
1

Programmable Spectral Filter Arrays using
Phase Spatial Light Modulators
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Abstract—Computational imaging has always benefited from tools that modulate light along the many dimensions of its plenoptic
function. This paper provides a practical architecture for achieving spatially varying spectral modulation using a liquid crystal phase
spatial light modulator (SLM). The use of a phase SLM, however, results in strong optical aberrations due to the unintended phase
modulation, thereby precluding spectral modulation at high spatial resolutions. To mitigate this, we provide a careful and systematic
analysis of the aberrations arising out of phase SLMs for the purpose of spatially varying spectral modulation; this analysis results in a
dual strategy of “good patterns” that minimize the optical aberrations and a deep restoration network that overcomes any residual
aberrations. We show a number of unique operating points with our prototype including single- and multi-image hyperspectral imaging,
material classification (fewer than two images), and dynamic spectral filtering at video rates.
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F

1 INTRODUCTION

Modulating light across its many dimensions is an im-
portant enabling capability for many computational imag-
ing and illumination systems. For example, spatial modu-
lation of light is a critical enabler of projectors. Similarly,
spatio-angular modulation of light, using a micro-lenslet
array or a coded aperture, finds use in light field imaging.
Hence, it is understandable that many of the advances
in computational imaging have come about due to novel
mechanisms for manipulating light.

We are particularly interested in techniques that can
modulate the spectral content of a scene. When we look
at the space of such techniques, they are largely clustered
around two key properties: programmability that is enabled
by color filter wheels, liquid crystal (LC) tunable filters [1],
and dispersion-based systems [2], and spatial selectivity, that
is enabled by assorted pixels [3, 4] where a spectral filter
array is tiled on top of a sensor. There is, however, a paucity
of approaches that are simultaneously programmable and
spatially selective.

One approach to enable both programmability as well
as spatial selectivity in spectral modulation is to use of
an LC-based spatial light modulator (SLM). An LC SLM
is simply a pixellated array of LC cells, where we have
near-independent control over the phase retardance in-
duced by each pixel; this retardance is converted to a
spectral modulation via the use of cross polarizers. By
optically aligning an image sensor to the SLM, we can
leverage the degrees of freedom provided by the millions of
independently-addressable pixels of the SLM to implement

• Saragadam is with the Rice University, Houston, TX, USA.
Corresponding author e-mail: vs44@rice.edu

• Rengarajan is with the Meta Reality Labs, Sunnyvale, CA, USA. This
work was performed when he was at the Carnegie Mellon University.

• Tadano, Zhuang, Oyaizu, and Murayama are with the Sony Semiconduc-
tors Solutions Corporation, Kanagawa, Japan.

• Sankaranarayanan is with the Carnegie Mellon University, Pittsburgh,
PA, USA

a programmable spatially-varying spectral filter. Liquid
crystal SLMs have been used in prior work for enhancing
color gamut [5], color and polarization imaging [6] as well as
hyperspectral imaging [7, 8]. However, these approaches do
not address a number of practical challenges that stem from
undesired properties of these SLMs. Spectral modulation
with LC SLMs is invariably accompanied with an undesired
phase modulation of the incident light. Further, the physical
properties of LCs only allow for spatially-smooth phase
retardances; hence, it is challenging to implement a diverse
set of filters over any small region on the SLM. All of these
artifacts are further acerbated when we image over a large
spectral range, in part due to the poor focusing performance
of relay lenses.

Contributions. This paper proposes a system for imple-
menting a programmable and spatially-varying spectral
filter array using LC SLMs, and correcting the aberrations
encountered due to non-idealities of the SLM and the asso-
ciated optics. We study the factors that control undesirable
phase modulation and minimize its effects by a careful
design of the SLM’s retardance curve (typically, controlled
as a “gamma” curve linking input 8-bit value to the path
length delay induced at each pixel) as well as the patterns
displayed on the SLM. To further reduce the amount of aber-
rations, we train a deep network to restore the spectrally-
filtered measurements. We introduce a dataset, acquired
using our lab prototype, consisting of images of scenes
captured under a variety of spatially-varying filters. This
dataset and the associated codebase can be found at [9].

We investigate three applications to showcase the ef-
fectiveness and potential of the proposed approach: hy-
perspectral imaging enabled by dynamically changing the
bank of filters displayed on the SLM (see Fig. 1), material
classification with task-specific spatially-tiled spectral filters,
and the design of arbitrary spectral filters by placing the
SLM in the pupil plane of the imaging system.
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Fig. 1: Programmable spectral filters. We propose a practical implementation of spatially varying programmable spectral filter
array. Our camera can capture intensity images under a wide configuration of spatially varying spectral filters, that enables
applications that benefit from spectral measurements, namely, hyperspectral imaging, and material classification. Above, we show
an example of hyperspectral imaging of a butterfly in visible to near-infrared wavelengths, reconstructed from eight images, each
with a different spatial tiling of spectral filters.

Limitations. We inherit several limitations due to our use of
phase SLMs and LC cells for spectral modulation. Spectral
filters implemented using LC cells are typically restricted
to sinusoidal profiles, with a spectral resolution that is
inversely proportional to wavelength. Further, phase SLMs
can only implement spatial patterns that are smooth, which
limits the range of filters we can implement.

2 PRIOR WORK

We briefly discuss key results in spectral modulation, and
their use in hyperspectral imaging and classification.

Compressive hyperspectral imaging. There have been
many imaging architectures proposed that use the the-
ory of compressive sensing to speed up HSI sensing;
this includes the coded aperture snapshot spectral imager
(CASSI) [10, 11], spatio-spectral coding [12], imager with
DMD and a single spectrometer [13], and a conventional
camera equipped with a prism in front of the lens [14]. This
paper falls under the broad category of such designs.

Spectral modulation with LC cells. Liquid crystal cells and
SLMs rely on birefringence where the two orthogonal states
of polarization are delayed by varying amount applications
in various fields of optics [15–17]. The spectral modula-
tion property of LC cells have been used for compressive
sensing of HSIs [18, 19] but often require several images
to recover the HSI. Spectral modulation with LC cells have
also been used for material classification [20]; here, a few
carefully-chosen spectral filters are obtained to detect vari-
ous powders in a scene. The spatially-varying modulation
of SLMs has been leveraged in the past for designing color
displays [5], and for spectral imaging [6–8, 8]. However, these
have not modeled or considered any of the aberrations induced in
using phase SLMs for implementing spatially-varying filters; we
show that the aberrations caused by the phase SLM can severely
degrade reconstruction quality. To the best of our knowledge, we
are the first to perform a careful analysis of this effect.

Assorted pixels. Assorted pixels [3] refers to a technique
where a grayscale image sensor is augmented by placing
an array of filters on top to provide enhanced perception
of spectrum, polarization and/or dynamic range. Assorted
pixels have been extended to hyperspectral imaging as well,

where a narrowband spectral filter array is tiled on top of
the sensor [4]. The main contribution of our work is in the
spirit of assorted pixels; but unlike existing work, where the
spectral arrays are fixed at fabrication, the proposed optical
design permits a programmable array of spectral filters which
enhances the scope of the technique in many interesting
ways. For the same reasons, we refer to our approach as
programmable assorted pixels (ProAsPix).

3 PROGRAMMABLE SPECTRAL FILTER ARRAYS

We now discuss the core ideas underlying this paper,
namely, spectral filtering with LC cells and the implementa-
tion of spatially-varying spectral filters using a phase SLM.

3.1 Basics of Spectral Filtering with LC Cells

We briefly go over the principle of operation of an LC cell
when used to implement a spectral filter. The reader is
referred to [1] as well as the supplemental material for a
detailed treatment.

Consider an imaging setup consisting of an LC cell of
thickness dLC that is sandwiched between two linear cross
polarizers, with their polarization axes oriented at ±45◦

to the LC cell’s fast axis. Suppose that we apply a (RMS)
voltage v across the LC cell which produces a birefringence
∆n(v). Now, unpolarized light incident on this setup experi-
ences a spectral filter of the form:

1

2

(
1− cos

(
2π

∆n(v)dLC
λ

))
, (1)

where λ is the wavelength of light. This filter is sinusoidal
in the wavenumber, or the reciprocal of the wavelength.
The frequency of this sinusoid is determined by the term
∆n(v)dLC , which quantizes the path difference introduced
by the LC cell. As is to be expected, thicker LC cells intro-
duce a large path difference which creates spectral filters
with more cycles over λ. Similarly, higher birefringence
∆n, that happens for low values of v, also creates a larger
number of cycles over the waveband of interest.
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Fig. 2: Spectral filtering with SLMs. (Top row) We optically
align an LC-based SLM to an image sensor, using optical relays
and a polarizing beamsplitter that acts as a pair of cross-
polarizers before and after the SLM. This allows us to build
a programmable spectral filter array, where a spatially-varying
and programmable spectral filter can be realized by displaying
different patterns on the SLM. (Bottom) Lab prototype.

3.2 Programmable Spectral Arrays using SLMs
We now describe the basic ideas underlying the proposed
programmable spectral filter array. Our key insight is that
an LC SLM is in essence an array of LC cells, each of which
acts as a programmable spectral filter. Collocating the SLM
with an image sensor, hence, allows us to obtain a device
whose spectral response can be changed spatially, upto the
limits imposed by the device construction. Figure 2 shows
the optical schematic such a device, where the SLM and an
image sensor are optically collocated to the image plane of
a main lens. The polarizing beamsplitter between the SLM
and the camera acts as a pair of cross-polarizers.

For sake of simplicity, let us assume that the SLM pixel
size is identical to that of the sensor and that the image relay
provides a one-to-one mapping between them. If we display
a spatially-varying voltage pattern v(x, y) on the SLM, then
the image i(x, y) observed at the sensor is given as

i(x, y) =
1

2

∫
λ

h(x, y, λ)

(
1− cos

(
2π

∆n(v(x, y))dLC
λ

))
s(λ)dλ,

(2)
where s(λ) is the spectral sensitivity of the image sensor and
h(x, y, λ) is the unmodulated hyperspectral image formed
on the sensor. Hence, by appropriate choice of the pattern
that we display on the SLM, we can implement spatially-
varying spectral filters. The set of filters we can obtain
depends on the birefringence of the SLM, the range of input
voltage we can provide, and the thickness of the SLM, all of
which are device specific.

3.3 Hardware Prototype
Figure 2 shows the lab prototype, on an optical benchtop,
implementing the programmable spectral filter array. There

are some important differences between the prototype and
the schematic. First, the fast and slow axes of the SLM are
typically aligned to it edges; since we need the incident
polarization to be at 45◦ to the fast axis, we would need
to mount the SLM with an in-plane rotation. This, while
feasible, is cumbersome. We instead use an achromatic
quarterwave plate, immediately after the polarizing beam-
splitter, with its fast axis aligned at 45◦ to the transmitted
polarization state of the beamsplitter. The resulting light
is circularly polarized, which has equal energy along both
the fast and slow axes of the SLM, and hence, identical to
rotating the SLM. Second, we use a camera lens, focused at
infinity, in the relay between the SLM and the main camera;
the superior multi-lens design of the camera lens has the
effect of providing a dramatic improvement in the quality
of captured images. Finally, we have a second image sensor,
an RGB unit, placed in the previously unused arm of the
beamsplitter, and collocated with the image plane of the
system and, hence, the SLM and the other image sensor.
We refer to this as the guide camera, and use it for guided
filter-based reconstruction techniques that resolve the loss
of spatial resolution due to tiling of the spectral filters.

Specifications of the system. The system is configured for
a waveband spanning visible (VIS) and near-infrared (NIR)
wavelengths (400 - 1000nm). We used a Holoeye Pluto2 NIR-
015 SLM optimized for NIR wavebands, and endowed with
a higher phase retardation which in turn provided a set of
spectral filters with larger number of oscillations. The SLM
resolution was 1920 × 1080, with a pixel pitch of 8µm. The
pixel pitch of the camera observing the SLM is 6.5µm, at a
resolution of 2048 × 2048 pixels. The lab prototype above
had a spatial field of size approximately 10.4 × 8 sq.mm.
We set the Fourier plane aperture to be 10mm wide; with
100mm relay lens, this resulted in an f/10 aperture.

Calibration. We calibrated the spectral response of SLM by
sweeping through 256 flat grayscaled patterns and measur-
ing output with a spectrometer. The SLM and the spec-
tral camera were calibrated in a pixel-to-pixel manner by
sequentially scanning each row and column on the SLM.
Finally, the guide camera and the spectral camera were
calibrated by imaging a texture-rich scene and fitting a ho-
mography between the two images. Further details available
in the supplementary.

4 DESIGNING SPATIALLY-VARYING FILTERS

We now discuss the choice of spatially-varying pattern that
we display on the SLM. Intuitively, the pattern that we
display needs to be rich over local regions, so as to provide
a diverse set of spectral filters. However, the complexity of
the displayed pattern also needs to be balanced against an
unintended consequence of our optical system, namely, dis-
tortions to the incident wavefront due to phase modulation
induced by the SLM.

Undesired effects of phase modulation. The proposed opti-
cal system for implementing spatially varying filters results
in three key undesirable effects. First, due to non-ideal optics
over broadband operation (400 - 900nm), the point spread
function is spectrally varying at each spatial pixel. This
problem can be addressed with complex optics (such as
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Fig. 3: Designing the SLM gamma curve. Our goal is to
estimate a gamma function that enables a linear relationship
between SLM birefrigence and input voltage. To do this, we use
a spectrometer to measure the spectral filter produced over a
range of input voltages. The measured data is shown in (a). For
each voltage v, we brute-force search for the value of ∆n(v)dLC
that fits the spectral filter obtained at that voltage by measuring
accuracy to (1). The resulting loss function is visualized as
an image in (b). Identifying the minimum for each voltage
provides us with value of ∆n(v)dLC , overlaid as a red curve
in (b). We use this estimated value to design a gamma curve
γ(·) for the SLM, shown in (c), such that the overall function
∆n(γ(·))dLC is linear in its input. (d, e) The resulting set of
filters that we obtain, now indexed as a function of the 8-bit
index used in controlling the SLM.

microscopic tube lenses) but invariable results in extremely
bulky systems. Second, the spatially varying phase mod-
ulation by the SLM distorts the wavefront of light, in the
form of local tilts. This distortion is a function of the spatial
gradient of the SLM pattern, and cannot be overcome even
with ideal optics. Third, LC-based SLMs operate slowly.
this causes the spatial patterns to be smoothed, resulting in
artifacts at places of edge discontinuities. Next, we propose
strategies to overcome these limitations of using an SLM for
spatially varying spectral filtering.

4.1 Mitigating the Effect of Phase Modulation
We first derive the expression for phase gradient and its
effect on the wavefront distortion. From (1), the phase delays
φ(x;λ), where x = (x, y), induced by the SLM is given as

φ(x;λ) = 2π
∆n(v(x))dLC

λ
. (3)

The local distortions to the wavefront can be characterized
by the spatial gradients of φ.

In its normal mode of operation, we do not have arbi-
trary control over the SLM voltage v(x, y) due to constraints
on bandwidth of data on the video port used to control the
SLM patterns. Instead, the voltage v(x, y) is given as

v(x, y) = γ(p(x, y)), (4)

where p(x, y) is the 8-bit image displayed on the video
port and γ(·) is the “gamma curve” of the SLM, or the
mapping of this 8-bit number to voltage applied at the SLM.

With this, the expression for the spatial gradients of φ(x;λ)
can be written as

∇φ
dx

=
2π

λ
dLC

∂∆n

dγ

∂γ

∂p

∂p

dx
(5)

The expression of the gradient above can be broken into
three terms:
• ∂∆n

dγ : the change in birefringence as a function of voltage
across the LC cell — this is a device-specific property,

• ∂γ
∂p : gradient of the voltage applied at an SLM pixel as a
function of the SLM index value used to control the SLM;
this is a term that is determined by the gamma curve that
we select, and

• ∂p
∂x : the spatial gradients of the display pattern on SLM.

Our goal is to keep the gradient as small as possible so as
to minimize the undesirable effect of light tilts. While it is
possible to get a zero-valued gradient simply by displaying
a constant pattern p(x, y) = p, such a choice is inconsistent
with a spectral filter array.

Designing the gamma curve. To simplify the overall design
problem, while minimizing the effect of the phase gradient,
we choose a gamma curve γ for the SLM such that

∂γ

∂p
= c0

[
dLC

∂∆n

dγ

]−1

(6)

where c0 is a constant. This is equivalent to the selecting
a γ such that ∆n(γ(p)) is affine in p. The procedure for
designing this gamma curve requires knowledge of the
phase retardance induced by the SLM at different input
voltages; we illustrate the procedure for this in Figure 3 and
provide a detailed description in the supplemental material.
With this choice, the phase gradient in (5) reduces to

∇φ
dx

=
2πc0
λ

∇p
dx

, (7)

and hence, the phase gradient is directly controlled by the
smoothness of the pattern we display.

4.2 Designing SLM Patterns

The design of the patterns displayed on the SLM needs to
balance two key criteria. At one end, we need a diverse
set of spectral filters in any local patch, so that we have
a rich measurement operator. This richness criteria is best
satisfied with patterns that are endowed with very different
filters in immediate proximity. At the other end, we need
to ensure that the spatial gradient of the displayed pattern
is small; this is necessary so as to avoid the adverse effects
of the distortions introduced by the spatially-varying phase
modulation. This smoothness criteria is best satisfied by
a constant pattern. Clearly, these two criteria are in direct
opposition with one another. Armed with these two criteria,
we consider a number of patterns, discuss the rationale
behind each, and detail their relative merits. This discussion
is summarized in Figure 4.

Linear patterns and staggered variants. We can introduce
some diversity into the SLM pattern by varying it linearly
in a single direction. An example of this pattern is

p(x, y) = x mod 255,
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Fig. 4: Pattern design. We explore SLM patterns that offer varying levels of smoothness and local diversity. Each column
corresponds to a different SLM pattern, spanning (columns 1-4) smooth 1D patterns , (columns 5-8) smooth 2D patterns under
periodic and mirror tiling, and (column 9) random patterns. For each pattern, we show (row-1) the pattern displayed on the SLM,
(row-2) a simulated image obtained from a full scan, (row-3) the measured image, and (row-4) the absolute difference between
the simulated and measured image; these corresponding to imaging a (roughly) constant intensity target. Note the inaccuracies
near discontinuities in the SLM image.

which has a spatial gradient of 1 intensity per SLM pixel (we
will ignore these units in the sequel). This pattern is a slight
improvement over the constant pattern, but has tiles that are
stretched along one of the axis, which results in severe loss
in spatial resolution. One approach to decrease this loss in
resolution is to scale the pattern by displaying

p(x, y) = (2x) mod 255,

which increases the gradient by a factor of two, but de-
creases the tiling size by a commensurate amount. A richer
way to balance out this loss of resolution is to stagger the
pattern across different rows, as shown in Figure 4. This
staggering intentionally introduces vertical discontinuities,
whose effects can be minimized simply by repeating the
pattern for a few rows and rejecting measurements at the
discontinuity. Staggering allows us to avoid suffering a
severe loss in resolution along one axis.

Two-dimensional patterns. Smooth two-dimensional pat-
terns can be designed by tiling the 256 spectral filters
into a 16 × 16 tile. Here, we have multiple choices in the
form of the direction of tiling, which can be horizontal, or
vertical, as well as in the nature of the tiling, which can
be periodic or mirror symmetric. Among these, the spatial
gradients for the horizontal and vertical oriented patterns
are 240/16 ≈ 15. Periodic tiling have strong discontinuities
at the edge of each tile, but any 16×16 tile has all the choices
of filters that the SLM can offer. In contrast, symmetric
tilings have no discontinuities, but do not guarantee that
any 16× 16 patch covers all possible filters.

Random patterns. Finally, we consider random tiling of
filters, which greatly increases the diversity of filters avail-

able in any local patch. To improve the smoothness of such
patterns, we can repeat each random pattern in a small local
window of 3× 3 or 5× 5 pixels so that the measurements at
the center of each window have little aberrations.

4.3 Dataset

We collected a dataset of scans with our lab prototype.
The dataset comprised of indoor scenes, comprising mainly
of single or multiple objects (details in supplementary).
We illuminated the scenes with a number of different
sources including an NIR-enhanced incandescent light, a
cool white LED, and CFL lamps. The acquired images from
the grayscale camera and the RGB camera, are registered to
the SLM using the calibration. After mapping to the SLM,
the images are cropped to the central 1024 × 1024 pixels.
For each scene, we captured two sets of patterns that we
describe next.

Full Scan. For each scene, we acquire a set of 256 images,
corresponding to the SLM displaying a constant intensity
pattern — one for each of the 8-bit intensity control that we
have. Note that this results in a constant voltage for all SLM
pixels, via the “gamma” function that we derive in Section
4.1. We refer to this set as the full scan measurements. We
use it as the baseline and reconstruct a nominal ground
truth hyperspectral image. This set also has none of the
aberrations introduced due to phase modulation, since we
are displaying a constant pattern on the SLM.

Spatially-varying filtered images. For each scene, we ac-
quire a set of 92 images corresponding to the SLM dis-
playing the patterns types described in Figure 4. For each
type, we display multiple patterns by performing circular



6

TABLE 1: Each of the patterns in Fig. 4 under different pertu-
bations. For the non-random patterns, these are circular shifts
in one or both directions, as appropriate for the pattern. For the
random pattern, we simply regenerate the random patterns. In
total, we capture each scene with 92 patterns.

Name #patterns perturbation

1D horizontal 16 horizontal shifts
1D vertical 16 vertical shifts

1D horizontal (scale 2x) 8 horizontal shifts
1D horizontal (scale 4x) 4 horizontal shifts

2D vertical (periodic) 8 2D shifts
2D vertical (mirror) 8 2D shifts

2D horizontal (periodic) 8 2D shifts
2D horizontal (mirror) 8 2D shifts

random 16 random tiles
Total 92

shifts of the patterns as appropriate to the type. The list
of patterns with an enumeration of how we obtain a set
of 92 patterns is provided in Table 1. For example, 1D
patterns are shifted in just one dimension, while 2D patterns
are perturbed along both dimensions. Random patterns are
simply regenerated to get entirely independent images. For
each of the 92 spatially-varying patterns shown on the SLM,
we capture the image on both the main camera and the RGB
guide camera.

4.4 Artifacts in Spatially-Filtered Images

The captured spatially-varying spectral images can be com-
pared to their ideal versions that can be assembled from the
full scan measurements. Specifically, given the SLM pattern,
we can create a simulated measurement where the intensity
at each pixel location is the measurement in the full scan
image corresponding to the SLM value at that pixel. We
term these as “simulated measurements”; example of such
measurements are shown in the second row of Figure 4. We
immediately observe that the real measurements have a sig-
nificant mismatch against the measurements simulated with
the full scan data. We visualize these differences in the last
row of the figure. The differences are especially significant
near discontinuities of the pattern as is clearly seen in the
1D measurements, and extend beyond the discontinuities
for the 2D patterns.

The mismatch between the simulated and measured
images can be attributed to the following reasons. First,
the SLM displays a smoothened version of the pattern we
display; hence, we can expect significant mismatch between
what we want to display and what the SLM implements at
discontinuities. Second, there are aberrations induced due to
phase distortions introduced by the SLM when we display
a spatially-varying pattern; as described earlier, this leads
to pattern specific errors that is prominent at places with
large phase gradient. Third, the doublet lenses used in the
relays introduced chromatic blur, which can be quite large
given our operating range of 450-950nm, a span of wave-
lengths that covers visible and near-infrared bands. Due
to this, a single sensor pixel measures light from multiple
SLM pixels, which leads to a corrupted measurement that
corresponds to a blurred measurement in both space as

Pattern-index code
64 channels

y-coordinate code
64 channels

x-coordinate code
64 channels

Measurement image
1 channel

Output restored image
1 channel

Input
193 channels

Encoder-decoder 
architecture

Fig. 5: Restoration network architecture. Our pattern-
independent decoder architecture rectifies the distortions in the
measurement image using positional codes based on coordi-
nates and pattern index.

well as the spectrum. Note that this chromatic blur is also
present in the full scan data; however, since the full scan
data is measured with a constant spectral filter, the resulting
blur is spatially invariant. To reduce these non-idealities in
measured data, we rely on a learning-based approach using
neural networks.

4.5 Deep Restoration of Spatially-Filtered Images
Our goal is to learn a mapping that takes the distorted mea-
surements and produce clean “simulated” measurements.
Since interactions between neighboring spatial filters are
non-linear, and often spatially varying, simple models may
not capture the non-idealities. We instead rely on a learning-
based approach to produce accurate measurements.

We design a single neural network that takes the mea-
sured image as input, for any spatially-varying pattern on
the SLM that is also provided as input, and outputs the
“simulated” measurement for that pattern produced from
the full scan data. To account for the spatially varying
artifacts, we include the coordinates (x, y), the pattern index
p to the inputs, in addition to the measured intensity at
each pixel. We leverage recent advances in positional encod-
ing [21, 22] to build a 64-length input vector at each pixel.
Thus, the input to the network consists of a measurement
intensity channel, and 64 channels each for x, y and p,
resulting in a total of 193 channels, as shown in Figure 5.
The output of the network is a single restored image channel
corresponding to the simulated measurement.

Network Architecture. We use an encoder-decoder archi-
tecture similar to that of U-net proposed by [23] with four
downsampling and four upsampling blocks as shown in
Figure 5. The specifics of this network and how it was
trained is provided in the supplement.

Restoration. During inference, we input the measured im-
age along with the positional encoding channels (all as
1024 × 1024 images) to the trained network to get the re-
stored image as output which will be used for hyperspectral
image reconstruction. We show the results of our restoration
network for a test scene which is not used in training and
validation in Figure 6.

Restoration of unseen patterns. Since our restoration net-
work is trained with the pattern code as well as an input, it
is capable of restoring unseen patterns as well. We show the
restoration outputs of patterns, previously unseen during
training, in Figure 7. Our network successfully restores these
patterns, albeit with a slight loss in performance as com-
pared to the patterns used at training. This indicates that
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33.03 dB 46.23 dB

32.77 dB 45.77 dB

31.60 dB 44.12 dB

(a) SLM pattern

Fig. 6: Restoration of measured image. We show 128 × 128
patches of a scene from our test data. Each row in the left
and right page columns corresponds to some of the different
patterns that we employed during capture. The simulated mea-
surement in (a) is the “ground-truth” image for each pattern.
The measured image in (b) is very much distorted as can be
seen by its absolute difference with the simulated measurement
in (c). Our restoration network cleans up the distortions and
produces the restored measurement image shown in (d) which
has much lower distortions as can seen in (e). The efficacy of
our restoration network can also be seen from much higher
reconstruction PSNR values which are shown as insets.

our trained network does not merely memorize a pseudo-
random distribution of the patterns present in the training
set, but can generalize for any pattern.

5 APPLICATION: HYPERSPECTRAL IMAGING

We now consider the application of hyperspectral imaging
(HSI) with phase SLMs; our eventual goal is not just to
provide a viable framework for HSI but also to quantify the
improvement provided by the deep restoration framework.

The image measurements made in (2) can be written as,

ik(x, y) =

∫
λ
h(x, y, λ)fkSLM(x, y, λ)dλ, (8)

where fkSLM is an instance of the spatially-varying spectral
response of the SLM. Discretizing and converting images to
vectors we get ik = XΦk, where X ∈ RNxNy×Nλ is the
matrix representation of the HSI of the scene. We repurpose
the body of work devoted to HSI reconstruction to solve (8)
to obtain h(x, y, λ) from {ik(x, y)}.
Guide-free reconstruction. The traditional approach is to
formulate the recovery as a linear inverse problem,

min
X

N∑
k=1

‖ik −XΦk‖2 +R(X), (9)

where R(·) is a spatial/spectral regularizer. For snapshot
approaches (N = 1), we used an untrained deep network as
a regularizer, similar to the deep image prior (DIP) [24]. We
expressed the HSI as the output of a convolutional neural
network (CNN) equipped with 2D spatial convolutions and
whose input was a fixed noise pattern. We then solve for

4

34.37 dB 37.70 dB

(a) Simulated 
measurement

(b) Measured
image

(c) Abs. 
difference (10x)

(d) Restored 
measurement

(e) Abs. 
difference (10x)

33.57 dB 37.66 dB

5

Fig. 7: Restoration of measured image for unseen patterns.
Our trained network successfully cleans up the distortions in
the measured image even for completely unseen patterns such
as for the checkerboard-like patterns shown here.

the HSI by optimizing for the CNN’s parameters. For multi-
pattern reconstruction (N ≥ 2), we found that a combi-
nation of 2D total variation (TV) prior and a 1D spectral
smoothness prior enabled high quality reconstruction.

Guided reconstruction. In the presence of an RGB guide
image, we leverage a super pixelation-based reconstruction
technique inspired by recent works in hyperspectral imag-
ing [25]. Given an RGB image IRGB[x, y] of the scene, we first
partition the image into Q superpixels [29]. We make the
assumption that the spectral profiles associated with pixels
within any superpixel are scaled multiples of each other.
Then we model the HSI within each super pixel as a rank-1
matrix, where the spatial component is a scaled version of
the grayscale image. Specifically, Xq = gqs

>
q where gq is the

grayscale image intensity in the qth super pixel and sq is the
spectral basis in the qth super pixel. We then solve for a local
least squares problem to estimate the spectral component of
the rank-1 matrix,

min
sq

∑
k

‖ik,q − gqs
>
q Φk,q‖2 + η‖sq‖2. (10)

Details about reconstruction in supplementary material.

5.1 Simulation

Figures 8 and 9 provide reconstruction results on simulated
data with single and multiple spectrally coded measure-
ments. Specifically, we simulated the acquisition setup on
several datasets including the ICVL [27] and KAIST [26]
datasets consisting of hyperspectral images over visible
wavelengths. We compare our technique against existing
snapshot techniques including Choi et al. [26] which consists
of a CASSI-type hardware and a deep neural network based
reconstruction, and SASSI [25] which consists of a sparse
spatio-spectral sampler along with RGB fusion. We also
compared to two techniques that recovered HSIs from RGB
images [27, 28]. We simulated photon noise by assuming a
maximum light level of 1000 photoelectrons, and a readout
noise of 2 electrons, resulting in a signal to noise ratio
of 30dB. For ProAsPix, we used the symmetric 2D hori-
zontal pattern with for all our simulations. We quantify
performance using peak signal to noise ratio (PSNR) metric
and spectral angular mapping (SAM). Further details about
optimization are in the supplementary.
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Fig. 8: Comparisons against snapshot approaches in visible wavelengths. We compare ProAsPix, with and without guide, to a
number of single-image competitors including spatial coding techniques—SASSI [25] and Choi et al. [26]—as well as RGB to HSI
techniques [27, 28]. Across the board, ProAsPix with and without guide images performs comparable to SASSI and outperforms
all other approaches, particularly techniques that recover hyperspectral images from RGB images.

              
                      

  

  

  

  

  

  

  

  

  

  

  
 
 
   
 
 

                   
                  
       

              
                      

 

 

 

  

  

  

  

  

  

  
 
   
  
  
  
 

                   
                  
       

Fig. 9: Multi-frame performance. Our proposed approach, with
and without a guide image, outperforms the spatially-constant
modulation of LC cells, especially when imaging with a small
number of image measurements.

Snapshot reconstruction in the visible domain. Most HSI
reconstruction techniques based on learned models are fine-
tuned for the visible domain. Figure 8 shows reconstruction
for HSIs in the visible wavelengths (400 - 700nm) which
included SASSI [25] (sparse spatio-spectral + guide image),
[26] (SD-CASSI + learned reconstruction), [27] (dictionary-
based RGB to HSI), and [28] (learned RGB to HSI). Across
the board, ProAsPix results were qualitatively and quan-
titatively superior. In part, this can be attributed to our
approach not multiplexing spatial and spectral dimenions
as is commonly done in CASSI and its variants. RGB to
HSI techniques [27, 28] were trained on the ICVL dataset;
hence, the results for the HSI from this dataset (top row)
were comparable to ProAsPix.

Comparisons with multiple captures. Our primary com-
petitor for multi frame reconstruction is a single LC cell
capture [18] where images are captured with a spatially
invariant spectral modulation. Figure 9 plots reconstruction
accuracy with LC cell and our technique for varying number
of images. ProAsPix with guided filtering uniformly out-
performs the spatially-invariant LC cell. The reconstruction
in the absence of a guide image is better than LC cell at
fewer measurements and similar with 50 or more images.
For a small number of images, it is more advantageous to

(b) Simulated (c) Measured
(Zhu et al. [2013])

(d) Restored(a) Full scan

Fig. 10: Comparison of simulated, measured, and restored
measurements. (a) Shows an RGB image of the scene with
inset of the spectral filter array that we used for the results
in the other columns. (b-d) visualizes reconstructed HSIs using
the simulated, measured ([7]), and restored measurements as
rendered RGB images. Below each reconstruction, we show the
angular error against the full scan reconstructions; for these
error maps, the brightest values are errors that are 20◦ or higher.

spatially multiplex the various spectral filters. In all, our
approach can achieve 28dB (SAM of 10 degrees) or better
with even a single image, and surpasses 34dB (SAM of 4
degrees) with as few as 20 images. We also observe that with
a large number of images, spatial multiplexing has a similar
effect to capturing images with spatially invariant spectral
filters. Additional results in supplementary material.

5.2 Real Results

Setup. We recover HSIs at a spatial resolution of 1024×1024
and a spectral resolution of 53 bands in the span of 420
to 940 nm. Since the spectral filters are linear in 1/λ, we
sample these 53 bands uniformly in the reciprocal of the
wavelength, which provided a small performance increase
over linear sampling in wavelength.

HSI reconstruction from a single image. Figure 10 provides
an example of the reconstructions obtained with the sim-
ulated, measured, and restored measurements. Evidently,
accounting for the aberrations dramatically improves the
performances and produces results similar to ideal simu-
lated conditions. Next, we observe that 2D patterns gen-
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Fig. 11: Patterns used for multi-image hyperspectral imaging.
We greedily chose up to 16 patterns that ensured diversity of
spectral filters at each pixel.

erally lead to better reconstructions in real experiments too,
for the simulated as well as the restored measurements. This
indicates that the local diversity of patterns does play an
important role in reconstruction performance.

Multi-image reconstructions. For multi-image reconstruc-
tions, we greedily selected a sequence of patterns that
provide maximal diversification of filters. Starting with the
best performing pattern shown in Figure 10, which is a 2D
horizontal/periodic pattern, we sequentially add patterns
that maximizes the addition of new spectral pixel over
all previously selected patterns. The sixteen such patterns
that we select with this scheme is visualized in Figure
11. We compare the reconstructions with rank-1 guided
filter and guide-free TV prior in Figure 12. For the rank-
1 approach, we linearly increase the number of superpixels
used with the number of measurements. We also compare to
reconstructions that would be obtained with just an LC cell,
as opposed to an SLM, which would only provide global
spectral modulation. Overall, ProAsPix works significantly
better than what we get with an LC cell.

6 OTHER APPLICATIONS

6.1 Spatial Tiling for Material Classification
A powerful capability enabled by our system is that of
disambiguating between different materials in a scene. To
obtain an optimal filter array, given a selection of K ma-
terials, we first measure their response to the 256 spectral
filters that can be created by the SLM. An example of these
measurement traces can be seen in Figure 13(b). We can
now select a few, typically a small number of filters, say
Q of them, such that measurements associated each of the
K materials are distinct. We perform a brute-force / greedy
scan to identify a set of Q filters that produce the maximal-
minimum distance of features on the simplex. Now that we
have our Q filters, we tile them spatially in as compact
a block as possible. For example, in Figure 13(c), we tile
Q = 3 filters in 2 × 2 blocks by repeating one of them to
differentiate between real and fake plant. Once we capture
a measurement image, we first demosaick the measurement
using standard linear filtering to get a Q-channel image. We
project each pixel onto the simplex, and perform nearest
neighbor classification on the resulting feature to obtain the
material map of the scene (Fig. 13(e)). This result indicates
the immense potential of our system for applying adaptive
sensing techniques on top of the setup.

6.2 Application: Arbitrary Spectral Filters
An important capability in spectral filtering is the ability
to have a programmable filter capable of displaying an arbi-

trary shape. LC cells can only implement sinusoidal spectral
filters; other results have shown that stacking multiple LC
cells offers the ability to get narrowband filters [16, 17].
We explore implementation of spectral filters with profiles
that go beyond sinusoids by placing the SLM in the pupil
plane, allowing the SLM to modulate light from all scene
points. However, placing the SLM in the Fourier plane
results in spatially-invariant filtering in the image plane.
A key advantage of using SLM is that the switching time
between any two filters is same as display rate (60Hz). In
contrast, LC tunable filters require hundreds of milliseconds
to switch between two wavelengths, which gets larger with
increasing distance between the two wavelengths.

Suppose that we seek to implement the spectral filter
s ∈ RNλ . Let Λ ∈ RNλ×256 be the matrix of 256 spectral
responses corresponding to different SLM voltages. Our
goal is to solve for weights w ∈ R256 such that s = Λw;
here, the i-th element of w, which we denote of wi provides
the contribution from the corresponding filter. Once we
have w, we design an SLM pattern which allocates an area
corresponding to wi to the i-th index value.

Estimating the weight vector w. It is also important the
w be constrained to be positive since we cannot allocate a
negative area in the SLM plane to a filter. We can estimate
such positive patterns by either solving a nonnegative least
squares problem, or by solving an unrestricted pattern,
and displaying positive and negative parts of the filter
separately, capturing two images and subtracting them. The
latter would require an additional image, but provides a
greater space of filters that we can potentially implement.

Implementing the weight vector on the SLM. Given a
positive weight vector w, implementing it on the SLM
requires us to divide the SLM area into multiple regions
such that the i-th region displays the SLM index i and has
an area proportional to wi. We rely on a simple heuristic for
performing this allocation. Specifically, SLM pixels in the
same column are forces to have the same value, and so we
allocate each of the 1024 columns at our disposal to the 256
values proportional to the values in w. Figure 14 shows sim-
ulation and real results of implementing bandpass filters.
We generated a set of Gaussian filters with varying center
wavelength and a variance of 302 (nm)2, as well as edge
filters. For each spectral profile, we implemented both stan-
dard and non-negative least squares, which are both plotted
on top of the ground truth profile. We can observe that non-
negative least square profiles are less precise than that of
least squares, for aforementioned reasons. We also imple-
mented the non-negative filter weights in the lab prototype
with a spectrometer in the imaging arm; the results from
which are shown in the figure as well. We observe that non-
negative least squares follows the simulations results for the
most part. Least squares offers significantly better fit, both in
simulation and in real capture but suffers from photon noise.
The real spectral profiles oscillate more significantly at the
deep blue and far red ends, likely due to poor efficiency of
SLM and optics, and low intensity of the incandescent lamp
at those wavelengths.
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Fig. 12: Qualitative evaluation for multiple patterns reconstructions. We compare reconstructions from full scan of 256
measurements, a single image reconstruction using the guided Rank-1 technique, and 16 image reconstructions from both the
guided rank-1 and guide-free TV techniques. We compare these to reconstructions from an LC cell, with 16 measurements as well.
For each scene, we show rendered RGB images and spectrum at two points marked in the first column. Inset on the RGB images
are the angular errors, visualized as in other figures with a range of 0 to 20◦.

(b) Measurements for different 
materials

(c) Image with tiling of chosen 
filters

(d) Metric for material disambiguation (f) Label map from “Full Scan”

(a) Image of the scene

(e) Label map

Fig. 13: Disambiguating between materials using pro-
grammable spectral filter arrays. (a) We image a scene with
plants, real and plastic. (b) The measurement trace, as a function
of SLM input index, is visualized for the two materials as
well as the background. We find three index values, marked
with dotted vertical lines, that lead to maximally different
measurements for the three materials. (c) An image of the scene
is captured with an SLM displaying a checkerboard pattern
comprising of the two chosen index values. The inset is the
zoomed in version of the cropped region marked in red. (d)
Using this single measurement, we can now create a metric
that maximally disambiguates between the two materials and
threshold it in (e) to get a material map. For comparison, the
label map from the full scan is shown in (f).

7 DISCUSSIONS

This paper introduces a novel technique for spectral mod-
ulation — namely, a programmable and spatially-varying
spectral filter array — and discusses its use in single- and
multi-shot hyperspectral imaging. We achieve this capabil-
ity using an LC-based phase SLM, and develop an optical
schematic for implementing it while computationally han-
dling unmodeled aberrations in the setup.

Enhancing spectral diversity of filters. The richness of the
spectral modulation produced by our system relies on the
range of phase retardation that can be implemented by the

Fig. 14: Implementing arbitrary spectral filters. The figure
shows band pass Gaussian filters (top row) with a standard
deviation of 30 nm, and edge filters (bottom row) with different
center frequency. For each target filter (black), we estimate SLM
spatial pattern using unconstrained (green) and non-negative
least squares fits (red). The plots show both simulated results
that provide ideal implementation conditions for this SLM,
and real captures using a lab spectrometer. Non-negative least
squares provides a poor fit, both in simulation and hardware,
likely due to the sinusoidal filter profiles constraining the
space of implementable non-negative filters. Unconstrained
least square does a significantly better job but is susceptible to
noise, especially at deep blur and far red wavelengths, where
our light source does not have sufficient spectral radiance.

SLM. For our system, this range spans 3µm to 800nm —
increasing this range is an important direction in enhancing
the utility of our design. One way of realizing this is by
introducing an LC cell in front of the SLM and using
the additional phase retardation provided by it. Figure 15
visualizes the range of spectral filters we can obtain once we
add such an LC retarder (Thorlab LCC1115-B) immediately
in front of the SLM. The resulting setup implements spectral
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Fig. 15: Increasing range of spectral modulation using an LC
cell in the optical pathway. We can use an additional LC cell to
increase the overall phase retardance, and hence the diversity
of spectral filters implemented by our system. Shown are the
filters implemented by the SLM at two different input voltages
across the LC cell.

filters that have the form

1

2
− 1

2
cos

(
2π

∆n(vSLM(x, y))dSLM + 2n(vLC)dLC

λ

)
, (11)

where the terms marked with “SLM” and “LC” denote to
retardances applied at the SLM and LC cell, respectively.
We observe that controlling the voltage across this retarder
shifts the range of phase retardance that we can apply with
our setup. Since the LC cell has the largest birefringence
when no voltage is applied across it, we see the spectral
filters with the largest oscillations at low voltages; however,
note that the diversity of filters is low in this setting since
the added phase retardance overwhelms the range of the
SLM. At a slightly higher voltage (1.5V in Figure 15), we
observe a different set of filters with greater diversity but
fewer cycles. Hence, adding an LC cell opens up a novel
and richer design space and is likely a powerful addendum
to our design.

Reconstruction algorithms. Recent work on learning-based
approaches have provided significant improvements in hy-
perspectral image reconstruction. Example of this include
Choi et al. [26] for the CASSI architecture and Gedalin et al.
[30] for LC cell-based imaging. These advances are largely
complimentary to the optical setup introduced in this paper,
i.e., we can expect the quality of reconstructions obtained
with our setup to improve with the use of such sophisticated
reconstruction algorithms.

We derived a set of patterns that are well-suited for
a large spectrum of applications. However, our approach
will benefit from learning-based approaches for pattern
selection. End-to-end techniques that simultaneously opti-
mize the pattern along with reconstruction are expected to
increase the quality of results and will be pursued as future
work.

Miniaturization. Our current setup involves 2 optical re-
lays which increases the bulk as well as the spatial and
chromatic aberrations in the system. All of these concerns
are ameliorated if we used a transmissive SLM instead of
a reflective one, which would allow us to place the SLM
directly on top of the sensor. This design would likely
become a viable alternative to many existing hyperspectral
imaging techniques, once we have such transmissive SLMs
with larger phase retardance and smaller pixel pitch.
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