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Abstract

We present supplementary analyses of our global illumi-
nation suppression technique in Sec. 1. We then detail the
centroid variance and present proofs of system invariants in
Sec. 2 and conclude with an implementation notes in Sec. 3.

1. Surface Reconstructions
We detail the method and results using the proposed

global illumination suppression technique.

1.1. Direct and Global Images

Figure 1 shows the direct and global images of three dif-
ferent scenes presented in the main paper. For each scene,
we follow the min-max procedure in [3] to decompose the
dual image stack into direct and global images. Specifically,
for each dual image pixel, we identify the SLM mask cor-
responding to the largest intensity value on the PSD. Along
with the capture under that mask’s complement, we com-
pute the direct and global images following the method de-
scribed in [3]. Despite the use of multiple SLM patterns,
this separation technique produces vertical artifacts in Fig. 1
(b) and (c). This observation motivates our robust separa-
tion technique detailed in the main paper that uses the entire
stack of measurements rather than a single pair to estimate
the image centroids.

Each global image highlights strong interreflections in
the object concavities that would otherwise bias the centroid
measurements if not properly handled. Specifically, the V-
groove interreflections are strongest at the center, the plastic
toy’s interreflections are strongest within the concavity, and
the skull shows strong global illumination within the eye
sockets.

1.2. Min-Max v. Regression Technique

Alongside these reconstructions, we also present line
scans of the V-groove and concave toy to compare the min-
max processing with our proposed regression technique for
suppressing global illumination. The line scans in Fig. 2 and
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(a) Scene (b) Direct Image (c) Global Image

Figure 1: Direct and global images of three different scenes.
Since our imaging setup corresponds to the optical dual of
Nayar et al. [3], the direct and global images in (b) and (c)
are seen from the projector’s view. Each direct and global
image is computed using the min-max technique. Note that
the images are scaled and gamma corrected for visualiza-
tion, and the global image is further scaled by 2× to in-
crease contrast.

Fig. 3 demonstrate the effectiveness of our regression-based
global illumination suppression method.

1.3. Scan Time Comparison

The results presented in the main paper using our global
illumination suppression method takes 10 minutes to scan.
By contrast, a single raster scan without global illumina-
tion suppression takes 2 minutes. To evaluate the difference
in surface reconstructions, Fig. 4 shows three different re-
constructions of the skull using various scanning times. In
Fig. 4 (a) and (b), we compare a single raster scan with the
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Figure 2: Depth slice of the V-groove comparing depth es-
timates using two methods to estimate the direct-only cen-
troid on the PSD. Our proposed robust separation method
(yellow) produces a smoother depth slice than the min-max
method (red).

-3 -2 -1 0 1
X (cm)

16

17

18

19

Z 
(c

m
)

Ground truth
PSD (min-max)
PSD (robust)

Figure 3: Depth slice of the concave toy comparing the
depth estimates. Similar to the V-groove depth slice above,
our global illumination suppression method improves the
depth estimates.

global illumination suppression method under same time
budget (2 minutes). In this case, the scan with global il-
lumination suppression is significantly noisier. In Fig. 4 (c),
we show the same object using global illumination suppres-
sion using a slower scan, which provides a higher quality
reconstruction.

In simpler scenes, a single raster scan is sufficient. Fig-
ure 5 shows surface reconstructions on opaque busts using
a single scan.

(b) Global illumination 
suppression

2 minutes, 32 scans

(c) Global illumination 
suppression

10 minutes, 32 scans

(a) Single raster scan
2 minutes, 1 scan

Figure 4: We compare a single, slow scan (a) with our
global illumination suppression method under the same
time budget (b) and an extended time budget (c). Note that
suppressing global illumination is necessary in this scene
since interreflections in the eye cavities bias the depth es-
timates. Since our global illumination suppression method
uses 32 raster scans, the faster raster scans produce a noisier
surface in (b). In (c), we scan the same object using global
illumination suppression with slower raster scans and ob-
serve a qualitative improvement in the surface.

Figure 5: In simple scenes without global illumination, a
single raster without global illumination suppression is suf-
ficient. Here we present various reconstructions of opaque
busts using a single 2-minute raster scan.

2. Details of PSD Analysis and Invariants

2.1. Centroid Variance Approximation

We consider the variance of the centroid measurement in
two separate cases. In case 1, Vx = 0 when the light spot
is at the center of the diode. This corresponds to the con-
figuration of our lab prototype, thus our empirical results
follow this form. In case 2, Vx = 0 when the light spot
strikes the edge of the diode. This configuration follows the
simple form used in section 2 of the main paper to explain
the principles of a PSD.

The centroid variance for each case differs slightly. For
a fixed light level, the centroid variance is minimized when
Vx = 0, corresponding to different physical locations on the
diode. In practice, the engineer may choose the configura-
tion by adding an appropriate offset voltage to Vx.



Case 1: Vx = 0 at the center of the diode. Consider a
PSD with length Lx such that Vx = 0 when the light spot
strikes the center of the diode. We will denote the centroid
as C1x using the subscript to differentiate it from the cen-
troid C2x in case 2. Given the following voltages[

Vx
Vs

]
= G

∫∫
x,y

[
x
1

]
i(x, y) dx dy, (1)

the centroid, with C1x = 0 at the diode’s center, is:

C1x =
Lx

2

Vx
Vs
. (2)

Let Ṽx, Ṽs be measurements with uncorrelated signal-
independent noise:

Ṽx = Vx +N (0, σ2) (3)

Ṽs = Vs +N (0, σ2) (4)

Then, the estimated centroid C̃1x is:

C̃1x =
Lx

2

Ṽx

Ṽs
(5)

There is no analytical random variable describing C̃1x when
Ṽx and Ṽs have non-zero means. However, C̃1x is approx-
imately normal when σ ≪ Vx, Vs [1]. Following the first-
order Taylor series expansion of C̃1x described in [1], we
approximate the measured centroid’s variance as:

Var
[
C̃1x

]
≈ L2

x

4

σ2

V 2
s

(
V 2
x

V 2
s

+ 1

)
(6)

≈ σ2

V 2
s

(
C2

1x +
L2
x

4

)
(7)

Note that the least variance occurs when Vx is small and Vs
is large, corresponding to a bright light spot at the center of
the diode.

The normal approximation above requires Vx and Vs to
be strictly positive. When the light spot appears on the other
side of the diode, Vx will be negative. We can show by
substitution that the normal approximation still holds in this
case:

Suppose E[Ṽx] < 0. Let Ṽx
′
= −Ṽx. Then:

C̃x

′
=
Ṽx

′

Ṽs
= −C̃x (8)

(9)

The approximation holds for C̃x

′
since the Ṽx

′
and Ṽs have

strictly positive means, and the moments are related as:

E[C̃x

′
] = −E[C̃x], (10)

Var [C̃x

′
] = Var [C̃x] (11)
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Figure 6: Empirical and predicted centroid resolution along
a vertical line on the PSD. Over all points in a 13×13 point
array, the predicted centroid resolution RMSE is 0.55µm.
In this example, the centroid RMSE attains 7µm at the cen-
ter of the diode.

We validate this noise model by capturing a 13×13 point
array on a plane and comparing the empirical and predicted
centroid resolutions. At each point, the empirical cen-
troid resolution is the root-mean-square error (RMSE) of
the centroid over 59k samples; the predicted centroid res-
olution is the square root of Eq. (7), replacing Vx, Vs with
their respective sample means E[Ṽx], E[Ṽs] and C1x with
Lx

2
E[Ṽx]

E[Ṽs]
.

Fig. 6 shows agreement between the predicted and em-
pirical centroid resolution of points along a vertical line near
the center of the PSD. Over all points (n = 169), the pre-
dicted centroid resolution from Eq. (7) attains an RMSE of
0.55µm from the empirical resolution.

Case 2: Vx = 0 at the edge of the diode. In section 2 of
the main paper, we defined Vx such that Vx = 0 at the edge
of the diode. In this case, we denote the centroid as C2x to
differentiate it from the centroid C1x in case 1:

C2x = Lx
Vx
Vs

In the presence of signal-independent measurement
noise on each channel as described above, the measured
centroid is:

C̃2x = Lx
Ṽx

Ṽs

Applying the same normal approximation to C̃2x as in
case 1, we have:

Var [C̃2x] ≈
L2
xσ

2

V 2
s

(
V 2
x

V 2
s

+ 1

)
(12)

≈ σ2

V 2
s

(
C2

2x + L2
x

)
, (13)

corresponding to eq. 5 in the main paper.



Normal approximation limitations. The normal approx-
imation requires strictly positive samples from the numer-
ator (Ṽx) and denominator (Ṽs). This breaks down at low
light levels when Vs → 0 or when near the location on the
diode corresponding to Cx = 0 (configuration-dependent).

2.2. Proof of Invariance to Uniform Image Scaling

Let α be a uniform scaling term on the image I(x, y).
The measured centroid is:

[
C ′

x

C ′
x

]
=

∫∫
x,y

[
x
y

]
αI(x, y) dx dy∫∫

x,y

αI(x, y) du dv

(14)

=

∫∫
x,y

[
x
y

]
I(x, y) dx dy∫∫

x,y

I(x, y) dx dy

(15)

=

[
Cx

Cy

]
(16)

2.3. Proof of Defocus Invariance

Let I(x, y) be the in-focus image and b(x, y) be the ker-
nel of a spatially-invariant point spread function. The cen-
troids of I(x, y) and b(x, y) are given by:

[
Cx

Cy

]
=

∫∫
x,y

[
x
y

]
I(x, y) dx dy∫∫

x,y

I(x, y) dx dy

(17)

[
Cb

x

Cb
y

]
=

∫∫
x,y

[
x
y

]
b(x, y) dx dy∫∫

x,y

b(x, y) dx dy

(18)

The centroid of the measured image on an infinitely large
sensor is given by:

[
C ′

x

C ′
y

]
=

∫∫
x,y

[
x
y

]
(I ∗ b)(x, y) dx dy∫∫

x,y

(I ∗ b)(x, y) dx dy
(19)

=

∫∫
x,y

[
x
y

] ∫∫
u,v

b(u, v)I(x− u, y − v) du dv dx dy∫∫
x,y

∫∫
u,v

b(u, v)I(x− u, y − v) du dv dx dy

(20)

=

∫∫
u,v

b(u, v)

∫∫
x,y

[
x
y

]
I(x− u, y − v) dx dy du dv∫∫

u,v

b(u, v)

∫∫
x,y

I(x− u, y − v) dx dy du dv

(21)

Since we are integrating over an infinitely large sensor,
any image translation by a finite (u, v) will not change the
final integral. Thus, we can remove the dependence on
(u, v) in the image in the denominator.

=

∫∫
u,v

b(u, v)

∫∫
x,y

[
x
y

]
I(x− u, y − v) dx dy du dv∫∫

u,v

b(u, v) du dv

∫∫
x,y

I(x, y) dx dy

(22)

=

∫∫
u,v

b(u, v)

[
Cx + u
Cy + v

]
du dv∫∫

u,v

b(u, v) du dv

(23)

By separating the integral, this expression simplifies to:

=

[
Cx

Cy

] ∫∫
u,v

b(u, v) du dv∫∫
u,v

b(u, v) du dv

+

∫∫
u,v

[
u
v

]
b(u, v) du dv∫∫

u,v

b(u, v) du dv

(24)

=

[
Cx + Cb

x

Cy + Cb
y

]
(25)

Ignoring boundary conditions where the point spread kernel
extends beyond the finite sensor area, the measured centroid
is uniformly biased by the point spread kernel’s centroid.

3. Implementation Notes
Pseudocode for global illumination suppression. Algo-
rithm 1 shows pseudocode to estimate direct-only image
centroids using the regression technique.

Calibration procedure. Both the PSD and projector are
calibrated in the helper camera’s coordinate frame. To ob-
tain 2D-3D point correspondences for the PSD calibration,
we project a 10 × 10 point array on a planar checkerboard
of known geometry at varying depths. At each point in the



Algorithm 1 Robust centroid estimation algorithm.

M : Number of masks
T : Number of points on the dual image grid
for k = 1 . . .M do

Display mask mk on SLM and raster scan
{V k

x (t), V k
y (t), V k

s (t)} ← PSD readout
end for
for t = 1 . . . T do

Cx(t), Cy(t)←
ROBUSTCENTROID({V k

x (t), V k
y (t), V k

s (t)}Mk=1)
end for

function ROBUSTCENTROID({V k
x , V

k
y , V

k
s }Mk=1)

Compute pairwise differences
P ← {(i, j) ∈ {1, . . . ,M} × {1, . . . ,M} : i ̸= j}
Dx ← [

(
V i
x − V j

x

)
∀ (i, j) ∈ P]

Dy ← [
(
V i
y − V j

y

)
∀ (i, j) ∈ P]

Ds ← [
(
V i
s − V j

s

)
∀ (i, j) ∈ P]

Estimate centroids using linear regression
Cx ←

∑
(Ds ·Dx) /

(∑
(Ds ·Ds) + 10−8

)
Cy ←

∑
(Ds ·Dy) /

(∑
(Ds ·Ds) + 10−8

)
return Cx, Cy

end function

point array, we capture a high-dynamic range image using
the helper camera, measure the image centroid on the PSD,
and record the galvo mirror angles. We know the 2D loca-
tion of the laser spot in the helper camera’s image, and the
view of the checkerboard gives us the plane orientation used
to compute the 3D spot location.

As described in the main paper, we follow the calibra-
tion procedure in [2] to estimate the intrinsics, extrinsics,
and lens distortion coefficients of the PSD. Since the 3D
locations are in the helper camera’s coordinate frame, the
PSD’s extrinsics are also in that coordinate frame.

The distance between the galvo mirrors in our lab pro-
totype causes the projector to violate the pinhole projection
model, thereby creating distortion and triangulation errors.
To account for this, we fit a polynomial model to map the
mirror angles (tan θp, tanψp) from the calibration point ar-
ray to rays in 3D space. At each mirror angle in the calibra-
tion point array, the helper camera gives us the 3D location
of the projector ray’s intersection with the calibration plane
at different depths. The polynomial model attains 66.1µm
RMSE in estimating the 3D points from measured mirror
angles on the calibration data.
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