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Abstract

Lensless cameras enable us to see in many challenging scenarios. They can image in narrow spaces

where lenses do not �t, operate at wavelengths where lenses do not work, and make ultra-wide �eld-of-

view microscopes. Despite their novel capabilities, current lensless cameras have limited imaging quality

that restricts their practicality. These limitations can be attributed to the conditioning and complexity

of the inverse problem that lensless imagers must solve to obtain the scene.

A common design in lensless imaging is that of a thin attenuating mask placed before a sensor. For a

scene restricted to a front-parallel plane, the image formation model can be approximated as a 2D con-

volution between the plane’s texture and a scaled version of the mask pattern, and the ensuing inverse

problem has e�cient solutions. However, scenes of more complex geometry, such as those spanning a

large depth range, pose a di�cult and under-determined inverse problem. This thesis aims to develop

lensless imaging techniques to e�ectively and e�ciently photograph 3D scenes with an extended depth

range. To that end, we make the following contributions to the theory, hardware, and algorithms of 3D

lensless imaging.

First, we present a theoretical analysis of the spatial and axial resolution limits of a mask-based lens-

less camera, which provides an understanding of the performance of various camera designs. Specif-

ically, we derive the closed-form expression of a 3D modulation transfer function as a function of the

mask pattern, and connect the parameters of the mask to the camera’s achievable spatio-axial resolution.

Second, we introduce programmable masks in lensless imagers to increase the number of measure-

ments by capturing multiple frames while displaying di�erent mask patterns. This upgrade in hardware

allows computational focusing at a given depth, such that the resulting measurements are well approxi-

mated as a result of 2D convolution, even when the scene extends over a large depth range. As a result,

the texture corresponding to a speci�c depth can be recovered with an e�cient deconvolution method

with fewer artifacts.

Finally, we present an inverse rendering approach to the reconstruction problem, which requires a

joint solution of the texture and shape of the scene. This approach solves the inverse problem under

a physically realistic and di�erentiable forward model. It allows us to faithfully represent scenes as

surfaces instead of volumetric albedo functions as is commonly used in previous works, and avoids

reconstruction artifacts arising from model mismatch.

Together, those three contributions provide a fundamental advance to 3D lensless imaging.
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1Introduction
If you want to see a better world, change the lens through which you see it ...

— Je�rey G. Duarte

When we try to expand the capabilities of modern cameras, we often �nd that the lens is the limiting

factor. It occupies volume and weight that prevents miniaturization. Its rigidity prevents �exible camera

designs. It operates on a limited range of wavelengths. And it requires a manufacturing process that is

separate from the sensor. All these constraints raise the question: Can we image without a lens?

The short answer is yes. The concept of lensless imaging dates back thousands of years to the camera

obscura, where a small pinhole in a wall projects an image of the outside scene into a dark room. About

a century ago, X-ray and gamma-ray imaging techniques were developed for medical applications; com-

puting became an integral part of imaging and produced images from tomographic measurements [Kak

and Slaney, 2001]. In the past decade, many researchers leveraged the advancements in computing

power to produce lightweight and light-e�cient lensless cameras that challenge the limits of imaging

[Boominathan et al., 2016]. Unlike lens-based designs, these imagers record a very blurred version of

the scene that is unrecognizable to the human eye. However, the measurements preserve information

that can be inverted with computation. Recent lensless imagers have proven many advantages, includ-

ing thin form factor [Adams et al., 2017, Asif et al., 2016, Boominathan et al., 2020, Yamaguchi et al.,

2019], wide �eld-of-view microscopic imaging [Adams et al., 2017], 3D imaging [Adams et al., 2017,

Antipa et al., 2018, Boominathan et al., 2020, Hua et al., 2020, Zheng and Asif, 2020, Zheng et al., 2021],

hyperspectral imaging [Monakhova et al., 2020], and video from a single frame [Antipa et al., 2019].

While lensless imagers have shown great promise at imaging in diverse scenarios, their current

imaging quality is not comparable to that of a traditional lens-based camera, because the reconstruction

problem is rather challenging, as we explain in the following sections.



2 CHAPTER 1. INTRODUCTION

1.1 Why image without lenses?

Lenses conveniently focus an image of a scene onto a sensor, so why design cameras without lenses?

Replacing the lens with a thin, light-modulating element brings numerous advantages, both in camera

form-factors and its imaging abilities. This section illustrates many bene�ts of lensless imaging with

recent examples; a detailed survey of the bene�ts of lensless imaging can be found in Boominathan

et al. [2016, 2022].

Thin form-factor. Miniature cameras are useful for endoscopy and mobile devices that bene�t from

thin size. Since lensless imagers do not require focusing the scene on the sensor, they allow thin light-

modulating elements, such as amplitude masks or gratings, to be placed very closely or directly manufac-

tured on top of the sensor. PicoCam [Gill and Stork, 2013]’s experimental hardware has only a 0.45mm

thick grating on top of a sensor and expects the design to produce ∼100Dm ultra-miniature imagers.

FlatCam [Asif et al., 2016] and FlatScope [Adams et al., 2017] are amplitude mask-based designs with

prototypes that measure less than 0.6mm thick and weigh 0.2g. PhlatCam [Boominathan et al., 2020] is

a more light-e�cient phase mask-based design, producing a prototype that is 2mm thick.

Wide �eld-of-viewmicroscopy. In a lens-based microscope, increasing the magni�cation trades o�

the �eld of view and the depth of �eld. Lensless cameras can resolve �ne details on objects that are

very close to them without requiring magni�cation, and therefore makes wide �eld of view and depth

of �eld microscopes. FlatScope [Adams et al., 2017] is a lensless microscope with 2 µm lateral resolution

and less than 15 µm axial (or depth) resolution, and ultrawide �eld of view that is 10 times larger than a

lens-based microscope.

3D and light �eld imaging. Since lensless imagers have depth-dependent PSF, they encode the

scene’s depth information in their measurements. FlatScope [Adams et al., 2017], Di�userCam [An-

tipa et al., 2018], PhlatCam [Boominathan et al., 2020], Fresnel zone aperture based imager [Shimano

et al., 2018, Yamaguchi et al., 2019] show 3D reconstructions or refocused images from light �eld from

measurements captured on their lensless imager prototype. However, it is di�cult to analyze the depth

resolution of each imager.

Hyperspectral imaging. Lensless imagers with large and random PSF implements random linear

projections of the scene. Thus compressive sensing techniques can reconstruct structured high dimen-

sional signals, such as hyperspectral images, from the lensless measurements. Spectral Di�userCam
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Figure 1.1: Amplitude mask-based lensless camera prototypes. From left to right: the prototypes

for FlatCam [Asif et al., 2016], FlatScope [Adams et al., 2017], and programmable mask prototype in

SweepCam [Hua et al., 2020].

uses a di�user to create large and random PSF, and produces a hyperspectral imaging prototype with 64

color channels and 48 µm multi-point spatial resolution [Monakhova et al., 2020].

High frame-rate video. Similarly, video is a structured high-dimensional signal that can be recon-

structed from lensless measurements. Recording compressive measurements instead of the original sig-

nal shortens the time for transmitting and saving measurements, increasing the frame rate. An extreme

case of this is a prototype with Di�userCam design and a rolling shutter sensor that uses each row to

recover a video frame [Antipa et al., 2019]. It records video at 4500 frames per second.

1.2 Amplitude mask-based lensless imagers

Amplitude mask-based lensless imagers consists of a thin amplitude mask that attenuates light with

pattern placed a short distance away from the sensor. They record a blurry image of the scene, where

the blur is designed to preserve information so that a clear image of the scene can be computationally

reconstructed from the blurry measurements.

Prototypes. Some examples of lensless camera prototypes are shown in Figure 1.1. Building an

amplitude-mask lensless camera is simple since the fabrication of the mask is easy. The amplitude mask

can be a mask printed on glass, with the smallest feature size around a few micrometers. In the future, it

maybe possible to combine the manufacturing of the sensor with the mask in the same CMOS process.

This thesis introduces a programmable mask, similar to the programmable spatial light modulators used

in displays.
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(a) translation in sensor plane (b) translation orthogonal to sensor plane

Figure 1.2: Measurement translates as the point source translates in sensor plane, and scales as

the point source translates orthogonal to sensor plane.
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Measurements. If a point light is placed in front of the lensless camera, it will cast a shadow of the

mask on the sensor, as shown in Figure 1.2. A closer look reveals that if you move the light source

parallel to the sensor, the shadow will translate in the opposite direction. With this observation, we

model the lensless measurements of a single-depth scene as a convolution between the scene albedo

with the shadow of the mask, i.e. the point spread function (PSF) of the system. This convolution model

allows us to analyze the imaging resolution of lensless cameras and design good mask patterns that

preserve scene information in measurements. However, if you move the light source orthogonal to the

sensor, the shadow will scale. The fact that the PSF changes as a function of the point’s distance to the

sensor, i.e. the point’s depth, complicates the reconstruction problem. Speci�cally, this means we cannot

predict the lensless cameras’ imaging resolution of 3D scenes, and the reconstruction of 3D scenes from

lensless measurements remains a challenging problem. This thesis addresses this problem of imaging

3D scenes with lensless cameras, by understanding the role of depth in lensless imaging.

1.3 Resolving depth in lensless imaging

Resolving a scene from lensless measurements requires separating the scene content from their PSFs.

For a thin mask-based lensless imager, scene points at the same depth have PSFs that are translated

copies of each other; scene points at di�erent depths result in di�erent PSFs that are scaled copies of

each other. Therefore resolving the scene requires an estimate of the depth of scene points so that the

correct PSF can be used in the reconstruction. This is the central problem addressed by this thesis.

Resolving depth from a lensless measurement is a challenging problem for several reasons. First, it

is an under-determined problem. This means it is nearly impossible to distinguish the actual scene from

an in�nitude of other solutions. Additionally, it is a non-convex problem, so it is di�cult to navigate the

solution space to �nd the true solution.

While the actual forward model that maps the scene to lensless measurements is complex, previous

research places assumptions on the scene and the imager to obtain simpli�ed approximations that can be

inverted. There are two kinds of simpli�ed representations of the scene. The �rst approach assumes the

scene consists of a 2D array of point light sources, and the inverse problem solves each point’s brightness

and depth (Section 2.3.2). This approach tries to solve the di�cult inverse problem by alternating be-

tween estimating the brightness and depth on each iteration, but requires good initialization to succeed.

The second approach avoids estimating the depth of scene points by representing the whole scene as

a volume, typically consisting of multiple transparent depth planes, so the inverse problem solves only

the brightness or color at every point in the 3D volume (Section 2.3.3). The downside to representing
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the scene as a 3D volume is that typical 3D scenes need to be represented by a large number of depth

planes, and the reconstruction problem requires solving a 3D unknown from a 2D measurement, which

makes it severely underdetermined.

The two approaches share some common limitations. Both solve under-determined systems which

makes it di�cult to evaluate the lateral and axial resolution of the imager. Both require iterative meth-

ods for solving the 3D scenes, which makes the reconstruction time-consuming. Both place restrictive

assumptions on the scene to obtain a simple forward model. This thesis addresses each of the problems

with proposed imaging methods and reconstruction algorithms in the following section.

1.4 Thesis Contributions

This thesis makes the following contribution to improve 3D lensless imaging:

• Spatial and depth resolution analysis (Chapter 3, [Hua et al., 2023]). The key question this

thesis tackles is, what is the resolution of a lensless camera, when it images a 3D scene? Previous

studies only answered this question with empirical observations. This is because the measurement

model underlying prior lensless imagers lacks special structures that facilitate deeper analysis. This

work provides a theoretical framework for studying the achievable spatial-axial resolution of lensless

cameras. We obtain a theoretical limit on the spatial and axial resolving power of the camera, in the

form of 3D modulation transfer function (MTF), as a function of the mask parameters. This framework

also allows us to reason about the general performance of amplitude mask-based lensless cameras, by

deriving the decay rate for MTFs.

• Depth-aware reconstruction with programmable masks (Chapter 4, [Hua et al., 2020]). Pre-

vious works reconstruct a 3D scene from a single 2D lensless measurement. This inverse problem

is under-determined and hence di�cult to solve. To mitigate this, we obtain more measurements by

introducing programmable masks to enable imaging multiple frames with di�erent mask patterns.

However, naively solving the problem of reconstruction from a large number of measurements is still

time and memory prohibitive, as the measurement matrix for such system is large, containing more

than 1012 entries for a camera sensing with a moderate resolution of 150×240 pixels and 32 mask pat-

terns. We present an e�cient method for imaging a single depth with few artifacts, by imaging with

many translated versions of the same mask pattern, which allows us to computationally “focus” on a

limited depth range of the scene, resulting in reconstruction that is two orders of magnitude faster.
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• Inverse rendering for joint reconstruction of texture and depth from lenslessmeasurements

(Chapter 5). One of the critical ingredients in solving the inverse problems in computational imaging

is a forward model that balances the �delity to image formation against the computational e�ciency

of the ensuing inverse technique. This careful balancing act between precision and complexity can be

seen in many problems. For example, early work in photometric stereo made assumptions in the form

of convex objects with Lambertian re�ectance and distant lighting [Woodham, 1980], which permits a

simple solution for the shape of the object. Over time these constraints have been progressively relaxed

to incorporate inter-re�ections, specularities, and uncalibrated, near-�eld lighting [Ackermann and

Goesele, 2015]. A more recent example can be found in non-line-of-sight imaging, where there is

a clear progression from di�use volumetric scene representations [Velten et al., 2012], that permit

solutions in the form linear inverses, to complex forward modeling using wave [Liu et al., 2020] and

geometric optics [Tsai et al., 2019]. While previous methods simplify the forward model to make the

inverse problem feasible, the model mismatches resulted in artifacts in the reconstruction result. We

introduce ideas from di�erential rendering to solve the inverse problem with a physically realistic

forward model using stochastic gradient descent.

We show an example of how the contributions from this thesis improve the 3D imaging quality of a

lensless camera in Figure 1.3.

The rest of the document is structured in the following way: Chapter 2 provides the mathemati-

cal forward model under ray optics, examples of the challenges in depth reconstruction from lensless

measurements, and �nally previous 3D reconstruction methods. Chapters 3-5 are dedicated to the three

contributions. Chapter 6 concludes the proposed ideas as well as provide outlook on the future of 3D

lensless imaging.
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(a) deconvolution (b) SweepCam

(c) surface-based inverse rendering (d) ground truth

Figure 1.3: Improvements to imaging 3D scenes with lensless cameras. A plane textured with

a image of peppers is placed at an angle to the camera as shown in (d). (a) The 3D scene inferred

from 2D devolution of the measurement. (b) The 3D scene inferred from our proposed programmable

mask camera, named SweepCam. (c) The 3D scene as inferred by our proposed surface-based inverse

rendering algorithm.
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This chapter develops the mathematical forward models and introduces prior reconstruction techniques

for 3D lensless imaging.

2.1 Forward model under ray optics

To understand the lensless measurements of 3D scenes, we �rst derive the mathematical expression of

lensless measurements as a function of the 3D scene, under ray optics.

sensor mask

𝑥

(𝑥!, 0)

𝑝, −𝑑	

𝑑 𝑧

scene

(𝑥, 𝑧)

𝑧

sensor mask

(𝑥!, 0)

𝑝, −𝑑	

𝑑

scene

𝛾

(a)	spherical	coordinates (b) Cartesian coordinates

Figure 2.1: Geometry of mask-based lensless imager illustrated in 2D. Light ray from (G, I) in

scene reaches sensor location (?,3) via mask location (G<, 0).

Let the mask have attenuation function <(·) and mask-to-sensor distance 3 . As shown in Figure

2.1(a), the ray passing (p,−3) in the direction of −$ has radiance !(p,−$ ) before it reaches the imager

and is attenuated by mask <(x<). The sensor measurement for pixel centered at p, 8 (p), integrates

radiance of rays from all directions reaching the pixel area, modulated by the angular e�ciency of pixel
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0(·), which decreases at large angles.

8 (p) =
∫
p̂ in
pixel

∫
$ ∈S2

!(p̂,−$ )<(x<)0($ )3$3p̂ (2.1)

We proceed to simplify the model with the common assumptions shared in previous research. First,

we assume each point in the scene emits light uniformly in all directions, and the scene can be repre-

sented as a volumetric albedo function d (x, I). Next, we assume that the pixel area is small, and it is in

current commercial sensors, !(p,−W) is approximately constant for p in pixel with area Δp. Finally, we

note that the pixel angular e�ciency 0(·) and solid angle l (·) are both functions of ray angle. We can

consider those e�ects together as e�ective pixel angular response, 0̃(\ ) = 0(\ )l (\ )Δ? . Then the sensor

measurement of pixel centered at p can be obtained from

8 (p) =
∫
I

∫
x
d (x, I)<(x<)0̃

(x − p
I + 3

)
3x3I (2.2)

2.1.1 Sum of Convolution Model

By placing the additional assumption of small incident ray angles so that the e�ective angular response

is constant over the �eld of view, i.e. 0̃
( x−p
I+3

)
= 0̃0, the forward model of a 3D scene becomes a sum of

convolutions. This model is commonly assumed in lensless imaging literature [Antipa et al., 2018, Asif,

2018, Boominathan et al., 2020, Hua et al., 2020, Yamaguchi et al., 2019]. It is a useful model that allows

simple calibration and reconstruction.

For discrete depth planes, a re-parameterization x̃ = −3
I
x of Eq. (5.2) allows the sensor measurement

to be written as a result of sum of convolutions,

8 (p) =
∑
I

∫
x̃
d̃I (x̃)<̃(p − x̃)3x̃ =

∑
I

(d̃I ∗1� <̃I) (p), (2.3)

where re-parameterized scene d̃I (x̃) = 0̃I ( I3 )
2d (− I

3
x̃, I) is convolved with a kernel which is a scaled

version of the mask modulation pattern <̃I (x̃) =<( I
I+3 x̃).

Equation (2.3) can be expressed in frequency as a sum of multiplications,

� (8) =
∑
I

P̃I (8) "̃I (8), (2.4)

where � , P̃I, "̃I are the Fourier transform of 8, d̃I, <̃I respectively.

Note that �nite sensor area result in cropped measurements, and the cropping is modeled in Antipa

et al. [2018] and Boominathan et al. [2020].
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2.2 Challenges in reconstructing depth from lensless measurements

It is challenging to resolve the depth of the scene from lensless measurements for a number of reasons:

1. the function that maps scene to lensless measurements is surjective;

2. the optimization problem is non-convex.

This section shows examples that illustrate those two problems.

Example of depth ambiguity. Under the sum of convolution model, it is easy to produce an ex-

ample of two scenes, each consisting of one frontal-parallel plane, at di�erent depth, that result in the

same measurements. Consider a lensless imager, whose PSFs are ?1 (x), ?2 (x) for points at two di�erent

depths I1, I2 respectively. Consider a scene consisting of a plane with texture ?2 (x) at depth I1, whose

measurement is ∝ (?1 ∗?2) (x). Consider another scene consisting of a plane with texture ?1 (x) at depth

I2, whose measurement is ∝ (?1 ∗ ?2) (x). The two scenes consisting of single planes at di�erent depth

result in the same measurements. We can capture more measurements with di�erent masks to break

this ambiguity, and we present a method for depth-aware reconstruction with programmable masks in

Chapter 4.

Example of non-convex inverse problem. Figure 2.2 shows an example of mean squared error of

sensor measurements corresponding to changes in texture and depth of a point on surface. This is the

data term commonly used in the inverse optimization problem. As shown, the function is not convex. In

this example, there is a local minimum corresponding to a closer but darker point. Besides using prior

terms that enforce sparsity or continuity of the scene, obtaining multiple measurements with di�erent

masks also helps disambiguate the depth of scene points.

2.3 Prior work

The inverse problem of 3D reconstruction of scene s from lensless measurements i with forward model

Ψ is posed as an optimization problem that minimizes the di�erences between captured and rendered

measurements plus some regularization term on the scene,

argmin
s
‖i − Ψ(s)‖22 + _ prior(s). (2.5)

Di�erent lensless imager designs lead to di�erent simpli�cation of the forward model, resulting in di�er-

ent reconstruction problems. This section summarizes the previous research in 3D reconstruction from

lensless measurements, detailing the forward models, assumptions used for simplifcation, and runtime.
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Figure 2.2: MSE of sensor measurements with texture and depth change. Measurements are

simulated for SweepCam prototype with 8 × 8 binned pixel and mask pattern from calibration. A small

plane with depth 26.9mm and 0.01 square degree is perturbed in texture and depth.

2.3.1 Reconstruction of a single depth plane

When the scene consists of a single plane of known depth, or is far away enough that the PSF is the same

for all scene points, resolving the scene from lensless measurements is simple and runs in real time.

Sum of convolution model. Under the sum-of-convolution model as described in Section 2.1.1 ,

reconstructing a single plane of known depth is a deconvolution problem.

Optimization objective. For a single plane of known depth, its texture can be recovered under the

sum of convolution model equation (2.3) by solving

argmin
1
‖i − 1̃ ∗1� m̃‖22 + _‖1‖22. (2.6)

Reconstruction. This objective equation (2.6) can be solved very fast with Wiener deconvolution with

regularization _,

P̃(8) = "̃ (8)
|"̃ (l) |2 + _

� (8). (2.7)

Separable model. A di�erent simpli�cation of the forward model has been used in amplitude-mask

based designs that focused on producing thin imagers [Adams et al., 2017, Asif et al., 2016] for imaging

in tight spaces (resulting in large incident ray angles), by using mask patterns that can be computed

from sum of outer product of two 1D functions, resulting in a forward model that is separable in G − ~

dimension.
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Assumptions. Besides the shared ones in equation (5.2), the mask attenuation pattern is assumed to

be separable, i.e., <(G,~) = ∑ 
:=1<

G,: (G)<~,: (~), and the angular e�ciency function of the pixels are

separable, as it typically is on common sensors.

Forward model. Explicitly expanding out the G,~ dimension from x and ?, @ dimension from p in

equation (5.2),

8 (?, @) =
∫
I

∫
G,~

d (G,~, I)Φ(G,~, ?, @, I)3G3~3I, (2.8)

where

Φ(G,~, ?, @, I) =<
(
I

I + 3 ? +
3

I + 3 G,
I

I + 3 @ +
3

I + 3~
)
0̃

(√
(G − ?)2 + (~ − @)2

I + 3

)
(2.9)

is separable when the mask is separable,

Φ(G,~, ?, @, I) =
 ∑
:=1

ΦG,: (G, ?, I)Φ~,: (~, @, I). (2.10)

Equation (2.8) becomes

8 (?, @) =
∫
I

 ∑
:=1

(∫
~

(
d (G,~, I)ΦG,: (G, ?, I)3G

)
Φ~,: (~, @, I)3~

)
3I. (2.11)

With discretized G,~, I volume,

8 [?, @] =
∑
I

 ∑
:=1

ΦGI [?, G] dI [G,~] Φ
~
I [~, @]ΔI ; (2.12)

it is usually written as a sum of 3 matrix multiplications

I =
∑
I

 ∑
:=1

�
G
I VI�

~
I . (2.13)

FlatScope [Adams et al., 2017] considers the non-negative mask pattern separable with  = 2, while

previous work [Asif et al., 2016] considers a (-1, 1) mask pattern with  = 1.

Optimization objective. For single plane of known depth I, its texture can be recovered under the

separable model equation (2.13) by solving

argmin
V
‖I −

 ∑
:=1

�
G,:
I V�~,:I ‖22 + _‖V ‖22 (2.14)

Reconstruction. This problem has analytical solution for  = 1,

V = VG [
(
�GU)G IU~�~

)
./

(
2G2

)
~ + _11)

)
]V)~ ,
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and can be computed within a few matrix multiplications using pre-computed matrix decompositon

results

�
G,1 = UG�GV)G

�
~,1 = (U~�~V)~ ))

�G = diag(�G )

�~ = diag(�~).

For  = 2, FlatScope solves it with Nesterov’s gradient method.

2.3.2 Reconstruction of depth and texture

Asif [2018] along with Zheng [2020] jointly resolve the scene brightness d (x) and depth I (x) from a

non-linear inverse problem.

Assumptions. 1) the scene consists of point sources without self-occlusion with brightness d (x) at 3D

location (x, I (x)); 2) sensor pixel pitch is small; 3) the imager sees a small �eld of view, i.e. the e�ective

angular response 0̃( x−p
I+3 ) is constant over the �eld of view.

Forwardmodel. By discretizing the scene into a collection point sources x1, . . . , x= , the forward model

simpli�es to sum of each point rendered by its corresponding PSF,

8 (p) =
∑

x1,...,x=

d (x, I (x))< (x<) 0̃
(

x − p
I (x) + 3

)
=

∑
x1,...,x=

Ψ (I (x)) d (x) (2.15)

where Ψ(I) renders the PSF of point at depth I.

Optimization objective. The reconstruction is posed as the non-linear optimization problem

argmin
d,I

‖i −
∑

x1,...,x=

Ψ (I (x)) d (x)‖22 (2.16)

Solution. A initial solution can be obtained by reconstructing single depth planes as described in

Section 2.3.1 or using greedy depth pursuit algorithm [Asif, 2018]. The solution to equation (2.16) can

be re�ned using alternating gradient descent as proposed in Zheng and Asif [2020].
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2.3.3 Reconstruction of volume albedo

Many works solve the 3D lensless imaging problem with this approach, and a comparison can be found

in Table 2.1. Solving for albedo of voxels in a scene volume d (x, I) results in a linear inverse problem.

Since the 3D unknown makes the problem under-determined, most methods that reconstruct volume

albedo regularize the optimization with sparsity prior in either voxels or gradient of voxels.

name forward model prior optimization
algorithm

reported runtime

Antipa et al. [2018] cropped sum of
convolution
(Section 2.1.1)

3D TV
semi-norm

ADMM “512×512×128≈33.5 million voxels takes
3min ( 1 s per iteration) on a four-core
laptop with 16 gigabytes of RAM”

Adams et al. [2017] separable
(Section 2.3.1)

ℓ1 FISTA “640× 480 pixels” “converge in 15 min”

Boominathan et al.
[2020]

cropped sum of
convolution
(Section 2.1.1)

2D TV + ℓ1 ADMM “high-quality reconstruction within a
few iterations”

Zheng et al. [2021] sum of circular
convolution

ℓ2 matrix
inversions

“eight depth planes with eight
programmable masks” in “0.33 seconds”

Table 2.1: Comparison of projects that reconstruct 3D volume.

In summary, the prior methods for 3D lensless imaging

• solve under-determined systems;

• are di�cult to analyze the resolution of their 3D reconstructions, especially in depth;

• require time-consuming solutions;

• ignores e�ects such as specularity, occlusion, and sensors’ non-uniform angular responses.

This thesis will improve on those limitations of prior methods in the following chapters.
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Lensless Cameras

This chapter provides a theoretical analysis for the achievable resolutions of 3D lensless imaging.

From a theoretical perspective, 3D imaging with lensless cameras is poorly understood. While prior

works have produced ample empirical observations for speci�c prototypes, they are di�cult to gener-

alize and interpret. In particular, the measurement operators associated with lensless imagers are hard

to analyze for scenes with extended depth. As a consequence, there has been little work in analyzing

the fundamental limits in achievable spatial and axial resolutions with a lensless camera; nor is there a

clear understanding of how the various parameters of the imager—including the mask pattern and the

scene/sensor to mask distances—a�ect its ability to recover texture and depth.

One of our primary observation is that the analysis of performance of lensless cameras is compli-

cated by the dimensionality gap between the scene, which is three-dimensional (3D), and the lensless

measurements, which are invariably two-dimensional (2D) or, at best, a collection of such 2D images.

To alleviate this gap, we draw inspiration from z-stacking or focus stacking and consider, as a thought

experiment, the 3D space of measurements formed by moving the image sensor axially, i.e., by changing

the mask to sensor distance. We show that, under assumptions that are commonplace in prior work,

the z-stacked measurements for an amplitude mask-based lensless camera are the result of a 3D convo-

lution of the scene, represented as a volumetric albedo function, with a 3D kernel that is dependent of

the mask. This convolutional structure of the measurement operator is immensely consequential, since

it provides the foundation for characterizing the lensless camera’s spatial and axial resolving power

by simply computing the modulation transfer function (MTF) of the associated PSF. This result further

enables us to compare and evaluate various masks and parameters of the lensless camera, thereby an-

swering the previously elusive questions. Finally, since z-stacked measurements encompass those made

by a traditional system with �xed sensor-to-mask distance, our results provide an upper bound on their

performance.

Contributions. We make the following contributions in this chapter.
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• Analysis via lens-free z-stacks. Our main technical result shows that the measurements obtained with

z-stacking are related to the 3D scene, described as a volumetric albedo function, with a convolutional

measurement operator.

• Derivation of the MTF. We show that the 3D MTF of the convolutional operator has a closed-form

expression in terms of the attenuating mask pattern of the lensless camera.

• Dependence of the mask on achievable spatio-axial resolution. As a consequence of the MTF derivation,

we connect the parameters of the mask to its achievable spatio-axial resolution. In particular, we

derive an upper bound to the axial or depth resolution given the spatial resolution of the camera and

the spatial extent of the mask.

The analysis in this chapter is meaningful for typical lensless cameras with static sensors. Since the

static sensor measurement is a subset of the z-stack measurement, the 3D resolution analysis derived in

this chapter serves as an upper bound to the performance of a typical static sensor lensless cameras.

Limitations. From a theoretical perspective, the derivation of the main results require a number of

assumptions on the scene and the image formation that, in principle, reduce their applicability. These

include the use of a volumetric model that ignores occlusion, shading, and specularities and the use

of a ray tracing approach that ignores di�raction caused by the small features in the mask. Volumetric

modeling is a commonly-made assumption in this literature (for example, see FlatCam [Asif et al., 2016],

FlatScope [Adams et al., 2017] or SweepCam [Hua et al., 2020]); hence, these results characterize their

performance with the caveat that there is an additional mismatch between the actual measurements

and the assumed measurement model. Lastly, the MTF analysis only characterizes the e�ectiveness

of the measurement operator (or the imaging system), but does not consider the use of sophisticated

computational techniques for solving the inverse problem; here, the use of scene priors can potentially

o�er reconstruction that is better than what our analysis predicts.

3.1 Prior Work

The theory and analysis proposed here builds upon two largely independent topics: lensless imaging,

and focus stack photography.
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3.1.1 Lensless measurement operators

For a lensless camera with an amplitude mask [Asif et al., 2016, Busboom et al., 1998, Dicke, 1968, Feni-

more and Cannon, 1978], its measurement operator is convolutional when all scene points are restricted

to lie on a single front-parallel plane. Hence, for a scene not restricted to a single depth, the measurement

operator can be described as a sum of 2D convolutions; see Figure 3.1(a). To stabilize the reconstruction

process, previous work use priors in the form of sparsity [Adams et al., 2017] and data-driven models

[Khan et al., 2020, Monakhova et al., 2019a, Rego et al., 2021].

One approach to improve the conditioning of the operator is to capture multiple measurements

with di�erent mask patterns. The measurements corresponding to the di�erent masks can simply be

concatenated, as in Figure 3.1(b), to obtain a joint system with improved conditioning and invertibility.

However, the computational burden in implementing this operator can be quite formidable, especially

for high-resolution sensors. Hua et al. [2020] capture multiple measurements with a translating mask to

facilitate computational refocusing to di�erent depths in the measurement space; the resulting operation

approximates imaging points only from focused depth with the rest in severe defocus, resulting in the

measurement operator shown in Figure 3.1(c). Ignoring boundary e�ects of the convolution, Zheng

et al. [2021] formulate the measurement operator in the frequency domain of the measurement; here,

the sum of convolution operator reduces to a block diagonal structure, as seen in Figure 3.1(d), which

can be implemented very e�ciently.

In this chapter, we show that the z-stacked measurements, under an appropriate re-parameterization,

are convolutional in the scene’s volumetric albedo. Antipa et al. [2018] make a similar observation,

implementing the sum of 2D convolution as a 3D convolution. However, there are notable di�erences

including their use of a phase mask, which has a di�erent image formation from ours. Further, our use

of z-stacked measurements introduces important re-parameterizations of the scene and measurements

that are critical to the derivation of the convolutional model. Finally, we detail a number of important

consequences of the convolution model, which goes signi�cantly beyond prior work.

3.1.2 Focus stack photography

Focus stack photography acquires multiple images of a scene by sweeping the focus plane of the imaging

system [Kutulakos and Hasino�, 2009, Nayar and Nakagawa, 1994]; typically, this is achieved via axial

movement of the sensor with respect to the imaging lens or by using focus-tunable optics [Miau et al.,

2013]. Focus stacks have been studied for 3D scene estimation, using focus [Nayar and Nakagawa, 1990]

and defocus [Favaro and Soatto, 2005] cues, as well as obtaining extended depth-of-�eld images [Pieper
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Figure 3.1: Structure of 3D lensless imaging operators for a scene with two depth planes. The

planes have albedo CI1 , CI2 and the lensless camera captures measurements 8 . (a) Single measurement; (b)

Multiple measurements; (c) Hua et al. [2020] computationally focus measurements on speci�c depths

to obtain systems that approximate single 2D convolution with low-frequency residual. (d) Zheng et al.

[2021] represent the Fourier Transform of multiple measurement matrix as a block-diagonal matrix. (e)

Z-stack measurements, after re-parameterization, can be obtained by a 3D convolution between the 3D

scene volume and a 3D kernel de�ned by the mask pattern.

and Korpel, 1983]—the latter being useful in microscopy [Streibl, 1985] where the extremely shallow

depth of �eld is often a challenge.

Sundaram and Nayar [1997] study recoverability of depth of a textureless scene from a focus stack,

and present a theoretical analysis of MTFs that is similar to this work. Speci�cally, they show that the

volumetric measurement formed by a scene point in a tele-centric system is shift-invariant. They derive

the optical transfer function associated with this system and establish conditions when the depth of a

textureless scene is resolvable. The theory presented in this chapter can be interpreted as the lensless

counterpart to their work; in spite of the conceptual similarity between the two results, the di�erences

in image formation between a lens-based and lens-less imager lead to distinct results and consequences.

For example, we discuss the ability to design the PSF via designing the mask pattern of the lensless

camera and gain insights on mask design from the viewpoint of its achievable resolutions.
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3.2 Z-Stacking and The Convolutional Model

We begin with a recap of the image formation model for imaging a 3D scene with a lensless camera,

followed by derivation for obtaining the z-stacked measurements with a 3D convolutional model, and

�nally address its implication with static sensor prototypes.

3.2.1 Measurement model for a 3D scene

Consider an image sensor placed behind an amplitude mask de�ned with an attenuation function<(x)

with x = (G,~); we assume that the mask is aligned with the I = 0 plane (see Figure 4.2). Following prior

work [Hua et al., 2020], we model the scene as a volumetric albedo function C (x, I). When the sensor

is placed on the plane I = 3 < 0 (i.e. a distance 3 behind the mask), the intensity observed at a point

p = (?, @) on the sensor is given as

8 (p, 3) =
Imax∫

I=Imin

∞∬
x=−∞

C (x, I)<
(
p + −3

I − 3 (x − p)
)
3x 3I (3.1)

where the scene occupies the depth range [Imin, Imax], with 0 < Imin < Imax < ∞. Equation (3.1)

suggests that a scene point produces a sensor measurement that is a scaled and translated copy of the

mask; in particular, the scaling parameter is depth dependent. This image formation ignores the e�ects

of light fall-o�, occlusion between scene points, shading, specular re�ections, and the sensor’s angular

response; it also ignores the e�ects of di�raction. In practice, the e�ects of di�raction causes the PSF to

no longer be a scaled copy of the mask; this changes equation (3.1) by changing the mask function<(·)

to its di�racted counterpart.

We observe that there is a reasonable depth range where the scaling assumption is valid. For example,

the correlation between scaled PSF patterns remain above 0.86 when we use PSF from 11cm as template,

and evaluate it in the depth range from 6cm to 34cm on a SweepCam prototype, as shown in Figure 3.2.

This validates the shift-invariance in space and scaling in depth holds for the di�racted mask, as has

been commonly used in most lensless camera prototypes [Antipa et al., 2018, Boominathan et al., 2020,

Hua et al., 2020, Zheng and Asif, 2020, Zheng et al., 2021] to which this work provides an analysis for.

3.2.2 3D Convolution model for a z-stack

We now consider a lensless camera where the sensor captures multiple measurements while moving

axially (i.e. with varying sensor-to-mask distances). An important distinction is that these z-stacked
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in 2D. The grids show uniform sampling in the proposed parameterization, i.e. in tangent of angle

subtendend G̃ and diopter Ĩ.

measurements are volumetric; speci�cally, we can extend equation (3.1) to write the measurements,

8 (p, 3), to be explicitly dependent on the spatial locations p as well as axial location 3 .

Change of variables. We now show that the z-stack 8 (p, 3) is related to a re-parameterized volumetric

scene albedo C (x, I) via a convolution operator. Starting from equation (3.1), we can rewrite 8 (p, 3) by

rearranging the terms in<(·) as follows:

8 (p, 3) =
Imax∫

I=Imin

∞∬
x=−∞

C (x, I)<
( p
3
− x
I

1
3
− 1
I

)
3x3I (3.2)

The equation above is signi�cantly simpli�ed if we change the variables from Cartesian coordinates to

the following choice:

x̃ =
x
I
, Ĩ =

1
I
, p̃ =

p
3
, 3̃ =

1
3
. (3.3)
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This new parameterization changes (G,~) to the tangent of the angle at the origin, and depth I to its

reciprocal. An illustration of this parameterization is shown in Figure 3.4. Finally, we use 8̃ (p̃, 3̃) and

C̃ (x̃, Ĩ) to denote the z-stack measurements and the scene albedo, respectively, in their new variables.

With this, we can rewrite equation (3.2) as

8̃ (p̃, 3̃) =
I−1min∫

Ĩ=I−1max

∞∬
x̃=−∞

1
Ĩ4
C̃ (x̃, Ĩ)<

(
p̃ − x̃
3̃ − Ĩ

)
3x̃3Ĩ. (3.4)

Here, the 1/Ĩ4 is the modulus of determinant of the Jacobian underlying the change of variables. De�ning

the 3D kernel : (x̃, Ĩ) and depth-normalized texture C̃ ′(x̃, Ĩ) as

: (x̃, Ĩ) =<
(
x̃
Ĩ

)
, C̃ ′(x̃, Ĩ) = 1

Ĩ4
C̃ (x̃, Ĩ), (3.5)

we can express equation (3.4) as

8̃ (p̃, 3̃) =
I−1min∫

Ĩ=I−1max

∬
x̃

C̃ ′(x̃, Ĩ) : (p̃ − x̃, 3̃ − Ĩ)3x̃3Ĩ. (3.6)

To proceed further and obtain the desired convolutional model, we need to make an additional as-

sumption pertaining to the limits of integration. Speci�cally, the integral in equation (3.6) is physically

meaningful—i.e., consistent with what a sensor would measure—only when the sensor and the scene

are on opposite sides of the mask. After all, the mask plays no role when the sensor and scene are on

its same side. We can implicitly enforce the sensor-mask-scene con�guration with the following two

conditions: �rst, the scene albedo C̃ ′(x̃, Ĩ) = 0 when Ĩ ≤ 0; and second, the output 8̃ (p̃, 3̃) is evaluated

only for 3̃ < 0. We can now change the limits of integration to get

8̃ (p̃, 3̃) =
∞∭

{Ĩ,̃x}=−∞

C̃ ′(x̃, Ĩ) : (p̃ − x̃, 3̃ − Ĩ)3x̃3Ĩ = (̃C ′ ∗3� :) (p̃, 3̃). (3.7)

Hence, the z-stack of measurements is related to the scene’s volumetric albedo, both under their respective

re-parameterizations, via a 3D convolution operator whose kernel is dependent only on the mask pattern.

The convolutional model presented in equation (3.7) is the centerpiece of our contributions. As we

show in the next section, it can be leveraged to characterize basic properties of the imager, including

the MTF that is de�ned as the modulus of the Fourier transform of the convolutional kernel. Before we

delve into this analysis, a few observations are in order.

Connection to non-line-of-sight imaging. The interested reader is referred to a recent work in

non-line-of-sight imaging that formed the inspiration for the derivation above. The measurement mod-

els in non-line-of-sight imaging are similar to lensless imaging in their lack of structures that facilitate
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fast implementation or analysis. O’Toole et al. [2018] show that an appropriate re-parameterization of

the variables describing the scene and measurements lead to a convolution operator. A notable di�er-

ence is that non-line-of-sight operator is 5D and O’Toole et al. [2018] select a 3D subset to match the

dimensionality of the scene and measurements; in contrast, our work matches the dimensionality by

enhancing the space of the measurements by z-stacking.

3.3 Analysis

We now derive an expression for the Fourier transform of the PSF, and use it to characterize the lateral

and axial resolution of the device in terms of its mask.

3.3.1 Derivation of the MTF

A key feature of an imaging system whose measurement operator is convolutional is that we can easily

characterize the fundamental limits of achievable resolution. This is often done by computing the MTF

of the system, which is the magnitude of the Fourier transform of the PSF.

In our case, the PSF is a 3D function : (x̃, Ĩ) that is de�ned in (3.5). Let  (5G , 5~, 5I) be the 3D Fourier

Transform of 3D kernel : (G̃, ~̃, Ĩ).

 (5G , 5~, 5I) =
∭

: (G̃, ~̃, Ĩ)4−92c (G̃ 5G+~̃ 5~+Ĩ 5I)3G̃ 3~̃ 3Ĩ (3.8)

Substituting the expression for the 3D kernel in (3.5),

: (G̃, ~̃, Ĩ) =<
(
G̃

Ĩ
,
~̃

Ĩ

)
,

 (5G , 5~, 5I) can be written as∫
Ĩ


∬
~̃,G̃

<

(
G̃

Ĩ
,
~̃

Ĩ

)
4−92c (G̃ 5G+~̃ 5~)3G̃3~̃

︸                                         ︷︷                                         ︸
2D Fourier Transform of< (G̃/Ĩ,~̃/Ĩ)

4−92cĨ5I3Ĩ. (3.9)

Let " (5G , 5~) be the 2D Fourier transform of <(G̃, ~̃); using scaling properties, we can derive the 2D

Fourier transform of<(G̃/Ĩ, ~̃/Ĩ) is

|Ĩ |2"
(
Ĩ 5G , Ĩ 5~

)
.

Substituting this into (3.9), we get

 (5G , 5~, 5I) =
∞∫

Ĩ=−∞

Ĩ2"
(
Ĩ 5G , Ĩ 5~

)
4−92cĨ5I3Ĩ (3.10)
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Figure 3.5: Illustration of Fourier slice theorem. " (I5G , I 5~) for any constant 5~/5G = tank

represents a radial slice in the mask 2D Fourier space. A 1D inverse Fourier transform of any such slice

is equivalent to the integral projection of the mask at anglek .

The integral in equation (3.10) evaluates to the 1D Fourier transform of Ĩ2"
(
Ĩ 5G , Ĩ 5~

)
over the variable

Ĩ.

De�ning the following terms,

d =

√
5 2G + 5 2~ , tank =

5~

5G
, (3.11)

we can express

"
(
Ĩ 5G , Ĩ 5~

)
= " (Ĩd cosk, Ĩd sink ) . (3.12)

This suggests that for a �xed (5G , 5~) ≠ (0, 0), "
(
Ĩ 5G , Ĩ 5~

)
—as a function of Ĩ—is a radial slice of " (·, ·)

at an angle k to the 5G -axis. We can now apply the Fourier slice theorem to simplify the expression in

equation (3.10); recall, that the Fourier Slice theorem suggests that the inverse 1D Fourier transform of

"
(
Ĩ 5G , Ĩ 5~

)
, is a line integral of <(G,~) (see an illustration in Figure 3.5). Finally, the term Ĩ2 can be

accounted for using the di�erentiation property of Fourier transforms.

We now have all the components to simplify equation (3.10). Let A< (U, \ ) be the Radon transform of

the mask<(G,~); the Fourier slice theorem suggests that

A< (U,k )
1D FT←−−→ " (Ĩ cosk, Ĩ sink ), (3.13)

where Ĩ is the frequency domain variable. We can invoke the di�erentiation property twice, to get

−1
4c2

m2

mU2
A< (U,k )

1D FT←−−→ Ĩ2" (Ĩ cosk, Ĩ sink ) (3.14)

Now, from the scaling property, we get

−1
4c2

1
d

m2

mU2
A<

(
U

d
,k

)
1D FT←−−→ d2Ĩ2" (dĨ cosk, dĨ sink ) (3.15)
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The last technicality to resolve is that equation (3.10) requires us to calculate the Fourier transform of

Ĩ2" (dĨ cosk, dĨ sink ); the expression above provides us with its inverse Fourier transform. However,

duality suggests that we only need to negate U to get that expression.

Putting these together, for (5G , 5~) ≠ (0, 0), we can show that the 3D Fourier transform of the PSF is

given as

 (5G , 5~, 5I) =
−1

4c2 (5 2G + 5 2~ )
3
2

m2

mU2
A< (U,k )

���� U = −5I/
√
5 2G + 5 2~

tank = 5~/5G

, (3.16)

with A< (U,k ) being the Radon transform of the mask<(G,~). At the origin, 5G = 5~ = 5I = 0,  has a

Dirac delta function. Finally, if we de�ne ℓ (G,~) to be the Laplacian of the mask, i.e.

ℓ (G,~) =
(
m2

mG2
+ m2

m~2

)
<(G,~),

then, using the Fourier slice theorem, we can show that the Radon transform of ℓ (G,~), Aℓ (U,k ), can be

expressed as

Aℓ (U,k ) =
m2

mU2
A< (U,k ).

With this, we can obtain the following expression:

 (5G , 5~, 5I) =
−1

4c2 (5 2G + 5 2~ )
3
2
Aℓ

©­­«−
5I√

5 2G + 5 2~
, tan−1

(
5~

5G

)ª®®¬ . (3.17)

Subsequent analysis is simpli�ed if we de�ne d =

√
5 2G + 5 2~ as the magnitude of angular frequency

andk = tan−1 (5~/5G ) as its directionality. The Fourier transform of the 3D PSF in polar coordinates for

(5G , 5~), denoted as  % , can now be written as

 % (d,k, 5I) =
−1

4c2d3
Aℓ

(
− 5I
d
,k

)
. (3.18)

Numerical veri�cation. We observe from equation (3.18) that if d is �xed to some value, say d = d0,

then

 % (d = d0,k, 5I) ∝ Aℓ (−5I/d0,k ). (3.19)

Hence, the 2D slice of  % for a �xed d is a scaled copy of Aℓ , the Radon transform of the Laplacian of the

mask pattern. Figure 3.6 provides a numerical veri�cation of this; for a collection of masks commonly

used in lensless imaging, we compute the Laplacian of the mask, its Radon transform, and ak -5I slice of

the magnitude spectra | % (d,k, 5I) |, for a �xed value of d . We observe that the Laplacian matches well

with the 2D slice of the magnitude spectra with two notable sets of artifacts: aliasing of the DFT which

results in repeating copies, and the sinc-like decay, especially along the 5I axis, which we attribute to

the windowing of the kernel; we elaborate on this in the next section.
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Figure 3.6: Comparison of mask patterns and their MTFs. Multiple mask patterns (a, inset) are

shown with their Laplacian (a) and the Radon transform of Laplacian (b). (c) shows | % (d = 0.4,k, 5I) |, a

k -5I slice, obtained numerically; the similarity between row (b) and (c) veri�es our analytical expression

of  . (d) shows log
∫
k
| % (d,k, 5I) |3k obtained numerically. The red lines marked in (d) correspond

to the butter�y structure de�ned in equation (3.20); this is a consequence of the compact spread of the

mask, indicated by the red dotted circles in (a). The structures of the MTF in (d) are constrained within

the butter�y structure, except for the leakage due to the windowing of the PSF in the spatial domain.

3.3.2 Dependence of the MTF on the mask

The expressions for the Fourier transform of the PSF also provide a direct way to understand how the

mask a�ects the MTF of the resulting system. We study this next.

Spatial extent of the mask. Many of the masks that we use have a �nite spatial extent. The MTFs of

such masks exhibit an important symmetry. Speci�cally, suppose that the mask<(G,~) is zero outside

of a disc of radius '< , i.e.,<(G,~) = 0, ∀(G,~) s.t. G2 + ~2 ≥ '2< , then the Radon transform of Laplacian

satis�es

Aℓ (U,k ) = 0, ∀|U | > '< .
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This implies that the Fourier transform can be non-zero only when |5I/d | ≤ '< , or

− '<d ≤ 5I ≤ '<d. (3.20)

Hence, if we visualize a di�erent 2D cross-section of  % , one corresponding to a �xedk , then we expect

to see non-zero values only with in the “butter�y” shape de�ned by the set de�ned above. Figure 3.6(d)

visualizes this for a number of masks.

The butter�y structure places an important constraint on achievable spatio-axial resolution1. Given

measurements that resolve in tangent of angle subtended with a resolution of X? (the ratio of sensor pixel

pitch to sensor-to-mask distance) , we can only resolve frequencies corresponding to d ∈ [− 1
2X? ,

1
2X? ].

Hence, for a mask with support restricted within a disc of radius '< , the maximum resolvable axial

resolution is

|5I | ≤
'<

2X?
. (3.21)

This naturally explains the lack of depth resolution in a pinhole mask and the improvement in perfor-

mance with multiple pinholes, as well as larger-sized masks based on M-sequences or random construc-

tions, since they have a larger '< than pinholes. It is worth noting that the bound discussed above is

expected to be loose, since it only considers the diameter of the mask and ignores the speci�c pattern

within.

Example. This analysis allows us to compute the upper bound of 3D resolution for lensless camera

prototypes. For example, in the FlatScope prototype [Adams et al., 2017], the spatial extent of mask is

contained within a disc of radius '< = 1.84mm. The spatial resolution is bounded by X? =
Δ?
3

=

1.12 × 10−2, where Δ? = 2.24 µm is the e�ective pixel pitch and 3 = 0.2mm is the mask-to-sensor

distance. FlatScope reports lateral resolution of less than 2 µm. After converting the sensor angular

resolution (X? ) to the scene spatial resolution (X? × I), our analysis predicts the 2 µm spatial resolution

holds true for scenes that are farther than I = 178 µm from the mask. This is the depth range in which

FlatScope have shown experimental results (I > 170 µm). The axial resolution of the prototype has an

upper bound from equation (3.21): 5I<0G =
'<
2X? = 82.1mm in frequency of diopters. FlatScope shows

an axial resolution of less than 15 µm at depth I = 270 µm from experiments. Our analysis predicts that

diopter resolution is bounded by ΔĨ = 1
25I<0G =

X?

'<
. The resulting depth resolution at I = 270 µm can

be computed as ΔI = | mI
mĨ
ΔĨ | = ΔĨ

Ĩ2
= I2

X?

'<
= 0.44 µm. The predicted theoretical upper bound of axial

resolution is better than the reported empirical axial resolution, as it does not account of the limitation
1Similar structures also arise in the analysis of spatio-temporal resolutions in videos [Park and Wakin, 2013]; as in our analysis,

such structures serve to strongly couple achievable resolutions across the two domains.
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further imposed by the subsampling operator discussed in Section 3.3.4 or sensor non-idealities. This

suggest further improvements to the axial resolution may be possible with obtaining z-stack and better

handling of measurement noise and quantization.

A counter-intuitive consequence of the butter�y structure is that the depth resolving power of a

pinhole, modeled as a disc, seems to change when we increase its radius. We discuss this next.

Pitch of the mask. Given a mask pattern—for example, a pinhole—changing its pitch scales the mask

pattern, and consequently, the Radon transform of its Laplacian only along its shift axis. This suggests

that we can get better depth resolution simply by scaling a mask pattern. Intuitively, this makes sense

as the defocus blur is enlarged and hence, given a sensor pitch, we can distinguish smaller changes in

depth better.

Sparsity of the Laplacian. Another signi�cant factor that detrimentally a�ects performance of re-

construction is the presence of nulls in the MTF. We observe such nulls in the simple masks consisting of

one or a few pinholes; the Laplacian of such masks have positive and negative intensities which cancel

out during the line-integrals, and so their Radon transform has sparse structures as well (as seen in Fig-

ure 3.6(c)). As a consequence, while increasing the size of the pinhole enlarges the butter�y structure,

the sparsity of Radon transform results in the same amount of frequency measurements, albeit those

that can reach higher axial resolutions.

DC term and the e�ect of windowing. The expressions in equations (3.17) and (3.18) also indicate

that the Fourier transform tends to in�nity when we approach the origin, i.e., the DC term. This is

not surprising since the DC term is equal to the integral area under the curve (AUC). Since the PSF

: (x̃, Ĩ) is simply a projection of the mask < along the depth dimension, its AUC is in�nite. Practical

considerations, however, force us to work with a windowed kernel when we do the simulations of

Figure 3.6. In particular, when we seek to recover a scene and sensor measurements that both have

�nite extents in tangent of the angle and reciprocal of the depth, then the e�ective kernel that we see is

a windowed version of the theoretical kernel.

Windowing has two distinct e�ects on  . The term at the origin is now �nite;  approaches the

AUC of the windowed PSF as we approach the origin. Next, windowing in spatial domain results in

convolution with a sinc function in the frequency domain; this results in the vertical and horizontal

spread of the MTF, especially in regions outside the butter�y structure in Figure 3.6(d).
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E�ect of axial sampling density and range. When the z-stack is uniformly sampled within some

range in the diopter space, the e�ect of sampling density follows the traditional trade-o�s characterized

by the Nyquist–Shannon sampling theorem [Shannon, 1949]; speci�cally, to avoid aliasing, this model

would only be able to handle scenes which are band-limited along depth as determined by the sampling

rate. The e�ect of the sampling range is to be interpreted as windowing of the ideal sampling of the

z-stack, which has been discussed in the previous paragraph.

3.3.3 Lateral and axial resolution

We are interested in expressions for the MTF as functions of d and 5I , respectively, corresponding to

characterizing the lateral and axial resolution. To get such expressions, we start with the modulus of

 % (d,k, 5I) and integrate/marginalize the variables that we want to exclude. Such a marginalization

assumes that all frequency components are equally important, and can be interpreted as an average

over an ensemble of 2D signals, without any priors.

Lateral resolution. For lateral resolution, we are interested in characterizing the MTF, purely as a

function of d , which we can obtain by summing over the modulus of  over 5I andk .

MTF(d) = 1
4c2d3

∫
5I

∫
k

����Aℓ (
− 5I
d
,k

)����3 5I3k =
1
d2

[
1
4c2

∫
5I

∫
k

|Aℓ (5I,k ) |3 5I3k
]

︸                                ︷︷                                ︸
constant that is mask dependent

. (3.22)

This suggests that the lateral resolution for di�erent masks is similar, except for a constant. Further,

it also suggest that the tail of MTF(d) decays as 1/d2; therefore, visualizing MTF(d) in a log-log plot

should produce linear pro�les with a slope of -2. We verify this in Figure 3.7 for the masks shown earlier

in Figure 3.6.

Axial resolution. To obtain MTF as a function of 5I , we can marginalize the modulus of  (5G , 5~, 5I)

over 5G and 5~ , or equivalently, d andk .

MTF(5I) =
1
4c2

∫
d

∫
k

1
d3

����Aℓ (
− 5I
d
,k

)���� d3d3k . (3.23)

Suppose we de�ne ℎ(5I) as

ℎ(5I) =
1
4c2

∫
k

|Aℓ (5I,k ) |3k,

then

MTF(5I) =
∫
d

1
d2
ℎ

(
5I

d

)
3d =

1
5I

[∫
g

ℎ (g) 3g
]

︸         ︷︷         ︸
constant that is mask dependent

. (3.24)
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Figure 3.7: Lateral and axial MTF of di�erent masks.. The lateral and axial MTF of di�erent masks

are numerically obtained via FFT of the 3D kernel. The slopes of the lines agree with that of d−2 and 5 −1I
respectively, as shown in black dotted lines. This validates the analytical expression in equations (3.22)

and (3.24).

This suggests that the axial MTF has a tail decay of 1/5I , or linear with a slope of −1 in a log-log plot.

We con�rm this using simulations in Figure 3.7.

Remarks. The expressions on the slices of the MTF in equations (3.22) and (3.24) are obtained by inte-

grating out the variables that are not of immediate interest. Implicitly, this assumes that all frequencies

are equally important; in reality, natural scenes have their energy concentrating on low-frequencies

and hence, the plots have to be interpreted with this distinction in mind. This also explains why the

open aperture appears at an higher value in the MTF(d) plot; Figure 3.6(d) shows that the open aperture

samples higher depth frequencies compared to the pinhole so de-emphasizing the high frequencies – to

match their distribution in natural scenes – will likely result in an aperture MTF curve that is worse o�

as compared to the pinhole.

3.3.4 Reduction to the static sensor scenario

The analysis of the MTF of the z-stacked measurements have immediate consequences for traditional

lensless cameras, such as FlatCam [Asif et al., 2016], FlatScope [Adams et al., 2017], and SweepCam [Hua

et al., 2020], that rely on a single (or multiple) image measurements without sensor movement; after all,

we can simply choose to retain a single image in the z-stack, which would correspond to a static sensor

scenario. The measurement operator associated with a static sensor can be written as a sub-sampling
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operator applied to that of the z-stacked measurements; speci�cally, if we denote the measurement

operators associated with the z-stacked sensor and the static sensor as Azcam and Astatic, respectively,

then they are related as follows:

Astatic = SI ◦ Azcam,

where SI is the subsampling operator along the I-axis that selects the measurements corresponding to

the sensor-to-mask distance associated with the static case. As a consequence, the operator in the static

scenario Astatic inherits all the disadvantages of the z-stacked operator Azcam; for example, the null

space of the latter is necessarily a subset of the former. In the case of SweepCam, the mask is translated

laterally (i.e., along G − ~); each of those masks is associated with a di�erent z-stacked system. So the

nulls in the MTF in one mask can potentially be alleviated by its translation.

Remarks. The predictions we make are in the reparameterized space, where the spatial coordinates

are represented as tangent of angles subtended and the axial coordinates are in reciprocal of depth.

These transformed coordinates have natural intepretability in the context of imaging. In traditional

lens-based camera, spatial coordinates on the sensor are linear in the tangent of the angle subtended by

scene points. Similarly, the size of the defocus blur, with or without a lens, is linear in the reciprocal

of depth. Thus, an analysis in the transformed space is meaningful once we evaluated it through this

perspective.

3.4 Simulation Results

Setup. Since the discussion above was heavily based on a volumetric representation of the scene, we

aim to test the proposed method in realistic situations that involve light fall-o�, occlusion, foreshort-

ening, and sensor angular response; such e�ects can be signi�cant for scenes very close to the mask.

Speci�cally, we render the simulated measurements by ray-tracing a mesh-based scene so that it cap-

tures the above mentioned e�ects. However, the renderer does not model di�raction and other wave

e�ects. Details of the renderer and its comparison to the volumetric modeling can be found in supple-

mentary material. Additionally, we add Gaussian noise based on the dynamic range of a typical machine

vision sensor (71.95 dB). For z-stacking, we translate a 13.13mm×8.75mm sensor from 5mm to 10mm

to the mask, in 64 steps linear in 1
3

, and render a measurement at each location. The dimension of

our measurements is given by 114 × 171 × 64. The dimension of reconstructed volume is the same.

Each of the reconstructions were �nished within 5 minutes. For single measurement results, we use the

measurement captured at the furthest location in the z-stack.
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Figure 3.8: Di�erent masks and their reconstructions. The 3D kernel and reconstructed volumes

are all plotted in re-parameterized space as given in Section 3.2.2. The scene consists of �ve points

aligned on a diagonal line; the ground truth location of points are overlayed with green asterisks in

the reconstructions. In single or z-stack measurements, shown in column (b) to (e), mask pattern with

larger spread result in higher depth resolution – mseq-2,8 reconstruct points as points instead of line

streaks in the other masks under ℓ2 regularization. While a sparse prior (ℓ1) results in sparse points

in the reconstruction, they can be located at the wrong depth for masks with poor depth resolution

(pinhole); thus it is essential to characterize the cameras’ resolution theoretically in addition to empirical

observations. The sweepcam [Hua et al., 2020] results, shown in column (f), capture the scene with

translated masks, which alleviates the nulls in the MTF.

Performance of di�erent masks. We experimentally validate our resolution analysis of mask pat-

terns in Figure 3.8. We image a scene with di�erent mask patterns under the proposed z-stacking. The

scene contains �ve points of diameter 200 µm evenly spaced on a line between point (-2mm, 2mm, 5mm)

and (4mm, -4mm, 10mm). Figure 3.8 visualizes the 3D kernels for a set of masks, and reconstructions

using regularized least squares (ℓ2) and a sparse ℓ1 prior (with FISTA [Beck and Teboulle, 2009] ). The re-

sults re�ect the observations made in Section 3.3.3 about the spatial and axial resolution of the masks. As

expected, pinhole has almost no depth resolution, and the result re�ects this by producing long streaks

instead of points. Stereo masks have better depth resolution, and results in shorter streaks in the ℓ1

reconstructions. Note the stereo mask ℓ2 regularization results show long streaks; this suggests typical
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stereo systems observe depth with strong dependence on sparsity of the scene. The longer M-sequence

mask has the best depth resolution, and results in sparse points.

Additionally, our prediction in Section 3.3.4 states that using translated masks in SweepCam [Hua

et al., 2020] alleviates nulls in the MTF of one mask by translation, and our numerical results from

column (f) validates the prediction as we observe similar resolution from all four masks, though we

observe the SweepCam-fast results are blurrier than mseq-2,8 single ℓ2 results, because SweepCam-fast

algorithm trades o� accurate modeling for speed.

Finally, It is also instructive to note from column (c) and (e) that using a sparse prior always produces

isolated points in the volume; however, for the masks with poor depth resolution, the location of those

points are incorrectly reconstructed. This highlights the importance of theoretical analysis, as the use

of strong priors makes it di�cult to analyze the performance of lensless cameras.

3.5 Discussion

This chapter provides a theoretical characterization of the performance of lensless images, in terms

of spatio-axial resolution, and the central role played by the mask. Our primary result relies on the

construction of a measurement operator that is convolutional; this involves two steps: using z-stacked

measurements to obtain a 3D space of measurements, and a reparameterization of the space. This con-

struction connects the MTF of the system to a simple transformation of the mask. More importantly,

it makes a concrete set of predictions on the achievable spatial and axial resolutions: a butter�y struc-

ture that limits the depth resolution based on sensor pitch and the mask extend, and tail decays on

the marginal MTFs over spatial and axial frequencies. Finally, we verify these predictions on a set of

commonly-used masks. We envision the impact of this work and its relevance to the imaging community

to be two-fold. First, it analyzes spatial and axial resolutions for prior art in lensless imaging [Adams

et al., 2017, Asif, 2018, Hua et al., 2020, Zheng and Asif, 2020, Zheng et al., 2021]. Second, it provides a

pathway for the design of lensless cameras, in mask design and in acquiring z-stacked measurements,

which we detail in the following paragraphs.

Design of masks. The theory developed in this work, especially equations (3.17) and (3.18), provide

a crisp connection between the mask used and the MTF of the resulting system; speci�cally, that the

MTF is a resampling of the Radon transform of the Laplacian of the mask used. Radon transforms

are invertible, and basic Fourier analysis suggests that the Laplacian of the mask speci�es the mask

completely, except for the DC o�set and slope. This suggests that mask design can be formulated as an
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optimization problem in Aℓ under some desired cost function.

Acquiring z-stacked measurements. The analysis in this chapter also raises the intriguing possi-

bility of building lensless cameras with axial sensor motion, so as to provide a richer space of measure-

ments. Perhaps, the most signi�cant among these stems from the challenges in acquiring z-stack images.

Axial motion of a sensor invariably results in lateral motion as well, which needs to be accounted for, via

careful calibration. Axial motion can potentially be in con�ict with the primary motivation of lensless

cameras, namely the need for imaging with a compact footprint. Yet, such mechanisms for translation

are routinely used in cellphone lenses for autofocusing, and so there is the possibility that such a feature

can be implemented for the sensor as well. Finally, the resampling of sensor measurements required to

enable the convolutional model is non-uniform and, hence, results in a loss in sensor resolution.



4Sweepcam – Depth-aware Lensless Imaging using

Programmable Masks

This chapter presents a hardware upgrade and its associated fast reconstruction algorithm for depth-

aware lensless imaging.

As discussed in Chapter 2, one approach to simplify the non-linear reconstruction problem of 3D

lensless imaging is to represent the scene as an intensity function over a 3D volume, instead of tex-

ture and depth map; this “lifting” of the unknown variables results in a linear inverse problem [Adams

et al., 2017, Antipa et al., 2018]. This approach is especially promising given the extensive studies on

linear inverse problem and it bene�ts from a rich suite of tools for analyzing and solving them. Unfor-

tunately, for scenes with dense textures, spread over a large depth range, the resulting inverse problem

is severely under-determined, i.e., the number of unknowns vastly outnumbers that of measurements.

The dimensionality gap between number of unknowns and measurements can be resolved by obtaining

more measurements, which this chapter facilitates via the use of a programmable amplitude mask.

We propose the use of programmable masks to improve the conditioning of the image and depth

estimation problem (see Figure 4.1). Borrowing ideas from light �eld cameras, we translate a single

mask pattern which in e�ect provides with us with coded images from novel viewpoints. We analyze the

resulting system and show that the main operations underlying reconstruction are identical to producing

a coded focus stack of the scene. A volumetric texture of the scene is subsequently obtained using simple

deconvolution techniques.

Contributions. This section proposes SweepCam which advances lensless imaging via the use of pro-

grammable masks. Our main contributions are as follows.

• Choice of multiple mask patterns with e�cient forward model. Exploiting ideas in plane-sweep stereo

[Collins, 1996], we propose to regularize the depth recovery using measurements made from a trans-

lating mask and processed by a computational focusing operator.
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Figure 4.1: Lensless focal stack. Images reconstructed at three di�erent depths using our proposed

SweepCam technique, which is a lensless camera with a programmable mask.

• Fast reconstruction via the focusing operator. We show that a computationally intensive multi-image

recovery procedure can be decoupled into a collection of single image deconvolutions. This provides

signi�cant computational bene�ts especially when the scene has content on a large number of depths.

• Validation using an experimental prototype. On a lab prototype, we demonstrate that programmability

of the mask enhances the quality of image reconstructions, especially when compared to state-of-the-

art lensless imagers and their associated algorithms.

Limitations. The improvements provided by SweepCam come at the cost of taking multiple measure-

ments and, hence, a loss in the time resolution of the device. Further, our implementation su�ers from

the poor contrast of the device that we use to implement the programmable masks.

4.1 Prior Work

4.1.1 Lensless Imaging with Static Masks

This work builds upon the core ideas from previous lensless imagers, especially FlatCam [Asif et al.,

2016] and Di�userCam [Antipa et al., 2018]. FlatCam covers a bare sensor with a coded mask printed

on �lm and signi�cantly reduces the thickness of imagers. There has been subsequent work in ex-

tending FlatCam for applications in face-detection [Tan et al., 2018], privacy protection[Nguyen Canh

and Nagahara, 2019], and �uorescent microscopy [Adams et al., 2017]. More recent work has focused

on mitigating inadequacies of the calibration and reconstruction procedure by including a deep neural

network in the reconstruction pipeline [Khan et al., 2019].

Di�userCam places a di�user that produces a caustic pattern on the sensor, and establishes the for-

ward model as 3D convolution with cropping. We adopt the same forward model as Di�userCam. How-

ever, reconstructing a 3D volume from a single measurement is severely under-determined, and only
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possible under a sparse signal prior. To avoid such priors, we focus on obtaining more measurements

so that reconstruction of 3D volume from lensless measurements is viable even for densely occupied

scenes.

Another line of work [Asif, 2018, Zheng and Asif, 2020] jointly estimates depth and texture of the

scene from one or more FlatCam measurements. Each scene point is assumed to be opaque, resulting in a

model that suggests that there is only one scene point along each ray. Simulations show that, under this

assumption, rough depth of the scene points can be recovered by a greedy depth-pursuit algorithm [Asif,

2018] and then re�ned by an alternating descent algorithm [Zheng and Asif, 2020]. It is also shown that,

when the scene is imaged from multiple view points, the reconstruction quality is better than that from

a single view point. Instead of measuring from multiple sensors as in [Asif, 2018], we propose to image

with a shifted mask pattern on top of a single sensor, which e�ectively provides multiple viewpoints,

but results in a simpler reconstruction algorithm.

4.1.2 Lensless Imaging with a Programmable Mask

Zomet and Nayar [2006] use multiple liquid crystal displays (LCDs) as a programmable aperture whose

�eld-of-view can be changed without mechanical movements. While Zomet and Nayar implemented an

“�exible pinhole" to form images of regions of interest on image sensor, the proposed design allows a

more general programmable coded aperture, and reconstructs the scene computationally, which addi-

tionally allows estimation of depth.

4.1.3 Multiple Capture Imagers

The ideas in this chapter are closely related to prior work on multiple-capture imagers proposed in

the context of compressive sensing; example include the single pixel camera [Duarte et al., 2008], the

CASSI system [Kittle et al., 2010, Wagadarikar et al., 2008] for hyperspectral imaging, and CACTI imager

[Llull et al., 2013] for high-speed imaging. These systems are similar to SweepCam in that they capture

multiple coded images of a scene; however, in a broad sense, our system is di�erent primarily because

of its lensless nature, which leads to a di�erent set of challenges when it comes to implementation and

reconstruction.

4.2 Image Formation Model with Programmable Mask

We review the basic image formation models underlying lensless imaging systems, building up to the

image formation model for a lensless imager with programmable amplitude mask. For brevity, the equa-
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tions are presented in two dimensions on the G −I plane, where I axis is perpendicular to the sensor; all

conclusions generalize trivially to the three-dimensional case. Note this chapter uses di�erent notation

for albedo, mask attenutation function, and measurements, but describes the same sum of convolution

model as in Section 2.1.1.

Consider a lensless imager consisting of a sensor and a programmable amplitude mask, placed at

a distance 3 in front of the sensor, as illustrated in Figure 4.2. We will �rst derive a simpli�ed image

formation model under a single static amplitude mask for a scene con�ned to a single plane (parallel to

the sensor) and subsequently extend the model to scenes on multiple depths as well as programmable

masks. We also assume that the origin of the coordinate axes is at the center of the amplitude mask.

4.2.1 Scene on a Single Depth Plane

If the mask attenuation function is given as 0(G), then a point light source with e�ective brightness

C0 (G0) placed at (G0, I0) produces a image measurement that is a scaled version of its PSF,

1 (G) = C0 (G0) 0
(
G + (G0 − G)

3

I0 + 3

)
. (4.1)

This expression is true under a small angle approximation, speci�cally, that di�erent pixels on the sensor

measure the same intensity from the point light source.

We de�ne a textured scene as a collection of point light sources, each inducing a measurement

according to equation (4.1). When the scene is constrained to a single depth at I = I0, the intensity

formed at a sensor pixel G can be written as

1 (G) =
∫
G0

C0 (G0)0
(
G + G0 − G

I0 + 3
3

)
3G0. (4.2)

We can simplify this expression in equation (4.2) to obtain the convolution model:

1 (G) = C̃0 (G) ∗ :̃0 (G), (4.3)

where

C̃0 (G) =
I0

3
C0

(
−I0
3
G

)
and :̃0 (G) = 0

(
I0

I0 + 3
G

)
.

The convolutional model uses a reparameterization of the scene and the mask that is depth dependent.

While we ignored e�ects of di�raction in modeling of PSF in equation (4.1), in our experiments, we

directly measure the kernel :̃ (·) which includes the e�ects of di�raction as shown in Figure 4.3(a). More

experiments verifying the convolutional model can be found in our supplementary material.

Upon discretization, the image formation model in (4.3) can be written as

b =  I0,0 t0, (4.4)
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Figure 4.2: Schematic of a lensless imager.. A mask is placed at a distance 3 from the sensor. Ray

from point (G0, I0) reaches sensor pixel (G,−3) after crossing the mask at (G + G0−G
I0+3 3).

where b and t0 are the vectorized image measurements and scene points texture, respectively, and  I0,0

is a Toeplitz matrix, representing a linear convolution operator, associated with the mask 0(·) and the

scene depth I0.

Image recovery. Given the measurements b, the depth I0 and the mask 0(·), or equivalently the Toeplitz

matrix  I0,0 , we can reconstruct t0 by solving the linear inverse problem in equation (4.4). Classic mask

designs based on URA [Fenimore and Cannon, 1978], MURA [Gottesman and Fenimore, 1989] and M-

sequences [Golomb, 1967] are designed to provide an inverse that is convolutional, at least as an approx-

imation1. For the approach in this chapter, we use a small-sized mask pattern that is an outer product

of two M-sequences, and it allows us to solve the system of equations using fast deconvolutional tech-

niques including, for example, Wiener deconvolution. For the sake of simpli�ed exposition, we assume

the existance of a deconvolutional operator  −1I0,0 that can invert the operator  I0,0 .

4.2.2 Scene on Multiple Depth Planes

The image formation model in (4.3) and (4.4) is easily extended to a non-planar scene if we discretize

the scene depths as well as assume that the e�ects of occlusion are minimal. Given a scene with content

of � depth planes with depths {Iℓ , ℓ = 1, . . . , �} and textures {tℓ , ℓ = 1, . . . , �}, the (discretized) image
1The nature of this approximation comes from replacing linear convolution with circular convolution, which is acceptable

when the sensor area is larger than the mask.



42 CHAPTER 4. SWEEPCAM – DEPTH-AWARE LENSLESS IMAGING USING PROGRAMMABLE MASKS

formation can be written as

b =

�∑
ℓ=1

 Iℓ ,0 tℓ =
[
 I1,0 · · ·  I� ,0

] 
t1
.
.
.

t�

 . (4.5)

Image recovery. As before, solving for the unknown scene texture at each depth, given the single image

measurement b, is a linear inverse problem. However, this system can be severely under-determined for

large number of depths. One approach regularizes the inverse problem with signal priors by solving an

optimization problem

min
t1,...,t�

‖b −
�∑
ℓ=1

 Iℓ ,0tℓ ‖2 + d (t1, . . . , t� ), (4.6)

where d (·) is a regularizing penalty function. For example, in Di�userCam, an ℓ1-penalty is used as

the prior to promote sparsity in the scene textures. Solving such optimization problems require joint

estimation of a large number of unknowns, and is computationally intensive even when we use e�cient

implementations for  I,0 .

A di�erent approach is to �rst solve the texture at each depth in isolation, assuming that the con-

tributions from the rest are absorbed into noise, and then in post-processing, reason about which pixels

belong to which depths. That is, for ℓ ∈ {1, . . . , �}, we solve for

t̂ℓ = argmin
tℓ
‖b −  Iℓ ,0tℓ ‖2 + d (tℓ ) (4.7)

and use contrast-based cues to clean up the reconstructions. For example, suppose that a deconvolutional

kernel for  I1,0 existed, then an estimate for C1 can be obtained as:

t̂1 =  −1I1,0b = t1 +
�∑
ℓ=2

 −1I1,0 Iℓ ,0tℓ

(cross-plane interference)

.

We observe that the reconstruction can su�er from interference across planes, and we can hope to

recover high quality reconstructions only if copies of the mask0 under scaling are su�ciently incoherent

with each other, or equivalently,  −1I1,0 Iℓ ,0 has very small spectral norm. Unfortunately, this is generally

not true, as shown in Figure 4.3, especially since depth planes in close proximity will likely have very

similar PSFs. Further, the artifacts arising out of this interference are generally sharp, which makes

subsequent post-processing non-trivial. We aim to improve the conditioning of the imaging system by

acquiring multiple images using a programmable mask.
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4.2.3 Programmable Masks

Suppose that we collect # measurements b= with mask 0= for = = 1, . . . , # , then each measurement is

b= =

�∑
ℓ=1

 Iℓ ,0= tℓ . (4.8)

We can now formulate a single linear system
b1
.
.
.

b#


=


 I1,01 · · ·  I� ,01
.
.
.

. . .
.
.
.

 I1,0# · · ·  I� ,0#




t1
.
.
.

t�


. (4.9)

We can write the image formation model in (4.16) as

b = Kt,

and there are numerous approaches to recovering t = [t1, · · · , t� ]>. There are two important consider-

ations that determine the e�cacy of using programmable masks: the choice of the mask patterns and

the computational complexity of the recovery algorithm.

Choice of mask patterns. The choice of mask patterns 0= (G) is extremely important and has important

implications in the conditioning of the matrix K. In the case of static masks, popular choices include

codes based on URA, MURA, Hadamard and M-Sequences — all of which have many desirable properties.

In contrast, the design of similar mask patterns for multi-image recovery is relatively unexplored.

Computational complexity. A second consideration is the computational complexity of the recovery pro-

cedure, which can be e�ectively characterized by the amount of time required to implement the operator

K>K. The operatorK is comprised of operators Iℓ ,0= which are all convolutional operators; the associa-

tivity property of convolutions can be invoked to reduced the total number of computations. Therefore,

we can implementK>Kwith min(2#�,�2) convolutional operators, which can be prohibitive for large

values of # and � .

In the next section, we describe a simple technique that addresses both of these concerns.

4.3 SweepCam

We now provide a simple design for mask patterns that leads to a computationally e�cient solution to

the inverse problem. Speci�cally, we emulate a camera array using the programmability of the mask and

use techniques inspired from plane-sweep stereo to simplify the complexity of the recovery procedure.

We refer to this technique as SweepCam.
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4.3.1 Mask Design for Fast Computation of K>K

Digging deeper into equation (4.16), we can derive the expression for the Gram matrix K>K as

∑
=  
>
I1,0= I1,0= · · · · · · · · · ∑

=  
>
I1,0= I� ,0=

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.∑
=  
>
I� ,0=

 I1,0= · · · · · · · · · ∑
=  
>
I� ,0=

 I� ,0=


.

This Gram matrix has a block structure with diagonal blocks given as∑
=

 >Iℓ ,0= Iℓ ,0= ,

and o�-diagonal blocks given as ∑
=

 >Iℓ ,0= IA ,0= , for ℓ ≠ A .

We make two observations that motivate the choice of the mask patterns that we use. First, since  Iℓ ,0=
is a convolutional operator for some kernel, say :ℓ , the operator >Iℓ ,0= Iℓ ,0= is a convolution with the au-

tocorrelation function of :ℓ . It is well-known that autocorrelations are invariant to translations. Hence,

if we had a well-designed mask 00 that has desirable properties for the single mask case, including robust

inverses and fast implementations, we can reuse it simply by translating it. In this case, the diagonal

block becomes # multiplied by convolution with the autocorrelation function:

# >Iℓ ,00 Iℓ ,00 .

In essence, it enriches the space of measurements we can obtain without having to redesign the masks.

Second, as we will show in this section, translating the mask serves to decouple contributions from

di�erent depths. This forms the motivation for our use of a translating mask.

4.3.2 Translating Masks

SweepCam relies on taking multiple image measurements by translating the mask pattern, i.e., the dis-

played mask patterns are shifted versions of each other. Consider imaging with mask functions 0= for

= ∈ {1, . . . , # }, shifted in steps of Δ, where

0= (G) = 00 (G − =Δ) = 0(G) ∗ X (G − =Δ). (4.10)

Translating the mask patterns e�ectively changes the camera’s viewpoint; this leads to a depth-

dependent translation of the measurements that is referred to as disparity, following standard conven-

tion from stereo. Speci�cally, for scene points at depth I, the measurement corresponding to mask 0= (G)
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translate by =aI , where the disparity aI can be computed from equation (4.10) ,

aI = Δ(1 + 3/I). (4.11)

Thus, we can selectively focus on measurements from a single known depth if we can align the con-

tributions from this depth plane by undoing this translation. Such a focusing operation constructively

adds measurements from a single plane while blurring out those from other depth planes.

4.3.3 Focusing

For simplicity in exposition, we �rst describe the concept in continuous domain. Given image measure-

ments {11 (G), . . . , 1# (G)} taken with translated mask pattern 0, and a focus disparity parameter a , the

focused measurement corresponding to this disparity a is given as

5a (G) =
1
#

#∑
==1

1= (G + =a). (4.12)

The focusing operation aligns the contribution from a speci�c depth while blurring out those from

other depths. Conceptually, this is similar to focus sweep operation used in plane-sweep stereo and

multi-camera arrays. An example of focusing operation is shown in Figure 4.4.

To better understand the e�ect of the focusing operator, suppose that the scene is restricted to a

single depth I = I0. Starting from equation (4.3), we can derive a simpli�ed expression for the focused

image. The captured image,

1= (G) = C̃0 (G) ∗ 0=
(
I0

I0 + 3
G

)
= C̃0 (G) ∗ 0

(
I0

I0 + 3
G

)
∗ X

(
I0

I0 + 3
G − =Δ

)
∝ C̃0 (G) ∗ :̃0 (G) ∗ X

(
G − =aI0

)
.

After translation by =a becomes

1= (G + =a) ∝ C̃0 (G) ∗ :̃0 (G) ∗ X
(
G − =ΔaI0 + =a

)
.

Thus, the focused image is �ltered by VI0 (G),

5a (G) ∝ C̃0 (G) ∗ :̃0 (G) ∗ VI0 (G),

where

VI0 (G) =
1
#

#∑
==1

X
(
G − =

(
aI0 − a

) )
. (4.13)

When a = aI0 then the shift applied to the image measurements cancels out that of the mask pattern,

V (G) = X (G). In contrast, when a ≠ aI0 , then we �lter the measurement with the �lter V (G) that

progressively suppresses more frequencies as # increases.
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In the discretized setting, the focusing operation can be expressed easily if we introduce a shift

operator Sa which translates the input by a pixels, where a is real valued. With some basic algebraic

manipulation we can show that

b= =

�∑
ℓ=1
S=aIℓ Iℓ ,0 tℓ . (4.14)

Hence, the focused measurements for some focus disparity a0 can be written as

fa0 =
1
#

#∑
==1
S−=a0b= =

1
#

#∑
==1
S−=a0

�∑
ℓ=1
S=aIℓ  Iℓ ,0 tℓ =

�∑
ℓ=1

 Iℓ ,0

(
1
#

#∑
==1
S=aIℓ −=a0

)
tℓ (4.15)

The last step in the expression above is a consequence of both andS being convolutions, and therefore

commute with each other. Hence, we observe that the focused measurement is identical to the single

image, multi-depth model of equation (4.5) with the key di�erence that the texture at depth Iℓ is now

blurred by multiple translations:

t∗ℓ =

(
1
#

#∑
==1
S=aIℓ −=a0

)
tℓ .

Hence, while the depth I0 corresponding to the disparity a0 observes no blurring, other depths are

progressively blurred depending on the values of # , Δ and a0.

4.3.4 Reconstruction from Full Measurements

Consider a scene {C1, . . . , C� } consisting of depth planes {I1, . . . , I� }, with measurements {11, . . . , 1# }

obtained from masks translated in steps of Δ. We can directly solve equation (4.16), which we refer to

later as ‘SweepCam-full’ reconstruction, with an e�cient implementation of K>K in �2 convolutions.

The rest of this section describes the algorithm for ‘SweepCam-full’ reconstruction.

We model the forward process as a sum of convolutions,

b1

...

b#


=



 I1,01 · · ·  I� ,01

...
. . .

...

 I1,0# · · ·  I� ,0#





t1

...

t�


≡ SK



t1

...

t�


≡ A



t1

...

t�


, (4.16)

where K is a block-diagonal matrix containing � × � blocks, and the (3,3) block e�ectively convolves

with PSF at depth I3 ; S is a matrix containing # × � blocks, and the block (=,3) e�ectively shifts by

=aI3 (i.e., convolves with X (G − =aI3 )).

Let us consider the following least squares problem with an ℓ2-norm regularization term:

; (t) = ‖At − b‖22 +
_

2
‖t‖22. (4.17)
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We can write the solution in the closed form as

t = (A)A)−1G)b, (4.18)

which can be computed using an iterative method like conjugate gradients by supplying the operator

G)G.

Fast implementation of convolutions. To achieve a well-determined system, the number of mea-

surements # should be equal to or greater than the number of depth planes � . Applying G and

G) separately requires 2#� convolutions, while applying G)G directly requires �2 convolutions and

2#� > �2. We implement the (8, 9)-th block of G)G as a convolution in the following manner:

(A)A)8 9 =
∑
?

(A) )8? (A)? 9 =
#∑
?=1
(A?8 )) (G)? 9 =

#∑
?=1

K)88S
)
?8S? 9K9 9

= K)88K9 9

#∑
?=1

S)?8S? 9 = K)88K9 9

#∑
?=1
S−?aI8S?aI9 = K)88K9 9

#∑
?=1
S? (aI9 −aI8 ) .

Thus we can implement (G)G)8 9 operator as a convolution with a kernel :8 9 . If the PSF at depth I8 , I 9

are 08 and 0 9 , respectively, then :8 9 is a kernel formed by cross-correlating 0 9 with 08 , and then summing

its copies translated by ? (aI 9 − aI8 ), for ? = 1, . . . , # .

4.3.5 Reconstruction from Focused Measurements

When # and Δ are designed well, the e�ect of the focusing operation is to make the focused image

measurement depend minimally on all depths, except one. This allows us to decouple the optimization

problem of joint texture recovery on � depths, and solve � deconvolution on individual depth planes

instead; this results in very fast recovery.

Without loss of generality, let’s consider the e�ect of focusing on the closest depth I1, with disparity

a1.

fa1 (G) =  I1,0t1 +
�∑
ℓ=2

 Iℓ ,0t
∗
ℓ .

If we had an inverse in the form of a deconvolution kernel  −1I1,0 , then we can obtain an estimate

t̂1 =  −1I1,0fa1 = t1 +
�∑
ℓ=2

 −1I1,0 Iℓ ,0t
∗
ℓ

(reduced interference)

. (4.19)

This decoupling of the inverse problems associated with each depth vastly reduces the complexity of

the recovery procedure. Figure 4.3 shows the e�ect of focusing on the interference terms.
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The suppression of interference due to focusing leads to an algorithm, that we call ‘SweepCam fast’,

where we implement  −1I; ,0 by Wiener deconvolution for its speed. We compute it as

t̂ℓ =  −1I; ,0faℓ = ℱ
−1

(
^∗ℓℱ

(
faℓ

)
|^ℓ |2ℱ

(
faℓ

)
+ _

)
, (4.20)

where ℱ (·) is the Fourier transform operator and ^ℓ is the Fourier transform of PSF at depth Iℓ .

Comparison between ‘full’ and ‘fast’. ‘SweepCam fast’ and ‘full’ o�er two distinct operating points.

While the ‘full’ algorithm provides a more accurate solution by accurately modeling the inter-plane

interference, it is computationally expensive. In Section 4.5.3, we consider a scene with 34 depth planes,

each with 600×960 spatial resolution. For this scene, the ‘full’ reconstruction algorithm requires solving a

problem with 19.58 million unknowns and further, each application of the forward operator or its adjoint

involves 342 = 1156 convolutional operators with fairly large (300 × 300 pixel) kernels. In contrast, the

‘fast’ algorithm deconvolves each depth plane in isolation, each of which only requires Fourier-domain

�ltering that is computationally light. This enables us to reconstruct otherwise infeasible volumes with

dense depth planes, at the cost of the model mis�t introduced by the interference term; however, the

use of the focusing operator suppresses this interference and permits a robust solution to the inverse

problem.

4.4 Properties of SweepCam

To �nd optimal hardware design and operating parameters for SweepCam, we analyze how various

parameters a�ect the properties of SweepCam.

4.4.1 Spatial Resolution

Let ? be the smallest feature size on the programmable mask, which is the pixel pitch of spatial light

modulator in our prototype. The continuous attenuation function can be written as

0(G) = V (G) ∗ rect (G/?) , (4.21)

with some discrete pattern V (G) = ∑
: V:X (G − ?:). Combining equations (4.3) and (4.21), we observe

that the e�ective PSF at depth I is given as

:̃I (G) = V
( I

I + 3 G
)
∗ rect

(
I

(I + 3)? G
)
. (4.22)

Thus, resolution at depth I is limited by the �rst null of ℱ
(
rect

(
I

(I+3)? G
))

, which occurs at the fre-

quency I/((I + 3)?). Spatial frequencies of the texture, at depth I, outside of this cuto� can not be
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reliably reconstructed. On our prototype with mask pitch ? = 36Dm and 3 = 1.31cm, the resolution limit

is 20.14 line pairs per millimeter (lp/mm) at a depth of 2cm, and 32.90 lp/mm at 1m.

4.4.2 E�ects of Δ and #

We next analyze the dependence of the reconstruction on the number of captured images # as well as

the amount of translation Δ, between each capture.

A closer examination of V (G) from equation (4.13) in the frequency domain shows the e�ect of

Δ and # at suppressing interference from other depth. Let us re-number translated patterns for = =

0,±1, . . . ,±(# − 1)/2 for odd # . Then, focusing with a disparity aI0 modi�es PSF of points at depth I by

VI (G) =
1
#

#−1
2∑

==−#−12

X

(
G − =Δ3

(
1
I0
− 1
I

))
.

The Fourier transform of VI (G),

βI (l) =
1
#
+
#−1
2∑
==1

cos
(
2cl=Δ3

(
1
I0
− 1
I

))
. (4.23)

To suppress contribution from depth I ≠ I0 when we focus on I0, |βI (l) | should be as small as possible

on the resolvable frequencies, de�ned by the imager’s spatial resolution at depth I0. When # → ∞,

VI (G) is an impulse train, whose Fourier transform is also an impulse train. When # is small, |βI (l) |

are # -slit di�raction patterns [Hecht, 2017]. The periodicity of |βI (l) | is determined by Δ, and decides

how many peaks �t in the resolvable frequency range.

However, in practice we are constrained by a limited frame budget for capturing a scene, as well as

a minimum translation de�ned by mask pitch, and a maximum baseline limited by mask size and the

angular response of the mask and sensor pixels. The practical question is how to factor Δ and # within

a limited baseline Δ# . Choosing a small # with large Δ results in secondary peaks that are outside the

resolvable frequencies; this provides e�ective separation of measurements from depth I and I0. Figure

4.5 shows an example of choosing di�erent # and Δ with narrow and wide baseline.

Simulation Setup We quantized depth from 5 scenes in the 2001 Middlebury stereo dataset

[Scharstein and Szeliski, 2002], so that generating many measurements with translated mask pattern

is fast and scalable for our simulation. The number of depth planes we used into are listed in Table 4.2,

with the threshold values for quantization. The furthest plane mapped mapped to 12.7 cm.

Additionally, we pad each scene with zero boundary so that contribution from each pixel in the scene

does not go out side sensor boundary with maximum amount of translation of ?mm on the mask in each
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Table 4.1: Depth quantization thresholds used on Middlebury dataset for simulations.

scene depth planes quantization thresholds

sawtooth 3 [0.15, 0.285]

bull 3 [.1437, .2440]

tsukuba 7
[0.3138, 0.3766, 0.4393,
0.5021, 0.6276, 0.6903]

poster 6 [.13735 .23 .3 .44 .51365]

venus 3 [.1453 .2549]

direction. The ratio of the scene occupying the �eld of view is calculated by

1 − 2?3 + I<8=
FI<8=

, (4.24)

where 3 is sensor to mask distance, I<8= is the depth of closest plane in the scene, and F is the width

of sensor in mm. The maximum amount of translation is calculate for all operating points in each plot,

with the maximum being 96 LCoS pixels, or equivalently ? = 3.45mm.

Photon noise and read noise are simulated in all the measurements with parameters taken from the

sensor used in our hardware experiments, Sony IMX174, with full well capacity � = 30500 electrons and

' = 71.7dB.

Performance with di�erent number of measurements We evaluate in simulation how image

quality of SweepCam changes over number of measurements # in Figure 4.6(a). We simulate photon

and read-out noise in our measurements using sensor parameters from our prototype. For each method,

we report the best structural similarity index (SSIM) score for the all-in-focus scene, generated by com-

pressing the 3D volume using the ground truth depth map, across di�erent regularization parameter

_ ∈ {0.001, 0.01, 0.1, 1, 10}.

Figure 4.6(a) compares the performance of SweepCam fast and full reconstructions against a static

mask; for fairness in comparisons, we repeat and average the static mask measurements so that the

number of measurements for all three methods is the same. The baseline is kept the same, at a spread

of 96 pixels, while the number of measurements is changed; further, the translation of masks is purely

horizontal. While averaging multiple static measurements mitigates noise, it does not change the SSIM
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score signi�cantly. SweepCam-full reconstruction is severely under-determined for single measurement,

but improves as number of measurements increases, and peaks when number of measurements match

number of unknown depth planes. SweepCam-fast reconstruction has increasing SSIM as the number

of measurements increase, since the interference between depth planes is reduced due to focusing.

Performance at di�erent baselines Figure 4.6(b) shows the performance of the ‘SweepCam-fast’

and ‘SweepCam-full’ reconstructions over di�erent baselines #Δ. We perform this by keeping the num-

ber of measurements �xed at # = 9 and varying Δ. As we expect, the reconstruction accuracy of both

techniques increase with increasing baseline.

Qualitative performance We also show qualitatively the reconstruction performance of the tech-

niques in Figure 4.6. Here we show SweepCam at three operating conditions: parameter A as a default

setting, parameter B as a setting with fewer measurements and parameter C with small baseline. We

also show the reconstruction from the static mask for comparison. With parameter B, the texture suf-

fers from the reconstruction artifacts, which is caused by the interference from other depth planes, as

discussed in Section 4.4.2. By comparing parameter A and C, we �nd that the small baseline also makes

it di�cult to reconstruct.

4.4.3 Arranging Aperture Locations in 2D

We also evaluate the e�ect of sweep pattern, i.e. the spatial arrangement of aperture locations on the

2D mask. We use two di�erent types of arrangements, 1D and 2D, where both of them use the same

number of measurements (e.g. 9×1 versus 3×3 for #=9) for the uniform step sweep patterns under the

same baseline of 96 pixels. Three scenes from the dataset of [Scharstein and Szeliski, 2002] are employed

for the evaluation.

The e�ect of spatial arrangement is scene dependent, as shown in Figure 4.7. For the Bull scene,

which has a vertical and horizontal edges in its depth variations, 2D arrangement performs better than

1D with su�cient number of measurements (# ≥ 25). This is because 2D arrangement can e�ectively

mitigate the cross-plane interference over edges with various angle, while 1D arrangement acquires only

the horizontal parallax. Although 1D arrangement scores better than 2D for Sawtooth and Tsukuba, this

is because these scenes have mainly vertical edges and thus fewer measurements of 2D for the horizontal

parallax causes the performance drops. In practice, we do not have prior knowledge on the scene,

therefore it is desirable to acquire 2D measurements with su�cient sampling along both directions.



52 CHAPTER 4. SWEEPCAM – DEPTH-AWARE LENSLESS IMAGING USING PROGRAMMABLE MASKS

4.4.4 Length of M-sequence

Length of M-sequence a�ect the area of aperture, which determines the light e�ciency of proposed cam-

era. Therefore, we evaluate how the length of M-sequence e�ects on the quality of reconstructed image

in simulation. We observe the performance transition by using various types of M-sequence, whose size

is 15, 31, 63, 127 and 255 respectively, while other experimental setups follow those of parameter A.

The measurement noise is applied considering the light e�ciency which is decided by the size of each

aperture size.

The result is shown in Fig. 4.8, with the averaged scores among 5 di�erent scenes, and errorbar

showing the standard deviation for each M-sequence length. We can observe that we have a peak on

SSIM score at the length of 63 and 127. The transition is not monotonic due to two con�icting nature on

the size of aperture. The longer the length of M-sequence is, the �atter the power spectrum becomes,

which is desirable for the reconstruction performance. But this theory holds when we can ignore the

e�ect of sensor boundary. In practice, too large an aperture leads to the performance deterioration since

a signi�cant portion of the measurement is cropped at the sensor boundary.

4.4.5 Depth Resolution

Depth of scene points are inferred from their di�erence in disparity in SweepCam measurements. The

change in disparity in sensor pixels as a result of change in depth can be computed from equation (4.11),

ma = 3Δ m(1/I). (4.25)

Since focusing provides explicit control over disparity, we observe that SweepCam, much like other

depth estimation techniques, resolves depth uniformly in diopters or in 1/I space. A uniform sampling

in diopters results in a depth tiling that is highly non-uniform, with a dense sampling of depth in close

proximity to the device and very sparse sampling at far away depths. Further, the resolution in diopters

is inversely proportional to the mask-to-depth distance3 . For example, when3 = 2mm, a focus disparity

in the range of [10,∞) pixels maps to a depth range I ∈ (0, 1] mm; in contrast, when 3 = 13.1mm, the

same focus disparity range maps to a depth range I ∈ (0, 10] mm.

4.4.6 Field of View

SweepCam aims to recover an image formed by a pinhole placed at the center of the mask, 3 away from

the sensor. The �eld of view of the reconstructed image is given by

2 tan−1 (B/(23)).
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Table 4.2: Average run time and quality comparison between reconstruction methods. The

experiments operate under param A of Figure 4.6

Reconstruction technique Run time in sec. SSIM

Static mask fast 2 0.46

SweepCam-fast 3 0.66

SweepCam-full 1635 0.67

On our prototype with3 = 1.31 cm and B = 0.71 cm, it sees about 30◦. In addition to the geometric spacing

of the mask and sensor, the �eld of view is also limited by the combined e�ects of mask attenuation and

sensor pixel angular response.

4.4.7 Computational Time

The average run time and average SSIM over all scenes operating with parameter A is shown in Table 4.2.

SweepCam fast reconstruction achieves better quality than static mask reconstruction with similar run

time, and runs two orders of magnitude faster than full volume reconstruction with a small loss in

quality. The reduced run time of the ‘fast’ algorithm can be traced to the decoupling of reconstruction

at di�erent depths.

4.4.8 Light E�ciency

Light e�ciency of SweepCam is primarily dependent on the size of the coded aperture. However, when

the aperture is too large, the convolutional model underlying SweepCam is violated due to the cropping

of the mask boundary by the �nite sensor. Hence, we trade-o� light e�ciency for the simplicity of

the convolution model and choose the largest aperture for which the model holds reliably. For the

experiments with our prototype, we use an aperture of size 2.27mm, within which half of the light is

blocked.

Performance under noise. We simulate di�erent sensor noise on SweepCam and static mask mea-

surements, and compare their performance quantitatively in Figure 4.9. We scale the maximum mea-

surement to di�erent percentage of full well capacity of the sensor, and reconstruct from measurements



54 CHAPTER 4. SWEEPCAM – DEPTH-AWARE LENSLESS IMAGING USING PROGRAMMABLE MASKS

with di�erent amount of noise. Photon noise and read noise are generated via

b̃ =
�

�

(
Poisson

(
�

�
b
)
+ Normal(0, f2)

)
, (4.26)

where � is full well capacity of the sensor, gain � is one over light level, and f = � × 10−'/20 with '

being the dynamic range. As shown in Figure 4.9, SweepCam methods are more robust to measurement

noise induced by low light level. SweepCam averages out non-idealities such as dust particles and dead

pixels in focused measurements, since light from each scene point is observed multiple times at di�erent

pixels.

4.4.9 Reconstruction with Di�erent Priors

Finally we show simulation results for di�erent reconstruction methods in Figure 4.10. We implemented

solutions for traditional least squares as well as canonical and wavelet sparsity by choosing appropriate

regularizing penalty function d (·) in equation (4.6). We do this for solving single depth planes sepa-

rately as well as for the whole volume simultaneously. For the least squares solutions, we use Wiener

deconvolution when working with individual depth planes and the conjugate gradient squared method

for volume reconstruction. Sparse priors, both in the canonical and wavelet bases, were implemented

using backtracking FISTA [Beck and Teboulle, 2009] with initialization at the zero solution. While more

sophisticated image prior result in sharper reconstructions, we observe that this comes at a cost of in-

creased runtime.

4.5 Experiments on Hardware Prototype

We conduct several experiments on hardware prototype to address details in implementation as well as

validate the proposed model.

Figure 4.13 shows the prototype hardware. It consists of two parts: a programmable amplitude mask

and a image sensor. The programmable amplitude mask consists of a Holoeye LC2012 spatial light

modulator sandwiched between two cross polarizers, one of which is placed on a precision rotation

stage to maximize contrast. Our prototype’s amplitude mask has a e�ective contrast ratio of 200:1, pixel

pitch of 36µm, and �ll factor of 58%. We use a Sony IMX174 RGB sensor in our prototype; its pixel pitch

is 5.86µm. We calibrate for angle between programmable mask and sensor, PSF at di�erent depth, and

distance between mask and sensor after building the prototype.
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Angle between programmable mask and Sensor. The focusing operator requires knowledge of

the direction of mask rows and columns in the sensor coordinate. We try to align the mask parallel

to the sensor, and estimate those directions via calibration. An LED is placed before the mask, and an

image is captured when each row of the mask is turned on to transmit light. The direction of mask rows

in sensor coordinate can be calculated from the lines detected in those images. The direction of mask

columns in sensor coordinate is similarly obtained.

Point spread function (PSF). We display a pattern on the mask and capture its PSF by moving a

point light source, an LED, on a rail for di�erent depth. Two more measurements were captured while

translated patterns were displayed, and those were used to produce a focused image, which is cropped

and used for reconstruction. We capture these images at six depths, and obtain the PSF at other depths

by scaling the image captured at the nearest depth.

Distance betweenmask and sensor. The distance between mask and sensor can be solved from the

scale of the PSF captured at di�erent depths. We calibrate by setting up a ruler rail on the z-axis of the

camera, moving a point light source at I1, . . . , I< on the rail, and recording the physical mask size ; as

well as corresponding PSF size ;1, . . . , ;< . The �rst measurement gives a equation from similar triangle,

I1 + I0
;

=
I1 + I0 + 3

;1
. (4.27)

The distance between mask and sensor, 3 ,and the distance from start of ruler to mask, I0, can be solved

from the equation formed from< similar triangles for< ≥ 2,

;1 − ; −;

...
...

;< − ; −;




I0

3


=



−(;1 − ;)I1
...

−(;< − ;)I<


(4.28)

The distance between mask and sensor a�ects observed disparity from the same depth. Calibration

on our prototype yields 1.31cm between mask and sensor; its disparity from depth is plotted in yellow

dashed line in Figure 4.11. Decreasing the distance will make the prototype more suitable for microscopic

applications.

Validation of convolutional model. We validate the convolutional model by placing an 8×8 LED in

1 inch array 5cm in front of the hardware prototype, displaying a mask pattern that is the outer product
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of M-sequence of length 31, and capturing a measurement while one LED is turned on for each LED in

the odd rows in the array. We annotate the center of PSF from LED in row 5 column 5, predict the center

of PSFs in other measurements based on disparity, and crop patches with those predicted centers. Those

patches are shown in Figure 4.12. The maximum value exceed 1 because cubic interpolation is used. The

di�erence between patches extracted from other measurements and that from LED in row 5 column 5

is shown on the bottom image in Figure 4.12. The small intensity in di�erence verify that translating a

point light source results in a measurement with corresponding translated PSF, and the convolutional

model holds.

Other details. Unless noted otherwise, all SweepCam results included are produced with 13 × 13

aperture locations; the aperture codes are outer product of M-sequence of length 63. The positive and

negative parts are separately captured and subtracted computationally. Static masks comparisons are

produced with the same number of captures but without changing the mask pattern.

4.5.1 Scenes with Two Depth Planes

We now show results on a real scene captured with our hardware prototype in Fig. 13. The scene consists

of two printed transparencies, in Figure 4.14(a). With static mask measurements, directly deconvolving

with PSFs at near and far planes as [Asif et al., 2016] results in artifacts in reconstruction, as shown in

Figure 4.14(b). Figure 4.14(c) shows the reconstruction of Asif [2018], a technique that estimates both the

depth map and textures jointly. We also report results of texture estimation using Asif [2018] when the

depth at each pixel is known; this is shown in Figure 4.14(d). Finally, Figure 4.14(e) shows the SweepCam

reconstructions, which provides the highest quality results with the least artifacts.

4.5.2 Resolution Chart on Two Planes

We image two printed USAF charts located at di�erent depth to demonstrate how SweepCam improves

of resolution of lensless images, shown in Figure 4.15. The near chart is 6.6cm away containing group

0 and 1; the far one is 28 cm away containing group from -2 to 1. The static mask reconstructions is

able to resolve 1.78 lp/mm on near chart and 0.44 lp/mm on far chart. The SweepCam full and fast

reconstructions resolve 2.24 lp/mm on near chart and 0.70 lp/mm on far chart, as they can distinguish

contributions from di�erent depth planes.
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4.5.3 Continuous Depth Scenes

We image objects with dense textures and continuously-varying depth pro�les, as shown in Figure 4.16.

The three objects correspond to a tilted plane, a corner of a box, and a cylinder. A focal stack with

600×960 spatial resolution and 3 channels and 34 depth planes is generated within 8 minutes with MAT-

LAB code running on 12 core CPU following the reconstruction described in equation (4.19) thanks to

the decoupling of depths provided by the SweepCam measurements. Without decoupling of depth, solv-

ing the full estimation problem would result in larger di�erence in reconstruction time than that shown

in Table 4.2 because of the increase in the number of depth planes. The full focal stacks can be found in

our supplementary video.

Additionally, Figure 4.16 shows depth map recovered by using depth-from-defocus algorithms on the

SweepCam reconstructions, in comparison to that from static measurement reconstructions.We assign

each pixel to the depth plane where the local contrast of textures reaches its maximum value as we sweep

across focus planes. Additionally, we show result from joint estimation of texture and depth [Asif, 2018]

with 10 depth planes in the depth range for comparison. The depth of the textured regions are correctly

resolved for SweepCam reconstructions because interference from other depths are suppressed at high

frequencies as explained in Section 4.3.3.

4.5.4 General Scenes

SweepCam is able to resolve general scenes with depth variation as shown in Figure 4.1 and 4.17. Fig-

ure 4.17 shows some challenging scenes that deviate from the convolutional model. While some artifacts

are produced by the model mismatch, the SweepCam reconstructions can still resolve content reasonably

at each depth.

4.6 Discussion

We present a method for distinguishing depth of scene points on lensless imagers using a translating

mask implemented using a programmable LCoS device.

Occlusion modeling. Consider the light cone that a scene point casts on the sensor. In the presence

of occlusions, each scene point will have a di�erent visibility to the sensor and this breaks the shift-

invariance of the convolution. One way of modeling occlusion is to introduce a visibility term [??]. We

could augment equation (4.2) in our forward model to be

1 (G) =
∫
G0

C0 (G0)E0 (G, G0)0
(
G + G0 − G

I0 + 3
3

)
3G0. (4.29)
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where E0 (G, G0) indicates visibility of scene point at (G0, I0) from sensor locationG . In addition to E0 (G, G0)

being high dimensional, solving for both C0 and E0 is no longer a linear problem. However, an important

bene�t of this modeling is that secondary e�ects that break the convolution model, including occlusion

and specularity, can be accounted for in the ensuing non-linear optimization. This would invariably

require iterative solutions and good initializations; perhaps SweepCam-fast results can serve as a good

initialization point since it is fast to compute.

Loss of time resolution. The main limitation of using programmable mask in lensless cameras arise

from the fact that multiple images need to be captured corresponding to multiple modulation pattern.

Capturing multiple images introduce limitations such as long capture time, low frame rate, and the

inability to deal with moving scenes; however, this is a well-studied problem with potential solutions

that can borrowed from research on multi-image fusion [Ma et al., 2017].

Limitations of the implementation. Our prototype implements the programmable amplitude mask

with a transmissive LCoS. Its limited contrast ratio results in a low SNR in captured measurements; its

large pixel pitch limits the spatial resolution and depth resolution of the imager as discussed in Sec-

tion 4.4. Previous compressive temporal imagers [Llull et al., 2013] have used translating mask for

time-modulation and use this to obtain improved time resolution. The proposed design can be similarly

implemented by piezo actuators for mechanically translation of a mask on �lm or glass, which comes

with higher contrast ratio, smaller minimum feature size, and �ner control over translation.
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(c) Interference kernels before focusing

(d) Interference kernels after focusing

Figure 4.3: Kernels and their evolution. Top row shows PSF for three di�erent depth. Second

row shows each PSF correlated with PSF from I0 = 6.8cm, as kernels underlying blocks in the Gram

matrix from Section 4.3.1. Third row shows applying deconvolution kernel for PSF at I0 on PSFs of

di�erent depth; the result is high frequency artifacts for directly applying deconvolution kernel on cap-

tured measurements. Last row shows applying deconvolution kernel for PSF at I0 on PSFs of focused

measurements; the artifacts are reduced by two orders of magnitude when reconstructing with focused

measurements. Focused measurements are generated as described in Section 4.3.3 with 13×13 aperture

locations across baseline area 0.78cm×0.78cm.
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Figure 4.4: Captured and focused measurements from our lab prototype for scene with content

on two planes. Focused measurements in both are generated with 13 captures with total baseline of

0.78cm.
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Figure 4.5: Reducing interference from other depth via focusing.. The left column shows transla-

tion patterns of the mask, while the right column shows of |βI (l) | in equation (4.23) for depth I = 32<

and aI0=42< . Row two and three show more e�ective of suppression of interference from I = 32< as num-

ber of translations increase. Imaging parameters such as mask pixel pitch are taken from our hardware

prototype, given in Section 4.5.
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Figure 4.6: Comparison of di�erent number of measurements and baseline on simulated data..

Top �gure quantitative evaluates reconstruction performance in terms of SSIM. (a) shows results for

di�erent number of measurements: increasing number of static measurements mitigates noise in the

measurement but results in little changes in SSIM. (b) shows results for di�erent baseline: small base-

line degrades performance. Bottom images shows one of the reconstructed all-in-focus images at three

operating points noted in the top plots.
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Sawtooth Bull Tsukuba

Figure 4.7: Reconstruction quality of SweepCam with 1D and 2D sweep pattern. Top row

shows the depth maps of scenes, with their texture in insets.Bottom row shows the transition of SSIM

for each scene. E�ects of di�erent sweep patterns are scene dependent.

Figure 4.8: Image quality of SweepCam over di�erent length of M-sequence.
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Figure 4.9: Image quality with varying light levels. We simulate light levels in terms of the fraction

of the full well capacity at the brightest pixel on the sensor. Shot noise and read noise are simulated with

sensor full well capacity and dynamic range for the Sony IMX174 sensor. We observe that SweepCam

fast achieves better performance under noisy conditions.
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(a) static mask (b) SweepCam-fast (c) plane + wavelet ℓ1

(d) SweepCam-full (e) volume + ℓ1 (f) volume + wavelet ℓ1

Figure 4.10: Comparison of reconstructing with di�erent image priors. "Tsukuba" scene from

Middlebury dataset (ground truth shown in Figure 4.6) is imaged at "param A" described in Figure 4.6.

Here we show results of reconstruction using di�erent image priors. Images on the top row are recon-

structed at each depth plane separately following equation (4.7): using static mask measurements with

ℓ2 norm squared, SweepCam measurements with ℓ2 norm squared, and SweepCam measurements with

ℓ1 norm of wavelet coe�cients, respectively. Images on the bottom row are reconstructed from all depth

planes in the volume from SweepCam measurements following (4.6), using ℓ2 norm squared, ℓ1 norm, ℓ1

norm of wavelet coe�cients on each image plane as priors, respectively. As shown, the SweepCam-fast

algorithm achieves reasonable quality while it runs signi�cantly faster than the other algorithms using

more sophisticated priors.
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Figure 4.11: Scene point depth v.s. disparity for di�erent distance 3 . The vertical arrows indicate

range of depth corresponding to 1 pixel change in disparity. Note larger 3 results in an larger range of

indistinguishable depth, and close depth has smaller range of indistinguishable depth.
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Figure 4.12: Measurements from an LED array, aligned with predicted disparity. Small intensity

in di�erence image veri�es the convolution model.
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polarizer
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(HoloEye LC2012)

polarizer

RGB Sensor
(Sony IMX174)

precision
rotation mount

d = 1.3cm

Figure 4.13: Prototype hardware setup. The proposed design includes a programmable amplitude

mask and a sensor. Our programmable mask is made of a transmissive LCoS sandwiched between two

cross polarizers, one of which is mounted on precision rotation mount of optimal contrast.

(a) scene setup (b) static fast (c) static joint (d) static texture only (e) SweepCam-fast

Figure 4.14: Comparison of di�erent reconstruction methods on real data. As shown in (a),

the scene contains two transparencies printed with boat pattern. White is printed to be transparent.

Near plane is at 2.8cm while the far plane is at 18cm. (b)(c)(d) show various reconstruction techniques

from static mask measurements. (b) deconvolves static mask measurements with PSFs at near and far

planes, as Asif et al. [2016]; (c) jointly estimates texture and depth of each pixel in the scene, as Asif

[2018]. (d) is given per pixel depth as input and only solves for texture. (e) reconstructs from SweepCam

measurements with the same number of frames using the fast algorithm.
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Figure 4.15: Two USAF resolution charts at di�erent depths. SweepCam results are captured

with 9×9 aperture locations across 0.4cm × 0.4cm.
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(a) setup
(b) static mask

reconstruction

(c) SweepCam-fast

reconstruction

(d) static mask

estimated depth

(e) Asif [2018]

estimated depth

(f) SweepCam-fast

estimated depth

Figure 4.16: Estimated depth for objects with known geometry. From top to bottom: a slanted

plane, corner of a box, and a cylinder. Objects are covered with patterned paper to produce dense tex-

ture. (b)-(c) show a image from the focal stack at the same depth; column (d)-(f) show estimated depth

estimated from focal stack with corresponding method. (d) and (f) estimates depth from lensless fo-

cal stacks by assigning each pixel to the focal distance with maximum local contrast. Local contrast is

computed by standard deviation of pixel intensity in 11 × 11 neighborhood. Contrast below threshold

indicates untextured region and has no depth estimation. In (e), depth is estimated as part of recon-

struction algorithm in Asif [2018]. Removing high frequency artifacts in SweepCam fast reconstruction

signi�cantly improves depth estimation, as (f) demonstrate more reliable estimation against (d) and (e).
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Figure 4.17: General scenes that deviate from the convolution model. Each of the three scenes

violet the assumptions underlying the image formation model, either in the form of occlusions between

depth planes, or due to materials with non-Lambertian re�ectance and directional lighting in the scene.

In spite of these model mismatches our techniques work reliably, except perhaps for artifacts that are

spatially localized.





5Inverse Rendering for Lensless Imaging

This chapter advances the �eld of lensless imaging by incorporating forward models that are more

precise and better describe the image formation process. To understand the nature of our contributions,

it is worth looking the state of the art in lensless imaging and identifying gaps in modeling of image

formation. In a lensless camera, a sensor is placed in behind an amplitude or phase mask that modulates

the light incident on it [Boominathan et al., 2016]. When the scene is su�ciently far away, and the

mask aperture is su�ciently smaller than the sensor area, the forward model can be written as one of

convolution between the scene’s angular radiance [Asif et al., 2016]; this simple setting provides fast

and quick inverses via the Weiner �lter. However, when we perturb the assumptions underlying this

model, either by considering with a scene at a �nite depth range or a mask whose size is commensurate

to the sensor, then we need to revisit the forward model and consequently, the inverse algorithm.

Using a larger mask changes the forward model to one of convolution followed by cropping by the

sensor [Antipa et al., 2018], which enjoys an e�cient implementations via the FFT. In FlatCam [Asif

et al., 2016] and FlatScope [Adams et al., 2017], a separable mask aligned with the sensor simpli�es the

forward model to left and right multiplication of the scene image with two smaller matrices. In both

cases, the nature of the forward modeling permits the solution to be a linear inverse problem which can

be solved using iterative techniques.

Incorporating scene depth variations, on the hand, has proved to be more challenging. The vast

majority of lensless imaging techniques represent the scene as a volumetric albedo function [Adams

et al., 2017, Antipa et al., 2018, Hua et al., 2020]; this retains the �avor of the forward model to be linear

in the scene unknowns, namely the volumetric albedo, and hence allows the use of regularized least

squares techniques for recovery. The use of volumetric albedo representation does present challenges

in the form of a dramatic increase in the dimensionality of the unknown signal. SweepCam [Hua et al.,

2020] resolves this by collecting multiple images with a translating mask. This result is extended in

Zheng et al. [2021] where a sequence of programmable masks is designed to better condition the depth
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1 inch diameter 
cylinder reconstruction

Figure 5.1: Reconstruction of cylinder. This chapter presents an physically-realistic and di�eren-

tiable forward model for lensless imager, which results in improved reconstruction of the scene texture

and depth.

recovery process. Zheng and Asif [2020] avoid the dimensionality gap by modeling the scene with a

texture and depth map model.

When we consider the landscape of these techniques, there are critical gaps in forward modeling that

restrict the complexity of scene that can be captured. First, for most scenes, the volumetric approxima-

tion is not physically accurate. Image formation for most opaque objects requires understanding of the

surface orientation and re�ectance, which are both beyond the scope of the volumetric model. Second,

most prior work ignore the e�ects of the sensor’s angular response whose in�uence on the measure-

ments can be quite signi�cant when the scene is in close proximity to the camera. When a scene point

is su�ciently far away, the angle it subtends to the sensor is small and hence, the e�ect of the angular

response can be ignored. However, when the sensor area is large and scene points are su�ciently close

to the device, this term can dramatically in�uence the contributions arising from a scene point across

the sensor. Not modeling these e�ects, as we show later, leads to poor reconstruction quality.

This chapter provides a new techniques for scene recovery using techniques from inverse rendering

[Kato et al., 2020, Marschner, 1998, Patow and Pueyo, 2003]. We base our work on recent work on the

successful use of such inverse rendering techniques for scattering [Gkioulekas et al., 2016], non-line-

of-sight shape estimation [Tsai et al., 2019] and re�ectometry [Shem-Tov et al., 2020]. Speci�cally, we

use a precise forward model based on a physically-accurate and di�erentiable renderer where we model
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the scene as a triangulated mesh in 3D space whose vertices encode texture properties. The forward

model now involves a Monte-Carlo renderer that accurate re�ects image formation including scene

modeling that treats objects as surfaces with accurate modeling of foreshortening terms, and sensor

e�ects like angular sensitivity at each pixel. The forward model is di�erentiable with respect to the

unknown parameters of the mesh, which allows us to use stochastic gradient techniques and associated

optimization toolboxes that have e�cient GPU implementation. This precision of this forward model

provides a signi�cant advance in our ability to recover textures and depth from lensless cameras.

Contributions. This chapter proposes a inverse rendering approach to reconstruction which ad-

vances lensless imaging by building a more physically accurate measurement model. Our main con-

tributions are as follows.

• A di�erentiable and physically-realistic forward model. We build a Monte-Carlo renderer using this

model, which maps a 3D scene represented by triangle mesh to its lensless measurements, so that

complex e�ects such as foreshortening and sensor’s angular sensitivity can be accurately captured in

the rendered measurements.

• Reconstruction algorithm for the texture and shape of a scene using inverse rendering. Under the proposed

di�erentiable model, we can compute the texture and shape gradient with respect to a loss function

de�ned on the measurement using di�erentiable rendering.

• Validation on synthetic and real experiments. We conduct multiple experiments on both synthetic mea-

surements as well as real measurements from two hardware prototypes [Asif et al., 2016, Hua et al.,

2020] and show results on texture-only as well as joint texture and shape recovery.

Limitations. The implementation that we provide has a few limitations. First, the proposed method

is sensitive to initialization of depth. Triangles whose normals are nearly perpendicular to the optical

axis can result in numerically unstable depth gradients. This is a consequence of the Monge model

that we adopt and can be circumvented by using freeform meshes. Since we use Monte Carlo sampling

to render lensless measurements, the proposed need to render a large number of rays to reduce varia-

tion in rendered measurements. For high resolution reconstruction, this results in high GPU memory

requirements and long compute time.
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5.1 Prior Work

5.1.1 Forward Models for Lensless Imaging

It is essential for all reconstruction methods to accurately model the forward process of the lensless im-

ager, i.e. how scenes map to lensless measurements. While learning-based methods improve the percep-

tual quality of reconstructions, they perform best when the knowledge of forward process is integrated

[Khan et al., 2019, Monakhova et al., 2019b]. Monakhova et al. [2019b] found better reconstruction

quality from combining a unrolled ADMM that uses the foward process and a denoising network than

using only a U-Net, and Khan et al. [2019] uses the separable property of the forward operator in their

reconstruction network. Thus, let’s take a close look at popular models in prior research.

Convolution Model. A convolutional model is a popular chouce for the forward process for both

amplitude mask [Asif, 2018, Hua et al., 2020] and phase mask [Antipa et al., 2018, Boominathan et al.,

2020] based imagers. When the point spread function (PSF) of the lensless imager is shift-invariant for

points at the same depth, and scales with depth change, we can parameterize the scene as the brightness

of point sources at a few depth iI1 , . . . , iI# , so that the measurement b on a large sensor is a sum of

convolutions,

b =

#∑
==1

m ∗ iI= (5.1)

where m is the PSF, and in the case of amplitude-mask imagers, the mask pattern.

The bene�ts of modeling the forward process as well-understood convolution are many: we can

apply Fourier analysis on the PSF to understand the resolution bound of the imager, which helps the

design of of well-conditioned lensless imagers; the forward process can be computed very fast in the

Fourier domain, if we approximate linear convolution with circular convolution; single-depth scene

reconstructions can be very quickly computed by deconvolution; calibration of this model need only

one observation of a well-placed point light source.

The drawback of the convolution model is that it ignores many e�ects and they show up as artifacts

degrading the reconstruction quality. On the scene side, specular re�ections and opaque surfaces often

found in common environments are poorly modeled by point light sources. On the sensor side, the �nite

size of the sensor means we only observe a cropped version of the measurement, and the convolution is

not circular. Furthermore, the sensor pixels are less e�cient when light reaches them at a large angle;

this results in heavy vignetting in almost all lensless reconstructions.
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Separable Matrices Model. Another line of work produces very thin lensless imagers with printed

amplitude masks [Adams et al., 2017, Asif et al., 2016]. They show that separable 2D masks can be

constructed from 1D MURA and M-sequence codes, and the number of parameters in the result imagers

forward process is signi�cantly reduced compared to a imager built with non-separable 2D mask. For

example, for a plane consisting of =×= point light sources and a sensor of ?×? pixels, instead of b = �i,

where � has size ?2 × =2, the imager with separable amplitude mask can be modeled as B = �; I�)A ,

where �; ,�A are of size ? × =.

This model captures most of the sensor-side e�ects, including linear convolution borders, �nite sen-

sor area, and separable angular response functions. However, it is tedious to calibrate this model, since

we need to record the image of each row and column of point sources in the imaged volume, requiring

2=� captures for � depths.

5.1.2 Di�erentiable Rendering

Di�erential rendering has been proven useful for reconstructing the 3D geometry from 2D observa-

tions in the past few years [Kato et al., 2020]. Tsai et al. [2019] used di�erential rendering to solve for

surface geometry in non-line-of-sight (NLOS) imaging setting. They obtain higher level of details in

the reconstructed NLOS scene, by representing the scene as a surface instead of previous volumetric

approaches. We adopt the same approach, modeling a scene by surfaces and computes derivatives of

the lensless measurements with respect to the surface geometry and re�ectance. However, unlike the

NLOS measurements which captures time (and therefore length of each light path), the lensless imager

measurements have weaker constraint on the surface geometry. So we adopt the more restrictive Monge

surface representation, instead of full mesh representation as in Tsai et al. [2019].

A number of work has explored the proper shape gradients under realistic settings, including com-

plex geometric discontinuities and light transport phenomena [Delaunoy and Prados, 2011, Zhang et al.,

2020]. Delaunoy and Prados [2011] derive vertex gradient for two generic energy functionals with rig-

orous account for visibility. There are some di�erences to this work that stem from features speci�c

to lensless imagers. First, the lensless imager pixels receive light rays from more than one point in the

scene, making the problem more challenging. Second, this work also adds a “sensor angular response”

term, as lensless imagers, especially thin ones, receive rays at a large angle to the optical axis. Thus the

angular e�ciency of sensor pixels become visible in the measurements, and result in heavy vignetting.
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Figure 5.2: Forward model from modeling the scene as a surface.

5.2 Method

We now describe a Monte Carlo-based inverse rendering model for lensless cameras.

5.2.1 Basics of Image Formation

Suppose that we have a lensless camera comprising of an image sensor aligned with the G~-plane at

I = 0, with its optical axis oriented along the I-axis. An amplitude mask with attenuation pattern

<(x), where x = (G,~), is placed at I = I< and parallel to the sensor plane. The scene is described in

the Monge form as a height map I (x) which describes a 2D surface (x, I (x)) embedded in 3D space.

Figure 5.2 provides a schematic of this setup. Our implementation uses a slightly di�erent model that

we refer to as scaled Monge form, where the surface is represented as (xB , 1)I (xB ).

Now consider a location x0 on the sensor and a point (xB , I (xB )) on the scene surface indexed by G~

location xB . The �ux received at an in�nitesimal area at the sensor location x0 due to an in�nitesimal

area on the scene at xB is given as

L(xB → x0)<(x<)0
(
x − x0
I (x)

)
3l (x, x0)3x0,

where L(xB → x0) is the radiance of the light ray at xB towards the sensor location x0, and 0(·) is the

sensor angular response as a function of the tangent of the angle made with the optical axis. The term

x< = x0 +
I<

I (xB )
(xB − x0)
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Figure 5.3: A Monge mesh model. We start with a mesh with uniformly placed vertices over the

G~ plane. Each vertex is endowed with a depth and albedo value that describes the scene scene and its

texture.

is the location where the ray xB → x0 intersects the the mask plane. Finally, the solid angle subtended

by the scene surface element is given as

3l (xB , x0) =
3�(xB )

‖xB − x0‖22 + I (xB )2
.

Hence, the �ux measured at a pixel of area Δ0 centered at location x0 is approximately

Δ0

∫
xB
L(xB → x0)<(x<)0

(
xB − x0
I (xB )

)
3l (x, x0), (5.2)

where the approximation arises from the assumption that the irradiance of incident light is constant

over the sensor pixel. We are also ignoring the e�ect of self-occlusion by the surface, which can be

easily incorporated by adding in a binary term indicating the visibility of the scene point to the sensor

pixel.

5.2.2 Monge Mesh Parametrization of the Scene

We represent the scene using a �xed triangulated mesh over the G~ plane. Speci�cally, given the surface

described as (x, I (x)), we uniformly sampling x = (G,~) over the over the expected footprint of the scene

to create a 2D mesh with # × # vertices denoted as {+8 9 , 0 ≤ 8, 9 < # }. Given a sampling distance X

along each direction, the vertex +8 9 corresponds to a 2D location

x8 9 = (8X − #X/2, 9X − #X/2).

We can now represent the surface by endowing each vertex with a depth I8 9 = I (x8 9 ), and triangulating

it in a �xed regular fashion as shown in Figure 5.3. Triangulation enables us to propagate the depth
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values from the vertices to the faces by linear interpolating the vertex depth using local barycentric

coorindates de�ned the vertices de�ning the triangle. Each face of the triangle also as a well-de�ned

normal that is computed by �tting a plane to the three vertices de�ning it and computing its normal.

To compute the image intensities using equation (5.2), we also need to model the radiance �eld

emitted by the surface. As with depth, we can model the radiance �eld at the vertices and propagate it

to the faces. As a starting point, we consider Lambertian surfaces and hence, model the radiance �eld

to be constant at each vextex location, i.e., ∀x0, L(x8 9 → x0) = L(x8 9 ) = d8 9 .

With this de�nition of the Monge mesh, we can now describe the forward rendering approach.

5.2.3 Forward Model via Monte Carlo Rendering

To compute the �ux observed at a pixel at x0, we need to calculate the integral in equation (5.2), which

can be done e�ciently using Monte Carlo simulations. We �rst generate& samples {x(:) } on the mesh

by uniformly sampling over its 2D extent. For each sample, we identical the face of the mesh it belongs

to. This allows us to calculate the depth I (:) , albedo d (:) , and surface normal n(:) which we calculate

from the depth and albedo of the vertices de�ning the face. Speci�cally, if the vertices de�ning the face

are +:1,+:2,+:3, then the depth and albedo associated with the sample are given as

I (:) = U1I:1 + U2I:2 + (1 − U1 − U2)I:3

d (:) = U1d:1 + U2d:2 + (1 − U1 − U2)d:3, (5.3)

where U1 and U2 are the barycentric coordinates of the point x(:) in terms of vertex locations

x:1, x:2, andx:3. The surface normal n(:) is assigned to the face normal which is calculated from the

3D location corresponding to the vertices.

Now the �ux at the pixel at x0 can be calculated as

�

&

&∑
:=1

d (:)<
(
x(:)<

)
0

(
x(:) − x0
I (:)

)
3l (x(:) , x0) (5.4)

Note that this calculation can be done extremely fast since the contribution of each Monte Carlo sample

can be calculated in parallel. The expression in equation (5.4) gives us our forward model.

5.2.4 Rendering with Scaled Monge Mesh

The Monge form allows us to parameterize surfaces in a hyperrectangle. However, since the sensor

pixels have reduced e�ciency for light rays with large incident angles, the lensless camera sees a cone-
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shaped volume instead of a hyperrectangle. Thus, we adopt a scaled Monge form that parameterizes

surfaces in the pyramid volume.

(sx, sy, s+𝑧!)(x, y, 1+ 𝑧!)
(0, 0, 𝑧!)

Figure 5.4: Scaled Monge Parameterization of scene surface.

As shown in Figure 5.4, we choose �xed points (G,~) on the G − ~ plane 1 unit distance away from

the mask center, and parameterize the surface by B (G,~). The vertices on the surface have Cartesian

coordinate (BG, B~, B + I<) w.r.t. center of the sensor.

In our implementation of Monte Carlo rendering, we choose points (G,~) with uniform probability

on the G −~ plane 1 unit distance away from the mask center. This means we have to infer �BDA 5 024 , the

area of triangle around x = (BG, B~, B + I<) on the scene surface from �6A83 , area of triangles on the grid

around (G,~, 1 + I<):
�BDA 5 024

�6A83
=

B2

cos(\ )
√
G2 + ~2 + 1

(5.5)

where \ is the angle between surface normal of triangle around x and ray s = (G,~, 1).

5.2.5 Inverse Rendering

Our goal is to recover the 2D surface de�ning the scene and its associated albedo map from the mea-

surements made by the lensless imager. Since the vertices of the mesh are �xed, we need to optimize

over Θ = (z, r) where z = {I8 9 } and r = {d8 9 }. To recover these we can setup an optimization problem

min
Θ
ℓ (Θ) = min

z,r

1
2

∑
x0

‖~ (x0) − 1 (x0;Θ)‖2,

where ~ (x0) is the measured �ux at the pixel x0 and 1 (x0;Θ) is the rendered �ux using equation (5.4).

We can solve for the mesh parameters by applying gradient descent or its stochastic version, both of
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which require us to compute the derivative of the loss function ℓ with respect to the mesh variables z

and r. This derivative can be written as

m

mΘ
ℓ (Θ) =

∑
x0

(1 (x0;Θ) − ~ (x0))
m1

mΘ

This derivative can also be computed via Monte Carlo rendering, following well established ideas in

inverse rendering [Tsai et al., 2019].

Texture gradient. Similar to equation (5.4), The texture gradient for vertex 8 9 w.r.t. measurement at

x0 can be calculated by

m1 (x0)
md8 9

=
�

&

&∑
:=1

md (:)

md8 9

(
<

(
x(:)<

)
0

(
x(:) − x0
I (:)

)
3l (x(:) , x0)

)
,

where md (: )

md8 9
is Bayercentric coordinate of point x(:) in terms of vertex x8 9 if x(:) lies on a triangle which

contains vertex x8 9 , and 0 otherwise.

Depth Gradient. The depth gradient for vertex 8 9 w.r.t. measurement at x0 can be calculated by

m1 (x0)
mI8 9

=
1
&

&∑
:=1

( m< (
x(:)<

)
mI8 9

(
d (:)0

(
x(:) − x0
I (:)

)
�3l (x(:) , x0)

)
+

m0

(
x(: )−x0
I (: )

)
mI8 9

(
d (:)<

(
x(:)<

)
�3l (x(:) , x0)

)
+

m�3l (x(:) , x0)
mI8 9

(
d (:)<

(
x(:)<

)
0

(
x(:) − x0
I (:)

)))
We use stochastic gradient descent to solve the optimization problem.

5.3 Simulations

5.3.1 Intensity-only Reconstruction

To illustrate how model mismatch degrades the imaging quality under simple forward models, we show

the reconstruction results under convolution model (“conv”), separable model (“separable”) [Asif et al.,

2016], and the proposed di�erentiable surface model assumption (“proposed”) in Figure 5.5.

Sensor angular response function is a factor that degrades imaging quality when it is unmodeled in

simple forward models. We simulate measurements for two types of sensor angular response functions:
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frontal parallel 
plane at 2.51cm

frontal parallel 
planes at 2.51cm 
and 4cm

slanted plane from 
2cm to 4cm

scene geometry texture reconstruction

conv separable proposed conv separable proposed

flat angular response sensor Gaussian angular response sensor

ground truth 
texture

angular 
response

Figure 5.5: Texture reconstruction results under various geometry and sensor angular response

functions under di�erent forwardmodels. The left column shows the geometry of the setup, with

sensor (solid grey line), mask (dash grey line), and scene surface (purple lines) drawn roughly to scale.

Each row of the table shows result of a di�erent scene geometry: single frontal parallel plane, multiple

frontal parallel planes, and a slanted plane. The convolution forward model is broken by cropping of

the measurements as a result of �nite sensor area, and only manages to recover the center portion

of the image in frontal parallel plane and �at angular response setting. The measurements for three

di�erent scene geometry are simulated for a lensless imager similar to FlatCam prototype [Asif et al.,

2016], consisting of a 128×128 pixels on a 3.36mm by 3.36mm RGB sensor, and a binary amplitude mask

with length 255 M-sequence outer product pattern printed at 20 µm feature size, and mask-to-sensor

distance of 0.95mm. The measurements are obtained by ray tracing from a Lambertian surface with

texture as shown on the top-left. The images are recovered at 128 × 128 resolution. Convolution model

and separable model reconstruct the scene at depth 2.51cm. The proposed model recovers the scene

with the knowledge of the scene geometry.
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�at, and a more realistic Gaussian of standard deviation of 0.35 radians; the angular response functions

are shown on the bottom right of Figure 5.5. In the �rst row, non-�at angular response function results

in vignetting in both reconstruction from convolution model and separable models, but the proposed

method can model it and avoid degraded image boarders.

Another factor that degrades imaging quality is scene geometry. Both convolution model and sep-

arable model assumes scenes are consisted of points emit light uniformly across the angle seen by the

sensor. In realistic situations, scenes are often piecewise continuous. The second and third row shows

that common scenarios such as multiple planes at di�erent depth, and a slanted plane results in poor

image quality from convolution and separable model, while the proposed method still recovers the scene

quite well.

Loss functions. We �nd the scene by optimizing a loss function consisting of measurement term,

texture prior term, and depth prior term

; (Θ, 1) = 1
#

#∑
D

‖1D − 5 (Θ, D)‖22 (5.6)

+ _1cross-channel(r) + _2‖TV(z)‖1, (5.7)

where 5 (Θ, D) de�nes the forward rendering, calculated via equation (5.4). We use basic cross-channel

prior as proposed in Heide et al. [2013]:

cross-channel(r) =
5∑
0=1
‖H0r2 ‖1 (5.8)

+ _3
∑
;≠2

2∑
0=1
‖H0r2 · r; −H0r; · r2 ‖1 (5.9)

Implementation details. We solve the optimization problem with optimizers implemented in Py-

torch, using Adam optimizer for texture r and SGD optimizer with momentum weight 0.1 for depth
I<
z , where I< is sensor-to-mask distance. For the real data results shown in Figure 5.9, we use

_1 = 5 ∗ 10−3, _2 = 10−5, _3 = 0.3, initial texture learning rate 10−3, initial depth learning rate 10−1,

and decrease the learning rate of all variables by 0.985 every 250 steps. We render 65536 rays from the

surface for each pixel in the optimization, and render 1048576 rays for each pixel for producing mea-

surements in simulation experiment. We use the value from 128 pixels to estimate gradient on each step

of gradient descent. The optimizer typically run for several hours to convergence.
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Figure 5.6: Comparison of reconstructing both texture and depth under di�erent models. The

measurements are simulated for a scene consisting of a slanted plane with depth ranging from 40mm

to 180mm. The surface is Lambertian and has texture as shown on the left. The imager is chosen with

the same parameters as SweepCam prototype [Hua et al., 2020], with 300 × 480 pixels across 7.032mm

by 11.25mm, mask-to-sensor distance of 13.1mm, and use same mask pattern as SweepCam prototype.

We simulate multiple measurements captured with translated mask pattern: 2 frames capture horizontal

translation of length 2.54mm, 49 frames capture both horizontal and vertical translation in 7 × 7 grid in

a window of size 7.78mm×7.78mm.

5.3.2 Joint intensity and shape reconstruction

Often, we do not know the shape of the scene we want to recover. We show the results of joint recon-

struction of intensity and depth from lensless measurements in Figure 5.6.

The convolution model and separable model can recover the depth of scene by reconstructing scene

texture at many depth planes, a focus stack, and use a local contrast measure to determine which planes

are occupied by a texture surface patch with the highest local contrast. We use the focusing operation

introduced in SweepCam [Hua et al., 2020] to make use of additional frames captured with translated

mask pattern. The depth obtained from the textured regions are propagated to the textureless regions to

obtain depth map. The depth map can help us blend frames from the stack to form a all-in-focus texture

image. We use the proposed method to re�ne the depth map and texture image obtained from the focus

stack. We observe that the proposed method enhanced the contrast of texture image, and improved the

depth estimation. Additionally, increasing the number of measurement captured with translated mask

pattern resulted in better depth reconstruction.

5.4 Hardware Experiments

Next, we validate the proposed method on real data from two di�erent lensless prototypes.
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FlatCam prototype

mask pattern of prototype

reference photo separable* conv

plane 3.1cm away

scene 70cm away

proposed
conv
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Figure 5.7: Flatcam prototype results. The prototype shown on top-left of the �gure is a thin lensless

imager consisting of a printed binary mask pattern a�xed on top of a Sony IMX 136 RGB sensor. The

mask pattern obtained from calibration is shown in bottom left. Top right shows texture reconstruction

under various forward models of a near scene, a plane 3.1cm away. Bottom right shows texture recon-

struction of a far scene, 70cm away. Separable model requires a laborous calibration procedure repeated

for each depth, and it was only calibrated for far scenes; it fails on the near scene. “conv-separable” as-

sumes convolution with a separable mask. “conv” is convolution with calibrated mask pattern as shown.

5.4.1 Calibration

The goal of calibration is to obtain a precise forward model of the lensless imager. Speci�cally, calibration

estimates mask pattern <(x), mask to sensor distance I< , and angular response function 0(\ ). The

calibration problem can be posed as

argmin
<,I<,0

‖ 5<,I<,0 (8, I) − 1‖22 (5.10)

Since 5 is di�erentiable with respect to the calibration parameters, the same stochastic gradient descent

method used for reconstructing the scene can be similarly applied to solve equation (5.10) if we know

the scene (8, I) and have a rough estimation for initialization.

We propose a calibration procedure similar to standard camera calibration [Zhang, 2000]: observe a

planar target of known dimension at many poses. Since we can get an image of the mask from imaging

point light sources, we use a target composed of them: an LED array. We move the LED array to

multiple di�erent poses in front of the lensless imager, separately turn on the LEDs one by one and

capture a measurement for each. Registering the projected shadow of each LED provides us with an
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reference photo conv [Hua et al., 2020] proposed annotated depth

Figure 5.8: Texture reconstruction frommeasurements captured with single mask pattern and

depth map from annotation .

setup texture depth

conv proposed conv proposed

Figure 5.9: Texture and depth reconstruction from measurements captured with 49 translated

mask pattern. “conv stack” are obtained by selecting depth with maximum local contrast from focus

stack [Hua et al., 2020]. Proposed method initializes from “conv stack” texture and box-�ltered “conv

stack” depth map. Texture reconstructions are brightness adjusted for easier comparison.

initial estimate, which we re�ne using stochastic gradient descent on the camera parameters, namely

the mask.



88 CHAPTER 5. INVERSE RENDERING FOR LENSLESS IMAGING

5.4.2 Static seperable mask lensless imager

Flatcam prototype, shown in Figure 5.7, is a thin imager with a large separable binary amplitude mask.

It consists of a Sony IMX136 RGB sensor (1920× 1200 pixels with pitch of 2.8µm) and a mask with 20Dm

features covering the whole sensor. The mask-to-sensor distance is 0.95mm from calibration.

Figure 5.7 shows reconstruction under di�erent models on measurements captured on the FlatCam

prototype. Calibrating for the mask pattern as described here is advantageous over the separable model

as it allows us to reconstruct for scene of any depth, unlike the separable model which can only recon-

struct on depth it is has been calibrated. We observe that while the imager is designed to be separable,

the mask pattern is no longer full separable, and the non-separable pattern (“conv”) produced sharper

results with less vignetting compared to a separable mask pattern (“conv-separable”). The proposed

method improves the contrast and reduces artifacts seen in the convolution models.

5.4.3 Programmable mask lensless imager

Recovering texture and depth information from a single measurement yields a underdetermined prob-

lem. Therefore, we explore programmable mask lensless imagers, which allow us to capture multiple

multiplexed measurements of the scene. SweepCam [Hua et al., 2020] implements programmable mask

lensless imager with a programmable amplitude mask, displaying translated versions of the same mask.

We reconstruct data from SweepCam to compare the proposed method against the convolution model.

Single frame. We show that the proposed surface model with angular response is a better model

than convolution in Figure 5.8. The “conv” forward model treats the measurement as a sum of two

convolutions from two depths, and solves the problem via conjugate gradient descent. The proposed

model performs stochastic gradient descent while rendering each pixel by ray tracing. The result of

proposed model has higher contrast, and results in better details around the image border.

Translated masks. Finally we use multiple measurements captured with translated mask patterns to

reconstruct both texture and depth in Figure 5.9. The proposed method re�nes the texture and depth

from estimates from the focus stack. The proposed method recovers correct depth at textured regions,

and correctly �lls texture near those patches.
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5.5 Discussion

This chapter proposed an inverse rendering technique for surface estimation for lensless cameras. We

show successful recovery of shape and texture that are signi�cantly better, if not comparable, to state-

of-the-art. Many di�erentiable functions can be incorporated into the proposed frame work to more

closely model the forward process of lensless imager. This method can be expanded to model the forward

process of other high-dimensional data being recorded by the lensless imager, such as video, light �eld,

and hyperspectral image.





6Conclusion
6.1 Thesis Contributions

The main barrier to practical adaptation of lensless cameras is that the images reconstructed from lens-

less cameras currently have lower quality when compared to those of lens-based cameras. This thesis

tackles the most common challenge in the reconstruction of scenes from lensless measurements: the

PSF’s depth dependency makes the inverse problem di�cult to solve and analyze.

This thesis contributes to improving the imaging quality of 3D scenes with lensless cameras in the

following ways:

• We provided the �rst theoretical framework for studying the achievable spatial-axial resolution of

amplitude mask-based lensless cameras; this allows us to derive the upper bound of spatial and axial

resolution as a function of the mask pattern.

• We introduced a hardware modi�cation, i.e. a programmable mask, and show that imaging with many

translated versions of the same mask pattern allows fast reconstruction of 3D scenes with few artifacts.

• We explored reconstructing the scene from lensless measurements under a physically-realistic forward

model by utilizing techniques in inverse rendering, and show reconstructions with better contrast and

details.

6.2 Future Work

The work from this thesis brings to light some future directions for improving lensless imaging.

6.2.1 Extension to Phase Mask-based Lensless Cameras

This thesis discusses amplitude mask-based lensless cameras. Phase masks-based lensless cameras are

more light e�cient because the phase masks do not block any light and often produce better conditioned
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image systems.

The PSF from phase mask-based lensless cameras behave similarly to amplitude mask-based cameras

when light enter the camera at small angles with respect to the optical axis due to the memory e�ect; the

PSF translates when the point source translates parallel to the sensor plane and scales when the point

source translates orthogonal to the sensor plane. Current phase mask-based lensless cameras [Antipa

et al., 2018, Boominathan et al., 2020] operate within this range. In this case, the analysis and discussions

in this thesis can be applied to the phase mask-based lensless cameras, by replacing the mask pattern

with an appropriately-scaled version of their PSF.

The behavior of PSF of phase-mask based lensless camera changes when light enters the camera at

large angles with respect to the optical axis. The modeling and analysis of this scenario remains a future

work.

6.2.2 E�ect of Di�raction

This thesis models light in ray optics and for the most part, ignore the e�ects of di�raction. Adapting the

methods and analysis presented in this thesis to handle di�raction is similar to handling phase mask-

based cameras. The method in Chapter 4 and 5 can both be extended to replace the mask by looking up

a pre-calibrated PSF accounting for di�raction e�ects from a speci�c depth. The presence of di�raction

causes model mis�t for our analysis for scenes of extended depth range (∼40 cm), as the PSF are no

longer exactly scaled copies of each other; some examples of such PSFs are shown in Figure 3.2.

6.2.3 Designing Mask Patterns

We derive the 3D MTF, which represents the resolutions of the lensless camera, as a function of the

mask pattern in Chapter 3. This allows us to design the mask pattern from the desired spatial and axial

resolution performances of the camera. Speci�cally, we could formulate mask design as an optimization

problem on A; , the Radon Transform of the Laplacian of the mask pattern. For example, we could �nd an

amplitude mask<(·) that maximizes the smallest 3D MTF value,  % (d,k, 5I) in target resolution range

using Eq. 3.18,

argmax
< ( ·)

min
d,k,5I in

target resolution

A;

(
5I

d
,k

)
s.t. <(x) ∈ [0, 1] .
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6.2.4 Neural Networks for 3D Reconstruction from Lensless Measurements

This thesis explored mesh-based representation for modeling physically-realistic e�ects such as occlu-

sion and angular e�ects in Chapter 5. This work can be extended to incorporate neural networks to

better handle shape optimization, which has many local optima. Some concurrent works use neural

networks for reconstructing intensity and depth maps from lensless measurements [Bagadthey et al.,

2022, Zheng et al., 2021], but it is challenging to extend them to account for those physically-realistic

e�ects. Neural implicit surfaces [Wang et al., 2021] o�ers a promising method for reconstructing 3D

scenes from lensless measurements.

One important barrier for using neural networks for 3D reconstruction from lensless measurements

is the lack of training data – it is di�cult to obtain ground truth geometry for 3D imaging scenarios

calling for lensless cameras at large scale. A possible solution for this is to setup such con�gurations in

simulation and render those lensless measurements. The work in Chapter 5 builds a renderer that can

be used for this purpose.

6.2.5 Other Limiting Factors on Image Quality

In working with lensless measurements, we identi�ed other limiting factors on the imaging quality

of lensless cameras. One problem is typical lensless measurements encode scene information in small

variations across pixels, and the small variations are hard to measure due to quantization and noise.

Perhaps novel sensors and light-modulating technologies will alleviate this problem and further improve

the imaging quality of lensless cameras.

6.3 Conclusion

We imagine the work presented in this thesis, along with other concurrent research in lensless cameras,

will improve the imaging quality of lensless cameras so that they enable practical applications, such

as in vivo imaging [Adams et al., 2022], which may lead to discoveries in biology research and less

invasive medical procedures. Looking further into the future, we envision this line of research will

produce cameras that are light-weight, �exible, have real-time previews, and allow 3D or light �eld

reconstruction.
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