present an advance in our ability to scan materials that

exhibit extremely high-frequency variations in spatial and angular dimensions of its re�ectance.

Limitations. Several key limitations of this work are driven by the size of the ellipsoidal mirror used,

which dictates the spatial extent of the materials that can be measured—this limit is 20 mm × 20 mm in

our setup, with reconstruction quality fading some toward to outer extreme of that range. Large ellip-

soidal mirrors are also extremely expensive to manufacture, especially at the surface quality typically
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seen in imaging instruments. Consequently, our system, which is built out of a signi�cantly lower-

quality mirror, requires painstaking calibration; despite this, the quality of results we obtain is still

adversely a�ected by deviations from the ideal shape and re�ectance of the mirrored surface. Another

limitation induced by the ellipsoidal mirror is the shallowness of the depth of �eld on the target, which

limits us to planar targets. We additionally share limitations from the use of the light �eld camera,

which dictates a space-angle trade-o� in measuring capabilities. While the mapping through the ellip-

soidal mirror changes how this is realized, we still fall short of theoretical limits on angular and spatial

resolution based on this trade-o�. Finally, while we introduce additional optics in the form of a Fresnel

lens to extend the angular range of the system, the resulting system still fails to provide a complete

sampling of the re�ectance cone.

7.1 Prior Work

There are two broad categories of work that broadly intersect with the proposed work: acquisition

systems for re�ectance and neural representations for the same. We brie�y discuss both.

7.1.1 Systems for Re�ectance Measurements

Complete measurements of the BRDF are classically achieved using a goniore�ectometer, where rotation

control of the illumination and sample with a �xed detector is utilized to capture all possible illumina-

tion/observation angle pairs [Li et al., 2006]. Assuming a uniform material allows for a reduction in

capture time and data requirement by using a camera to simultaneously measure from multiple surface

points at once [Marschner et al., 2000, Matusik et al., 2003], including for anisotropic materials [Filip

et al., 2014]. These systems don’t account for spatial variance in the material samples, instead using the

spatial extent captured by the camera to generate additional samples of the uniform material. We can

account for the spatial variance with additional hardware, such as using a light stage [Debevec et al.,

2000, Ghosh et al., 2011, Joo et al., 2017, Schwartz et al., 2013] comprising of multiple cameras, light

sources and projectors. These systems are resource intensive, often consisting of tens to hundreds of

devices that need to be mechanically secured and calibrated.

An alternate approach, more geared for low-cost applications, is to use a catadioptric camera, which

adds mirrored optics to an imaging system. One catadioptric design uses a kaleidoscope to scan the

scene [Ahn et al., 2021, Reshetouski et al., 2011, Xu et al., 2018]; in principle, the kaleidoscope acts like a

multi-camera system, providing a plethora of novel views of the object which can be used to reconstruct

the geometry and appearance of objects. Smooth mirror geometries provide continuous measurements



104 CHAPTER 7. RECONSTRUCTING SPATIALLY-VARYING IRIDESCENT REFLECTANCE

of material re�ectance as opposed to the sparse captures from multiview imaging or kaleidoscopes. In

particular, the use of ellipsoidal [Mukaigawa et al., 2007, 2009] and parabolic [Dana and Wang, 2004,

Ghosh et al., 2007, Zhang et al., 2015] mirrors takes advantage of the focal points of these geometries

to get many observations of a single point at once, providing dense BRDF measurements over a broad

angular range. However, the measurements all come from the focal point, so they do not account for

spatial variance. The wide-baseline light �eld camera that we introduce in Chapter 3 combines the

ellipsoidal mirror with a light �eld camera to capture a large range of angular and spatial measurements.

We utilize the variation shown in Figure 3.20 to further add dense illumination control and extended

angular range measurements.

7.1.2 Neural Re�ectance Representations

Traditional BRDF representations are usually either model-based [Soldado and Almagro, 2012] or data-

driven [Hui and Sankaranarayanan, 2015, Matusik et al., 2003]. Neural networks provide a way to either

improve interpolation of large datasets or learn representations with less input data.

Much of the research in this space involves using neural networks to learn SVBRDF parameters like

di�use albedo, specular albedo, glossiness, and more [Dong, 2019]. These techniques are able to learn

these parameters from very few images, but are limited to materials that match their model assumptions.

More complex materials, like iridescent objects, are unable to be captured either due to the limited data

missing the regions of interest or the limitations of the model itself.

Recent work in implicit neural 3D scene representations [Sitzmann, [n.d.], Tewari et al., 2022] is

able to reconstruct more general shape and appearance information. Much of this work is focused

on recovering the scene geometry and appearance, and does not focus on illumination variation or

producing BRDF representations that can be rendered in other settings. Yariv et al. [Yariv et al., 2020]

use a signed distance function (SDF) to (neurally) represent the shape and a re�ectance network to

capture the viewpoint-dependent appearance of the object. The separability of these networks allows

the re�ectance network to be transferred to alternate geometry, though the illumination conditions are

baked into the representation. Zhang et al. [Zhang et al., 2021] allow for explicit illumination modeling

so as to decompose “appearance” more broadly into its physically-meaningful constituents, namely,

lighting and BRDF; however, the underlying representation of the scene is still via volumetric radiance

�elds, which are not transferrable beyond the trained scene. Yariv et al. [Yariv et al., 2021] and Wang et

al. [Wang et al., 2021] provide a hybrid volume-surface representation to address this gap between shape

and volumetric radiance, with the eventual goal of a principled handling of re�ectance and illumination.



7.2. NEURAL SVBRDF REPRESENTATION 105

Our approach aims to leverage the generalizability of implicit scene representations to create a neural

representation of the SVBRDF itself. Our architecture is most similar to the re�ectance network in

IDR [Yariv et al., 2020], with the added measures of illumination control, input reparameterization, and

improved high-frequency response. This has the added bene�t of allowing our learned SVBRDFs to be

easily rendered on trained IDR geometry.

7.2 Neural SVBRDF Representation

In this section, we introduce our neural representation for the SVBRDF, which trains over the data

measured with the previously outlined optical system.

7.2.1 Network overview

Capturing a full dataset with this optical design with 20◦ illumination spacing in azimuth illumination

measurements produces 9172877×18×12×3 measurements (our calibration produces 9172877 measured

rays from the light �eld camera, the illumination accounts for 18 × 12 measurements, and we capture

three color channels for each measurement). This prompts us to develop a representation of the data that

is equally as expressive but requires less storage. We achieve this with the neural architecture shown in

Figure 7.2. The network consists of four fully-connected layers of size 512, comparable to the rendering

network employed in Implicit Di�erentiable Rendering (IDR) [Yariv et al., 2020]. We pass as inputs for

each measured pixel p the (x ,y) coordinates on the observed plane, the viewing direction v, the set ofm

observed lighting directions {`i |i ∈ 0..m}, and the surface normal n of the observed plane. The network

outputs the set of predicted RGB colors {ci |i ∈ 0..m} for each lighting direction m, which is trained

based on the set of ground truth RGB observations {Ii |i ∈ 0..m}. This setup allows the network to be

used as a BRDF texture map, where (x ,y) act as the texture coordinates. This makes it easy to transfer

and render our material captures on other geometries.

7.2.2 Generating Inputs

We apply the calibration procedure of Chapter 4 to calibrate a light �eld ray origin and direction for each

light �eld pixel. We additionally apply the helper camera to capture a checkerboard on the LCD where

we will place the object. Once the measurement plane origin and orientation are known, we project the

light �eld rays to this plane, providing 2D texture coordinates (x ,y) based on the intersection location.

These spatial coordinates paired with the observation direction of each ray form the main input to the
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Figure 7.2: Overview of the network design to represent the SVBRDF. We take as input the

captured image data, one image per illumination direction, along with the calibrated light rays for each

light �eld pixel and the illumination direction for each pixel p and illuminant i . The observation and

illumination angles are transformed by the block P along with the surface normal n to produce the

reparameterized features ĥ and d̂ for each pixel. The spatial coordinates (x ,y) for each pixel are encoded

into Fourier features (̂xp , ŷp ) by the block F . The resulting input vector is of size 34. The main network

consists of four fully connected layers of size 512 (light blue), with a sinusoid activation function between

each layer (dark blue). The �nal output is a standard tanh activation (green), producing the predicted

color c at a given pixel p for each illumination direction i (color values during training are mapped from

[−1, 1]).

SVBRDF network. The calibrated plane also means the surface normal n is known and passed to the

network as input as well.

The dense illumination is calibrated as 3D point locations for each light source, according to Chapter

4. We produce the desired input light direction ` for each light source i and pixel p by �nding the

di�erence vector between the scene point measured by the light �eld camera and the location of the light

source. The scene point is the intersection point of the light �eld ray from pixel p and the measurement

plane (i.e. the 3D spatial coordinate of the 2D texture coordinates (x ,y) produced previously). This

means that we produce a unique illumination direction ` for each point observed on the plane, providing

additional variability of the illumination measurements that we take.
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7.2.3 Encoding High-Frequency Features

The fully-connected network should be able to model the complexity of the desired BRDFs, but as Sitz-

mann et al. [Sitzmann et al., 2020] and Tancik et al. [Tancik et al., 2020] have shown, the network tends

to learn low-frequency representations of the data. To improve the reconstruction of high-frequency

details, the latter work employs spatial encoding via Fourier features, which have become common

in neural scene representations. This involves encoding the inputs (such as the spatial coordinates)

as a series of sines and cosines of these inputs with increasing frequencies. We found that while this

technique does improve high-frequency reconstruction for spatial locations, it struggles to reconstruct

high-frequency features in re�ectance when used on viewing or lighting direction inputs. Instead, we

employ the Siren activation function technique [Sitzmann et al., 2020], which has also been shown to

similarly improve high-frequency performance. This technique uses a sinusoid activation function be-

tween layers as opposed to the more common ReLU activation. We observed that Siren improved our

reconstruction of high-frequency re�ectance features, but failed to do the same for spatial textures. Ul-

timately, we employed both techniques; we applied spatial encoding to our texture coordinates (x ,y)

and utilized the Siren activation function throughout our network. Section 7.3.4 goes into detail on our

observation that the combination of spatial encoding and Siren activation functions performs best for

both complex re�ectance and complex texture.

7.2.4 Input Parameterization

To further improve our ability to model the SVBRDF, we use the half-angle reparameterization of [Rusinkiewicz,

1998], which is known to improve the reconstruction of high-frequency re�ectance functions. Given the

direction to the light source ` and the viewing direction v, we compute the half-angle vector h and di�er-

ence vector d as follows. First, we de�ne a coordinate system on a given point using its surface normal

n̂, a surface tangent t̂, and the surface bi-normal b̂ = (̂n × t̂). Next, we transform ` and v into this coor-

dinate system, producing the incoming and outgoing rays wo and wi , respectively. Finally, we compute

the half-angle vector h and the di�erence vector d:

h =
wo +wi

| |wo +wi | |
, d = rot̂b,−θh rotn̂,−ϕhwi , (7.1)

where (θh ,ϕh) are the spherical coordinates of the half-angle vector in the n̂ − t̂ − b̂ coordinate system.

The spherical coordinates of the di�erence vector (θd ,ϕd ) de�ne the di�erence in angle between h and

wi in the same coordinates. The rotation functions shown represent the rotation by the given angle

(−θh or −ϕh ) around the given axis (̂b or n̂).
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Iridescent A Pattern

Hologram Iridescent B

Peacock Butterfly

Figure 7.3: Objects used for evaluation. We test our proposed imaging and representation using a

peacock feather (Peacock), uniform iridescent material (Iridescent A), patterned origami paper (Pattern),

holographic dove from a credit card (Hologram), spatially-varying iridescent material (Iridescent B), and

butter�y hair clip (Butter�y).

To account for the cyclical and �xed-magnitude nature of the vectors h and d, we represent them as

vectors of the sines and cosines of the azimuth and elevation angles for each vector:

ĥ = [sinθh , cosθh , sinϕh , cosϕh] , (7.2)

d̂ = [sinθd , cosθd , sinϕd , cosϕd ] . (7.3)

In place of passing the surface normal n̂, the viewing direction v, and the lighting direction ` to the

network, we instead pass only ĥ and d̂. This improves our high-frequency re�ectance performance.

7.3 Results

We show a range of results for re�ectance with high-frequency variation in space and/or angle using

the objects shown in Figure 7.3. We produce visualizations of the learned SVBRDF for di�erent input

parameters along with renderings of the objects under novel viewpoints and illuminations. Finally, we

show reproductions of the captured materials rendered on alternate geometry by texture mapping our

learned SVBRDF onto these objects.

7.3.1 Learned SVBRDF Visualization

We �rst analyze our results by visualizing the learned SVBRDF. We �x the spatial coordinates at (x ,y) =

(0, 0) and visualize the observed color at every observation angle over the hemisphere for a set of di�er-

ent illumination conditions. Figure 7.4 shows these results for �ve di�erent material captures under three

di�erent novel illumination directions. We observe that we capture the di�erent ways that iridescent
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Figure 7.4: Visualization of the SVBRDF learned for various input materials. We �x the spatial

coordinates at (x ,y) = (0, 0) and plot the observed color at viewing direction v by parameterizing v

according to its azimuth angle θ and elevation angle ϕ, as de�ned in the illustration on the right. Each

column is generated with a di�erent �xed illumination direction `i .

material can present itself, with the objects Iridescent A, Iridescent B, and Hologram displaying di�erent

iridescent di�raction e�ects. Also, the mostly-di�use Pattern object shows consistent di�use re�ectance

when the illumination elevation angle is high (columns one and two) but behaves more specularly at

grazing angles, consistent with known behavior.

Some artifacts do appear in these results, particularly noticeable for the di�use Pattern object. First,

there is a noticeable color shift moving toward the upper portion of these plots. This is due to the

di�erences in imaging between the lens (upper portion of plot) and the mirror (lower portion). The

quality of the Fresnel lens does tend to degrade the color reproduction in practice, leading to more

washed out colors in the upper portion of the plot.

7.3.2 Novel Renderings

We next consider our SVBRDF representation by producing novel renderings of the captured material

planes. Figures 7.11 and 7.12 show a set of renderings at di�erent viewpoints with two di�erent illumi-

nation directions. We render a 20mm× 20mm area of the captured material. These results highlight the

angular and spatial e�ects that we are able to reproduce. We can reconstruct materials with either high

angular frequency (Iridescent A), high spatial frequency (Pattern), or both (Iridescent B, Hologram) Partic-

ularly, the Hologram, a common security feature on many credit cards, is exemplary of the capabilities

of the proposed method. The dove appears in iridescent color in certain observation/illumination con-

ditions, but completely disappears into the background in others, which is consistent with the observed

e�ect from our ground truth observations.
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Figure 7.5: Fixed viewpoint renderings. We render the captured Hologram with a �xed viewpoint

while moving the illumination in an arc over the object from right to left (see diagram). Note that the

dove’s left wing is more extended when illuminated from the right (orange) and more retracted when

illuminated from the left (green). This creates an e�ect where the dove appears to rotate in space.

We further render the Hologram under a �xed viewpoint with varying illumination. Figure 7.5 shows

this set of renderings, which reveal the holographic nature of this material. The dove is designed to

appear to rotate slightly under changing illumination, which we observe in this set of renderings as

well. Capturing this result requires the measurement of �ne details in both space and angle, which our

design delivers in an e�cient way.

We observe some artifacts from errors in the object plane estimation; due to the very shallow depth

of �eld of the wide-baseline light �eld camera, small errors in plane estimation lead to computed inter-

section points (x ,y) having errors that are most signi�cant at these grazing angles. These artifacts are

most apparent near the outer range of the material, most visibly on the Pattern object. This is expected

due to the fall-o� in the number of measurements, as discussed in Chapter 3. The quality of the re-

construction is also dependent on the observation elevation angle. Figure 7.6 shows a set of renderings

with �xed illumination at various observation elevation angles. As we move into the previously missing

central cone, which we aimed to �ll with the Fresnel lens, additional artifacts appear. Relative to the

wider set of angles captured through the mirror, we capture far fewer measurements in these regions.

Some degradation in results is expected therefore, but the �lled cone allows for any observations in this

range at all, as discussed in Section 7.3.4. Overall, the central region reproduces the captured material

faithfully and the full area is captured with some artifacts.

7.3.3 Material Transfer

Finally, we demonstrate the applicability of our captured SVBRDFs by rendering them as BRDF texture

maps on di�erent geometry. Figure 7.7 shows each captured material rendered on the skull geometry
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Figure 7.6: Fixed illumination renderings. We render the captured Pattern with a �xed illumination

direction while moving the viewpoint in an arc in elevation (see diagram). We note the increase in

artifacts as we move closer to a head-on view; this is due to the relatively limited number of observations

from these angles and the optical quality of the Fresnel lens. However, we only achieve these viewpoints

at all due to the addition of the Fresnel lens.

from a pre-trained IDR network [Yariv et al., 2020], where we replace the rendering network with our

own trained SVBRDF representation. This shows the captured materials under a range of di�erent

observation angles and surface normals that were not part of training. The illumination is set to shine

top-down in these images; note that we do not model self-occlusion in these renderings.

7.3.4 Ablation Study

These results exemplify the capability of our proposed imaging system and neural SVBRDF representa-

tion. To empirically analyze the impact of particular design elements on our reconstructions, we consider

removing one element at a time in Figure 7.8. In order, we consider our system with no added Fresnel

lens, no Siren activation between linear layers, and no positional encoding on the input spatial locations.

We �nally consider removing the Siren activation and replacing it with Fourier feature encoding (similar

to the positional encoding) on the observation and illumination angle inputs.

The material transfer results in particular highlight the impact of the Fresnel lens addition on our

ability to capture on model these materials. We observe how the lack of this lens prevents the recon-
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Iridescent A

Pattern

Peacock

Figure 7.7: Rendering on other geometry. We render pre-existing geometric models using our

captured SVBRDFs as texture maps. This tests our reconstruction over a range of di�erent surface nor-

mals and observation angles, and we see both the iridescent e�ects and the spatial textures successfully

rendered.
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Figure 7.8: Ablation study. The impact of major design decisions on reconstruction results. We show

a BRDF plot, rendering, and material transfer for two materials (Iridescent A and Pattern) both with and

without the added Fresnel lens, positional encoding, and Siren activation. The addition of the lens �lls in

the missing central cone from the ellipsoidal mirror, allowing the results to actually be used in rendering

over a full set of viewpoints. Siren activation ensures that we can characterize high-frequency angular

e�ects like iridescence; without it, we lose all of these e�ects but still maintain the ability to reconstruct

spatial texture through the positional encoding. Without the positional encoding, the re�ectance of each

point is accumulated from a large area of neighboring points, removing our ability to reconstruct high-

frequency e�ects in either angle or space. The �nal row illustrates our reconstruction when removing

the Siren activation and utilizing Fourier feature encoding on the observation and illumination angular

inputs to the system. While we are able to resolve some high-frequency re�ectance e�ects, we miss

many of the highest-frequency elements and observe introduced angular artifacts.

struction of the central cone of light leaving each scene point. This cone corresponds to the ability to

reconstruct the appearance of surface normals oriented toward the observer.

The use of positional encoding ensures that high-frequency spatial features can be faithfully recon-

structed. Without it, even with the Siren activation function, neighboring spatial regions are combined

and treated as angular variation, leading to the BRDF plots shown.

The Siren activation technique improves our angular re�ectance reconstruction. We observe the loss

of many high-frequency re�ectance elements when we revert back to just using spatial encoding to treat

the angular features.

Removing the Siren activation and using Fourier feature encoding on the angular components of our

system is able to resolve some high-frequency angular e�ects. However, we still miss some of the more
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Figure 7.9: Consideration of the number of training images. We consider the impact of reducing

the number of measurements that we train over. We show a BRDF plot and two novel view renderings for

two materials (Iridescent A on the left and Pattern on the right) with decreasing number of measurements,

listed on the left. For the di�use object (right), the impact is minimal. For the iridescent object (left),

the impact is signi�cant. This indicates that the density that we can achieve with our imaging system

is necessary to capture these high-frequency iridescent e�ects.

narrow (and thereby high-frequency) elements of the iridescent re�ectance, and we start of observe

some angular artifacts in our reconstruction due to the high-frequency encoding. This supports our

empirical analysis that the Fourier features work well in our system for positional encoding of spatial

features while the Siren activation enables the reconstruction of high-frequency angular re�ectance.

We further consider the impact that the number of captured images has on our reconstructions.

Recall that each additional image captures an additional illumination condition, but the viewing angles

and spatial measurements remain constant. We show the BRDF visualization and viewpoint synthesis

for the Iridescent A and Pattern objects in Figure 7.9. All reconstructions are shown for an illumination

condition not seen in training, generally falling in between captured measurements, which are spaced

out over the hemisphere.

Our main results have utilized 198 images, aligning with the top row. This takes advantage of the

dense measurements that our imaging device can achieve. However, the neural SVBRDF representation
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is powerful enough to interpolate between sparser measurements. As we move to fewer measurements,

we observe that our reconstruction of spatial textures for the di�use object is hardly impacted. Our

network is able to interpolate easily when there is a high amount of viewpoint consistency in color,

which is true for di�use objects like this one. However, as we do the same with the iridescent object,

we note that we lose more and more lobes of color and introduce additional artifacts as we reduce

the number of measurements. The dense measurements of our wide-baseline light �eld camera are

necessary to capture these e�ects.

7.4 Discussion

We introduced an imaging system and neural SVBRDF representation capable of capturing and recon-

structing the re�ectance of complex materials. Our proposed imaging system extends the capabilities

of a wide-baseline light �eld camera to capture observations over a full hemisphere surrounding the

material in a single exposure, enabling e�cient re�ectance measurements. The light �eld imaging capa-

bility also provides measurements in space along with these diverse angular measurements in the same

exposure. We additionally utilize an illumination system to provide illumination control over a full

hemisphere. This imaging system provides e�cient high-quality measurements that we can use to train

a neural SVBRDF representation for a broad range of complex materials. We show that we are capable

of reconstructing complex, high-frequency details in angle (iridescence) and space (spatial textures).

Limitations We conclude by considering the limitations of our approach. We noted at the start of

this chapter several limitations, including the size of the capture area, limitations in quality imaging

optics, and standard light �eld space-angle trade-o�s. These limitations are largely �xed into the optical

design based on the ellipsoidal mirror and light �eld camera parameters, though further re�nement of

the calibration techniques outlined here could overcome some limitations in imaging optics.

We further note that we are limited in our capture to planar materials, as we do not reconstruct any

geometry information in our training. This creates problems when reconstructing even mostly-planar

materials, as our depth of �eld is very shallow. Figure 7.10 shows the attempted reconstruction of a

butter�y hairclip. While mostly planar, the varying heights on the surface prevent quality reconstruction

at these di�erent depths. We are able to reconstruct several features, including the texture of the �owers

and the iridescent star, but many details at di�erent depths are lost. We limit ourselves to planar objects

due to the high-frequency details we aim to capture in angle. This makes common shape reconstruction

techniques, which rely on color consistency across observations, di�cult to apply to our data.
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Figure 7.10: Limitations due to narrow depth of �eld. We render the Butter�y (top) and reference

images of the clip (bottom). Due to the varied surface height of di�erent elements and the limited depth

of �eld of our imaging system, we are unable to resolve each element in focus with our current technique.
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Figure 7.11: Novel view synthesis. We show the rendering for the �rst two of four di�erent material

captures under novel viewpoint and illumination conditions. The �rst and second rows for each object,

labelled `1 and `2, show two di�erent sets of novel viewpoints under two distinct illumination directions.

The third row, labelled ref, shows reference captures of the object using a color camera and directional

light source. This serves as our visual reference, though the exact observation angles and illuminations

of these captures are not necessarily identical to the rendered results as the camera and light source

were not calibrated. However, we observe the same iridescent phenomenon in our renderings that are

seen in the reference images. In particular, the Hologram had su�cient spatial information to nearly

align our rendered images with the ground truth; as a result, we produce a matching rendering in row

`2 for each object view in row ref.
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Figure 7.12: Novel view synthesis. We show the rendering for the second two of four di�erent

material captures under novel viewpoint and illumination conditions. The �rst and second rows for each

object, labelled `1 and `2, show two di�erent sets of novel viewpoints under two distinct illumination

directions. The third row, labelled ref, shows reference captures of the object using a color camera

and directional light source. This serves as our visual reference, though the exact observation angles

and illuminations of these captures are not necessarily identical to the rendered results as the camera

and light source were not calibrated. However, we observe the same iridescent phenomenon in our

renderings that are seen in the reference images.
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8.1 Thesis Contributions

Light �elds have a well-established set of applications and bene�ts, ranging from image-based rendering

to full scene reconstruction. When captured fully over the entire gamut of light rays leaving a scene,

these tasks are well-de�ned but data-intensive. Light �eld cameras capture information with much less

data required, but they capture a narrow slice of the full light �eld. This thesis introduces a novel imag-

ing system for capturing light �elds over a broad angular range, which we denote as a wide-baseline

light �eld camera. Our proposed camera retains the data e�ciency of prior imaging systems while ex-

panding the measurements of the light �eld. We paired this camera design with a range of processing

algorithms to apply our wide-baseline light �eld data to challenging tasks such as 3D shape and irides-

cent re�ectance reconstruction.

Overall, we have contributed to light �eld imaging and applications through the work of this thesis:

• We develop the imaging system for a wide-baseline light �eld camera and analyze its capabilities. We

show how this design improves upon prior light �eld cameras for the purpose of capturing light �elds

over a wide angular range. We further present the necessary calibration procedures to utilize this

camera in practical applications.

• We provide a geometric parallel to conventional light �eld processing by producing refocusing, view-

point synthesis, and 3D shape reconstruction. In particular, we show how wide-baseline light �eld data

enables a novel shape reconstruction algorithm that jointly solves for 3D shape and surface normals.

• We improve further upon 3D shape reconstruction from wide-baseline light �eld data by utilizing

an implicit neural scene representation. This implementation improves our reconstruction of real

captured scenes and enables illumination synthesis.
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• We apply our wide-baseline light �eld camera to capturing the high-dimensional space of the spatially-

varying bidirectional re�ectance distribution function (SVBRDF). We utilize dense illumination control

paired with the e�cient spatio-angular measurements of our camera to e�ciently measure the broad

gamut of the SVBRDF. We further develop an implicit neural representation of the SVBRDF to provide

a lightweight data-driven re�ectance model. In particular, we show that our imaging and representa-

tion is able to reconstruct spatially-varying iridescent objects, which represent a highly complex class

of materials that have proven challenging to capture and represent.

8.2 Future Work

This thesis lays the groundwork for the imaging and application of wide-baseline light �elds. Further

work in this space can build upon this thesis in several areas.

8.2.1 Expanded Imaging Area

To promote the application of wide-baseline light �elds in more general scenes, the spatial extent of

the captured light �elds would need to be expanded. This could possibly require the development of

alternate mirror geometries that can map a larger area to the same sensor area. Additionally, work to

produce low-cost, high-quality ellipsoidal mirrors that are much larger than our setup would enable an

expansion of the imaging area.

8.2.2 Reduced Imaging Area

Conversely, we could also imagine aiming to miniaturize the imaging area and improving the spatial res-

olution for applications in microscopy. Light �eld microscopy has already shown success using powerful

microscope objectives [Levoy et al., 2006], but our setup features a broader angular range and smaller

depth of �eld. These features can be utilized to improve depth resolution of the resulting scans.

8.2.3 Iridescence and 3D Geometry

Our work has shown the wide-baseline light �eld camera used for both 3D shape reconstruction and

spatially-varying iridescent re�ectance reconstruction. Combining these two results to be able to re-

construct spatially-varying iridescent objects with arbitrary geometry is a very challenging problem;

the high-frequency angular features of iridescent re�ectance impact the ability for shape reconstruction

algorithms to rely on color consistency as a loss term. Di�erent views of the same scene point may
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appear drastically di�erent, which is then indistinguishable from views of separate scene points. How-

ever, we have shown success in both capturing and representing these angular e�ects, which inspires

us to believe that this can be achieved. Further work may require clever illumination control schemes,

improved neural architectures, or other undiscovered improvements to this work.

8.2.4 Improved Imaging Optics

The optics used in this thesis have inherent limitations; the optical quality of both the ellipsoidal mir-

ror and the Fresnel lens are less than what can be achieved through other optics, like planar mirrors

and conventional lenses. However, ellipsoidal mirrors and very large diameter lenses are not practi-

cally manufactured to the requirements of our imaging design. Additionally, the custom-assembled

light �eld camera had limitations to the precisions of our alignment and performance of available op-

tics. This would be improved through a light �eld camera production in a more precise manufacturing

environment. In all, further improvement to the production of these optical elements and precision of

their construction would improve the achievable results.

8.2.5 Analysis of Etendue Conservation

The etendue of light propagating through space is the product between the area of the source of light and

the solid angle of the propagating cone of light [Lerner and Dahlgrenn, 2006]. Optical elements such

as lenses and mirrors preserve the etendue of the light passing through the optical system. In many

conventional imaging applications, the conservation of etendue concerns the brightness of the imaged

light; the optical system can not increase the brightness of the light passing through the system. In our

case, we are attempting to measure the light �eld at the scene over a large angular range and as large

as possible spatial extent. However, at our sensor, we are imaging over a �xed spatial extent and with a

narrower angular range. This would appear to break the conservation of etendue; however, we do not

believe this to be the case. We expect that the non-uniform mapping of the scene light �eld produces

broader spatial extent but narrower measured cones in some areas and narrower spatial exent with

wider measured cones in other areas. The overall e�ect appears to be simultaneously broad in spatial

and angular extent, but this non-uniformity leads to a more complex etendue conservation that behaves

di�erently in di�erent local areas. We would expect a theoretical analysis of this etendue conservation

for di�erent mirror geometries would yield fascinating results, particular when considering light �eld

imaging where space-angle trade-o�s and sparsity of measurements come into consideration as well.
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8.2.6 Neural Calibration

Many neural scene reconstruction techniques [Yoonwoo Jeong and Park, 2021] additionally train over

the camera poses of the input images. This self-calibration either improves the calibrated poses of the

input cameras or works with uncalibrated cameras and can further improve the reconstruction quality

beyond that which is attainable using less precise calibration. Our results using the lab prototype are

highly dependent on the calibration of our imaging system; as noted in Chapter 4, this is an intensive

process and still retains some noise in its completion. The idea of self-calibration is therefore an ap-

pealing one: can a neural network learn the correspondences between light �eld pixels and object space

rays directly from input data images? Future work in this space would be fascinating to explore, as the

quality of results in both 3D reconstruction and re�ectance estimation could be improved. The com-

plexity and non-uniform mapping of our imaging system would pose some di�culties in this process,

but either by training over calibration targets or carefully designing network parameters, this research

direction could yield fruitful results.

8.2.7 Expanded Measurements via Object Motion

Instead of changing the optics around an object to produce additionally viewpoints, it is common practice

to instead move the object itself to generate di�erent views. This requires a calibrated understanding

of the translation and rotation that is undertaken by the object between these views, but the range of

motion is generally smaller than when moving imaging optics around the object. In our setup, we can

rotate our scene to �ll in the density and angular range of the captured cone of the light �eld. For

example, rotating a planar sample would �ll in the missing cone above the surface normal of that plane

without the need of our added Fresnel lens. To achieve this would require an object mounting apparatus

that can perform precise and repeatable rotations about the lower focal point. With full and detailed

knowledge of the relative motion between data captures, we could transform all measurements to the

same coordinate system and consider the expanded angular range and measurement density that we can

measure. While this no longer operate in a single-shot setup, we could gain extremely rich light �eld

measurements with very few measurements.

8.2.8 Transparent Objects

Reconstructing the geometry of transparent objects is a particularly challenging problem [Wu et al.,

2018]. Typically, this is achieved by imaging a known target image through the transparent object from

multiple viewing directions and trying to map the measured ray being refracted through the object. Our
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wide-baseline light �eld camera provides a diverse set of viewpoints in a single image exposure, which

could enhance the capabilities of transparent object reconstruction. By placing target images at either a

�xed location or at di�erent orientations and positions behind the object, we can utilize our rich set of

observation angles being refracted through the object to reconstruct the 3D geometry.

8.2.9 Dynamic Objects

Since our imaging system captures wide-baseline light �eld measurements in a single image exposure,

we can naturally consider dynamic objects for study. One motivating example of this would be studying

iridescent structural coloration that is found in living creatures such as cephalopods [Mäthger et al.,

2009]. Rather than requiring multiple images with di�erent perspectives or illumination, during which

a living sample would move, we can instead capture a rich set of data in a single exposure without

concern of motion.

Another possible application of dynamic capture would be stress-induced birefringence [Hagen et al.,

2003]. When certain materials are under stress, they exhibit wavelength-dependent iridescent birefrin-

gence based on the stress experienced by di�erent points on the object. In particular, this occurs due to

di�erent refraction paths through certain transparent materials under stress when observed in di�erent

directions or under di�erent light polarization conditions. This distribution of stress is of concern for

manufacturing and designing components for high-stress applications; our camera could provide an ef-

�cient and e�ective way to measure this stress by characterizing the measured birefringence over time

as stress is applied to an object. This may require the addition of polarization control to our system,

either in measurement or illumination control, which adds another control dimension that we could

explore. Expanding the applications of our imaging system to dynamic options could open up useful

bene�ts of our setup in these areas.

8.3 Conclusion

We aim for this thesis to provide a starting point for future work with imaging and applying wide-

baseline light �elds. We have shown that there is a diverse range of possible uses for such data and have

developed an imaging system to capture these light �elds. Particularly in a time where virtual reality

applications have driven a need for digital reconstructions of real-world objects and scenes, we believe a

wide-baseline light �eld camera can provide e�cient and high-quality scans of highly-complex scenes.
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