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Abstract

3D scanning of a single view of an object seldom suffices. Be it for 3D printing, augmented reality,

or virtual reality, scanning of the shape of the entire object in all its complexity—what we refer to as

full-surround 3D—is critical to have a faithful digital twin.

A key factor in achieving full-surround 3D scan is the diversity and number of viewpoints. Standard

techniques, involving multiple cameras and sometimes projectors, often become prohibitively expensive

and complex, placing them beyond the reach of the average consumer of 3D technology. This thesis

proposes a novel and accessible solution by using a kaleidoscope system. Comprising multiple planar

mirrors, the kaleidoscope allows for a combinatorial increase in viewpoints through repeated light

reflections, all captured by a single camera. This approach enables the construction of a virtual multi-

view imaging system that is easy to build, calibrate and deploy, with components that are easily available.

In this thesis, we establish the theoretical and practical foundations of kaleidoscopic techniques for

full-surround 3D reconstruction. We are particularly interested in the reconstruction of highly complex

objects with intricate geometry that include self-occlusions. This work aims to create a kaleidoscopic

equivalent to the multiple view geometry in classical computer vision, making the following contributions.

First, we explore kaleidoscope design and its calibration. It encompasses the development of crucial

design factors, including the number of mirrors and their configuration. Additionally, we formulate

metrics for assessing various kaleidoscope designs, enabling the quantitative evaluation of their coverage

and accuracy. We also address the precise calibration of the extrinsic parameters of mirrors, a vital

aspect of kaleidoscopic reconstruction. This precision is essential, as errors can be significantly amplified

through the multiple reflections within the kaleidoscope.

Second, we introduce kaleidoscopic structured light, which serves as a kaleidoscopic equivalent

to traditional structured light. The kaleidoscope generates the structured light system with hundreds

of projectors and cameras, providing high accuracy and coverage, thanks to redistribution of the rays

diverse directions corresponding to large baselines. It enables the reconstruction of intricate geometry,

that include severe self-occlusions, concavities, and large genus number.

Third, we present kaleidoscopic neural rendering, an adaptation of neural rendering within a kaleido-

scopic context. While neural rendering has recently achieved significant advancements in speed and

accuracy, its handling of reflections remains inadequate. Our framework addresses this by integrating

multiple specular reflections within the kaleidoscope alongside neural surface representations. This

integration enables the creation of silhouette-consistent and photo-consistent 3D shapes from a single

v
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kaleidoscopic image. This method facilitates single-shot full-surround 3D reconstruction, particularly

advantageous for dynamic objects, as a single frame in this setup contains all necessary information for

complete surround coverage.
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1Introduction
3D scanning of a single view of an object seldom suffices. Be it for 3D printing, augmented reality,

or virtual reality, scanning of the shape of the entire object in all its complexity—what we refer to as

full-surround 3D—is critical to have a faithful digital twin.

A key factor in achieving a full-surround 3D scan is the number of viewpoints from which an object

is imaged. Covering the entire object that we seek to scan typically requires a large number of diverse

viewpoints. Furthermore, this number increases with the complexity of the object. This requirement has

led to the construction of light stages with multiple cameras, and potentially projectors, that capture

digital content at high fidelity. Unfortunately, the cost and complexity of these systems place them

beyond the reach of the average consumer of 3D technology.

1.1 Problem: Full-surround 3D reconstruction

Common approaches for reconstructing a complete scan of an object include rotating the object [Kang

et al., 2019; NextEngine, 2000; Park et al., 2016; Xia et al., 2016; Zhou et al., 2013], moving a camera

around the object [Cui et al., 2010; Holroyd et al., 2010; Kolev et al., 2014; Lichy et al., 2021; Nam et al.,

2018; Newcombe et al., 2011; Ondrúška et al., 2015; Wu et al., 2015; Wu and Zhou, 2015], or constructing

a multi-camera system [Ghosh et al., 2011; Joo et al., 2017; Schwartz et al., 2013]. However, rotating the

object around a fixed axis (e.g., using a turntable) constrains viewpoints to lie on a plane perpendicular

to the rotation axis; such viewpoints may be insufficient for the full-surround reconstruction of intricate

objects. Moving a single camera requires estimating the camera pose, whereas multi-camera systems are

generally costly and difficult to build. A fascinating approach for full-surround 3D reconstruction is the

so-called dip transform, where the object is dipped into a fluid at multiple orientations [Aberman et al.,

2017]. Measuring the liquid displacement, which encodes the submerged volume, provides sufficient

information to recover the shape of the object. Although this method provides superior results for
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(b) Moving a camera
(-) Registration

(c) Multi-camera 
(-) Hard to build

(a) Turntable
(-) Limited viewpoints

(d) Dip transform
(-) Requires immersing

Figure 1.1. Non-kaleidoscopic full-surround 3D reconstruction approaches. (a) Rotating an object constrains

viewpoints to lie on a plane perpendicular to the rotation axis. (b) Moving a single camera requires the registration

for estimating the camera pose. (c) Multi-camera systems are generally costly and difficult to build (d) Dip trans-

form [Aberman et al., 2017]—a technique that dips the object into a fluid at multiple orientations and reconstructs

the shape from liquid displacements—requires immersing the object in the fluid.

intricate objects, it requires immersing the object in the fluid, which is not always feasible. Figure 1.1

summarizes these surround reconstruction approaches and their limitations.

1.2 Kaleidoscope

A simple way to achieve a very large number of viewpoints is to surround the object we want to scan

with mirrors, which conveniently provide additional viewpoints without the need to move a camera

or construct a multiple-camera system. In particular, a kaleidoscope [Brewster, 1858], which consists

of multiple planar mirrors, allows light to bounce around repeatedly until it hits the camera, thereby

providing a combinatorial increase in the number of viewpoints. Thus, with a kaleidoscope and a single

camera, we can construct a virtual multi-view imaging system that is easy to build, calibrate and deploy,

with components that are easily available.

This thesis aims to solve the full-surround 3D reconstruction problem using a kaleidoscope. This

approach has the following advantages over the above conventional 3D reconstruction approaches.

• Combinatorial increase in the number of viewpoints. A key factor in achieving a full-surround

3D scan is the number of viewpoints from which an object is imaged. A kaleidoscope allows light

to bounce around repeatedly until it hits the camera, thereby providing a combinatorial increase in

the number of viewpoints. Thus, we achieve a very large number of viewpoints without constructing

multi-camera systems that are generally costly and difficult to build.



1.3. BACKGROUND: 3D RECONSTRUCTION WITH MIRRORS 3

Table 1.1. Thesis organization.

Kaleidoscopic 3D reconstruction Multi-view 3D reconstruction

Kaleidoscope calibration Camera calibration

input: {kaleidoscopic corerspondences} input: {multi-view correspondences}

output: {mirror geometry} output: {camera geometry}

Kaleidoscopic structured light Structured light

input: {kaleidoscopic correspondences, mirror geometry} input: {multi-view correspondences, camera (projector) geometry}

output: {object geometry, label} output: {object geometry}

Kaleidoscopic neural rendering Inverse rendering

input: {a kaleidoscopic image, mirror geometry} input: {multi-view images, camera geometry}

output: {object geometry, label} output: {object geometry}

• Redistribution of viewpoints. Covering the entire object requires diverse viewpoints especially

when the object shape includes intricate geometry (e.g., strong self-occlusions). Compared to the

approaches using turntable where the every viewpoint lies on a plane perpendicular to the rotation

axis, the reflections in a kaleidoscope can redistribute rays in 3D space and thereby produce the virtual

viewpoints all around the object. A proper design of the kaleidoscope can optimize the redistribution

of viewpoints and enables the maximum utilization of camera pixels.

• Synchronization. Every camera should be synchronized for 3D reconstruction in a multi-camera

system, and it is practically challenging especially when there are hundreds of cameras for full-

surround 3D reconstruction. Kaleidoscopic imaging does not suffer from this issue as the virtual

cameras generated by a kaleidoscope are synchronized with the speed of light.

• Identical intrinsic parameter. The virtual cameras generated by a kaleidoscope share the intrinsic

parameter with the real camera, which facilitates the computation of epipolar geometry.

To motivate the utilization of mirrors and kaleidoscopes in 3D reconstruction, in this chapter, we

begin by outlining the background and previous methods used for full-surround 3D reconstruction.

We then compare these traditional approaches to kaleidoscopic 3D reconstruction. Additionally, we

present the pipeline of kaleidoscopic 3D reconstruction as a counterpart to the multiple view geometry in

classical computer vision. We highlight the challenges that complicate the direct adaptation of traditional

techniques to the kaleidoscopic approach.
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Table 1.2. Comparison of surround reconstruction methods.

Method Registration Correspondence Labeling

Single camera x x -

Multi-camera system o x -

Multi-projector camera system o o -

Camera + mirrors [Reshetouski et al., 2011] o x visual hull

ToF + mirrors [Xu et al., 2018] o o path length

Structured light + mirrors [Lanman et al., 2009] o o manual

Structured light + mirrors [Ahn et al., 2021a] o o epipolar constraint

1.3 Background: 3D reconstruction with mirrors

We review prior work on 3D reconstruction usiing mirrors. We summarize key features of our and prior

techniques in Table 1.2.

Label-free approaches. There is extensive literature on the use of mirrors for 3D reconstruction, in

combination with passive-illumination camera systems [Forbes et al., 2006; Fuchs et al., 2013; Gluckman

and Nayar, 2001, 2002; Goshtasby and Gruver, 1993; Hu et al., 2005; Huang and Lai, 2006; Mitsumoto

et al., 1992; Murray, 1995; Nene and Nayar, 1998; Taguchi et al., 2010a,b; Ying et al., 2010], time-of-flight

(ToF) cameras [Nobuhara et al., 2016], and projector-camera systems [Bangay and Radloff, 2004; Garg

et al., 2006; Han and Perlin, 2003; Lanman et al., 2009; Tahara et al., 2015]. The use of mirrors is in large

part due to the increase in viewpoints they provide. In most systems using mirrors this way, the number

of reflections and virtual viewpoints are carefully controlled to be few in number, which makes manual

labeling practical.

Lanman et al. [2009] propose a structured light system that combines an orthographic projector, a

camera, and mirrors, and is designed to remove the interference between reflected projector patterns.

They solve the interference problem by illuminating with patterns that are perfectly aligned after

one or multiple mirror reflections. However, achieving this requires using a special configuration of

mirrors, which in turn constrains the locations of virtual cameras to lie on a plane. Such a viewpoint set

can be insufficient for full-surround 3D coverage when scanning complex objects. Additionally, their

configuration has only four virtual cameras, to make manual labeling of the virtual images observed in the

camera practical. Tahara et al. [2015] extend this approach to perspective projectors, again with manual

labeling. Kaleidoscopes have also been used for measuring bidirectional texture functions [Bangay and

Radloff, 2004; Han and Perlin, 2003]; in these works, the underlying shapes are nearly planar, which
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simplifies solving the labeling problem.

Approaches that estimate labels. Using numerous virtual viewpoints for better full-surround cov-

erage requires being able to estimate labels automatically. Reshetouski et al. [2011] solve the labeling

problem in a passive-illumination kaleidoscopic system by using space carving [Kutulakos and Seitz,

2000]. As the background pixels on the captured image do not intersect with the object, even after

repeated mirror reflections, the rays corresponding to those pixels can be backprojected and “carved”.

This provides a visual hull of the object inside the kaleidoscope, which can be combined with ray tracing

to obtain the label map. Ihrke et al. [2012] combine this labeling method with a structured light system

that illuminates only one label at a time, to obtain correspondences while avoiding interference. As

these methods rely on space carving for labeling, they are inaccurate when the visual hull is not a good

approximation to the object; typically, this is the case for concave objects. Xu et al. [2018] combine a

kaleidoscope with a ToF camera. The ToF information provides the total path length from the camera to

the object. This allows estimating the label and 3D point, by folding the ray using the known mirror

configuration. Unfortunately, this approach requires using a pulsed ToF system, which can be costly.

1.4 Reconstruction pipeline and challenges

Pipeline. A kaleidoscope provides a large number of diverse viewpoints. Thus, a kaleidoscopic imaging

system can be considered as a virtual multi-view imaging system and thereby can follow a similar pipeline

with the conventional real multi-view imaging system as follows:

• Correspondence search. Correspondences are generally obtained by feature matching (i.e., passive

multi-view stereo) or by structured light (i.e., active multi-view stereo). However, the traditional active

scanning scheme such as column scanning is in applicable in the kaleidoscopic imaging because of the

interference. We explore a scanning technique for correspondence search in a kaleidoscope.

• Structure from mirror. In the conventional multi-view approach, structure from motion optimizes

the camera parameters and is one of the key factors for high-quality 3D reconstruction. In this thesis,

we address structure from mirror that optimizes mirror geometry from the correspondences in a

kaleidoscopic image for high-quality 3D reconstruction from an uncalibrated kaleidoscope.

• Labeling. The kaleidoscopic 3D reconstruction has an additional step of labeling as the assignment

of a pixel to a viewpoint is changed depending on the object shape, whereas it is fixed in the conven-

tional multi-view reconstruction. This makes the kaleidoscopic imaging particularly challenging, and



6 CHAPTER 1. INTRODUCTION

Correspondence search Structure from mirror Labeling

Correspondence Mirror geometry
Label

(Mirror sequence)

Multi-view stereo

Object geometry

Correspondence search Structure from motion Multi-view stereo

Correspondence Camera geometry Object geometry

(a) Multi-view 3D reconstruction pipeline (conventional)

(b) Kaleidoscopic 3D reconstruction pipeline (proposed)

A kaleidoscopic image

Multi-view images

Figure 1.2. Pipeline of kaleidoscopic 3D reconstruction. The kaleidoscopic 3D reconstruction shares a similar

pipeline with the conventional multi-view 3D reconstruction pipeline, but each step cannot be directly adapted

because of the several additional challenges including the labeling problem. Our goal is to address each step of the

kaleidoscopic 3D reconstruction pipeline.

we explore the labeling problem by exploiting the epipolar geometry between virtual cameras and

optionally projectors.

• Kaleidoscopic neural rendering. Additional to conventional 3D reconstruction pipeline, we explore

to combine a kaleidoscope with the inverse rendering techniques that has recently seen immense

success for 3D reconstruction.

Figure 1.2 illustrates the pipelines of both approaches.

Challenges. Each step of the pipeline cannot be directly adapted from the conventional counterpart

because of the following challenges in kaleidoscopic 3D reconstruction.

• Labeling problem. The key challenge when using a kaleidoscope lies in interpreting the captured

image and decoding the numerous views of the object that it provides. The assignment of a pixel to a

virtual viewpoint is unknown in kaleidoscopic 3D reconstruction, whereas it is naturally known in the

conventional 3D reconstruction. Specifically, we need to identify the virtual viewpoint corresponding to

each pixel on the captured image. We call this the labeling problem. In the absence of this information,

a correspondence cannot lead to a triangulation because the starting point of the triangulation is

unknown.
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• Interference. A kaleidoscope generates not only virtual cameras but also virtual light sources. As a

consequence, we encounter complex interference patterns inside the kaleidoscope as a point on the

object is illuminated multiple times via different mirror sequences or by different virtual light sources.

The interference makes the correspondence search challenging as traditional scanning scheme for

structured light (e.g., column scanning) inapplicable.

1.5 Thesis contributions

Thesis statement. In this thesis, we establish the theoretical and practical foundations of kaleidoscopic

techniques for full-surround 3D reconstruction. We are particularly interested in the reconstruction of

highly complex objects with intricate geometry including self-occlusions.

Based on the above contributions, this thesis establishes a theory of kaleidoscopic geometry, and

explores the practices of kaleidoscopic 3D reconstruction including: (i) kaleidoscopic calibration; (ii)

kaleidoscopic structured light; and (iii) kaleidoscopic neural rendering. The table 1.1 summarizes the

thesis organization. This thesis also delves into the design of kaleidoscopes, detailing the various design

choices and the metrics to evaluate their effectiveness.





2Kaleidoscope Design and Calibration

In this chapter, we delve into the kaleidoscope design and their calibration processes. We initially establish

the fundamental design considerations for constructing a kaleidoscope, and introduce a set of metrics

to assess and compare various kaleidoscope designs. With this design consideraions and metrics, we

simulate multiple different kaleidoscopes and evaluate their efficacy quantiatively. Additionally, we

introduce the method for calibrating the extrinsic parameters of the mirrors.

2.1 Kaleidoscope design

Our exploration into kaleidoscope design involves identifying key factors critical for its construction and

function. This involves establishing specific design considerations and developing metrics to evaluate

these designs quantitatively.

2.1.1 Design considerations

In our design process, we primarily focus on planar mirrors due to their ease of construction and

calibration, which is consistent with the original purpose of buliding kaleidoscopes compared other

imaging setup. In particular, we examine various pyramid shapes for the kaleidoscope, such as triangular

and square pyramids. These shapes are chosen for their ability to virtually encircle the object, providing

comprehensive coverage. Our specific focus is on the right pyramid structure, selected for its demonstrated

optimal coverage [Xu et al., 2018]. The key aspects of our design exploration include:

• Number of mirrors. Determining the appropriate number of mirrors for the side of the pyramid (e.g.,

triangular or square pyramid).

• Configuration of mirrors. Deciding on the assembly of the mirrors, with considerations for the apex

angle of the pyramid, affecting the overall shape (e.g., sharp or wide pyramid).
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(a) 𝑁 = 3

𝜶𝜶
𝜶

(b) 𝑁 = 4 (c) 𝑁 = 5

Figure 2.1. Design considerations: pyramid shapes. We examine various pyramid shapes for the kaleidoscope,

with different number of mirrors (i.e., number of sides 𝑁 ), configurations (i.e., apex angle 𝛼), and sizes. We illustrate

example pyramids with different design parameters and visualize the apex angle in each case. The object will be

placed inside the kaleidoscope, and the camera will be located at the base side of the pyramid, looking at the tip of

the pyramid.

(a) 𝑁 = 3 (b) 𝑁 = 4 (c) 𝑁 = 5 (d) 𝑁 = 6 (e) 𝑁 = 7

Figure 2.2. Example kaleidoscopic images: number of mirrors. We show example kaleidoscopic images with

different number of mirrors 𝑁 , with apex angle 𝛼 = 18◦.

• Size of mirrors. The mirror size is a critical factor, especially when considering larger objects that

might occlude mirrors and reduce reflection efficiency (e.g., small or large pyramid). Interestingly,

changing size of mirrors is equivalent to adjusting the distance between the camera and the mirrors

when the mirrors are sifficiently large to cover the field of view. Thus, we explore size of mirrors by

adding offset to the distance from camera to the kaleidoscope.
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(a) 𝛼 = 12° (b) 𝛼 = 18° (c) 𝛼 = 24° (d) 𝛼 = 30°

Figure 2.3. Example kaleidoscopic images: apex angle. We show example kaleidoscopic images with different

apex angles 𝛼 , with number of mirrors 𝑁 = 4.

2.1.2 Evaluation metrics

To assess the performance of our kaleidoscope designs, we focus on two main aspects: coverage and

accuracy. Coverage is evaluated based on how much portion of the object surface is observable by the

camera at least once, following methodologies established in Xu et al. [2018]. Accuracy is measured by

examining both the quantity and distribution of rays in each observation, which are directly related to

triangulation.

Coverage. To quantify the coverage, we simulate a kaleidoscope with an object and run ray tracing,

and define the coverage as percentage of mesh triangles that is observed at least once by the camera.

This metric assesses whether rays intersect with a given triangle. By averaging this metric across all

triangles, we calculate the percentage of total triangles that are observed by the camera, thereby indicating

coverage.

Accuracy. The accuracy of 3D reconstruction is determined by triangulation, which depends on

two key factors of the rays in the correspondence: (i) the number of rays, and (ii) the diversity of ray

directions, based on the traditional baseline analysis in triangulation. Quantifying the number of rays

is straightforward through kaleidoscope simulation and ray tracing. To measure the diversity of ray

directions, we define two metrics: ray angles and ray conditioning. These metrics are described as

follows:

• Ray quantity. This metric is defined as the number of rays per triangle. It is calculated by counting

rays originating from distinct viewpoints. It’s important to note that a single triangle, particularly in

cases where pixel resolution is higher compared to triangle resolution, can receive multiple rays from
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the same virtual viewpoint (i.e., the same sequence of mirrors). However, these repeated rays from an

identical viewpoint do not aid in triangulation. Therefore, for our purposes, we only count rays that

are from unique viewpoints.

• Ray angles. This metric is the average of pair-wise angles between rays. We use the same set of rays

as counted for the ‘ray quantity’ metric to calculate this, meaning that only rays originating from

distinct viewpoints are included in this computation.

• Ray conditioning. This metric is the condition number of the triangulation matrix. We recognize

that angles might not fully represent ray diversity in 3D space. Therefore, we conduct conditioning

analysis, to evaluate how much the triangulation result can change for a small change in the ray origin

and direction. This can be achieved by treating triangulation as a linear inverse problem (detailed in

Chapter 3) as q = A−1b and computing the condition number of the triangulation matrix A, where q

denotes the 3D location nearest to all rays, and A and b are derived from the origins and directions

rays in correspondences.

2.1.3 Analysis and discussion

To evaluate and analyze the kaleidoscope design, we compute the metric from the simulation with

multiple different meshes with different poses with each kaleidoscope design. For the simulation, we

assume the object size is 5 cm in diameter, and the distance from the camera to the object is 67.5 cm.

Tables 2.1–2.4 present the results for coverage, ray count, ray angles, and ray conditioning, respectively.

These results are shown for varying numbers of mirrors 𝑁 and apex angles 𝛼 . For each combination, the

mirror size with the best metric selected for display. The following section summarizes the impact of

each design consideration.

Number of mirrors. The tables indicates that the number of mirrors 𝑁 does not significantly impact

coverage when 𝑁 > 2, at which point the virtual viewpoint resides on a 2D plane. In terms of accuracy, a

greater number of mirrors increases the quantity of rays. However, the angles and conditioning show no

significant correlation with the number of mirrors.

Configuration of mirrors. It is evident that smaller apex angles enhance the metrics in coverage,

both from Table 2.1 and Figure 2.3. With respect to accuracy, ray quantity is notably higher with smaller

apex angles, as a sharper triangle offers a more densely distributed virtual camera space, optimizing pixel

utilization. Nevertheless, ray angles and conditioning appear to be uncorrelated with the apex angle.
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Table 2.1. Design analysis: coverage. Coverages for different kaleidoscope designs.

𝛼

𝑁
2 3 4 5 6 7 8 9 10

12◦ 77.73% 97.73% 97.80% 97.90% 98.02% 98.50% 98.26% 98.14% 97.80%

18◦ 76.20% 95.87% 96.04% 97.08% 96.65% 96.84% 97.23% 96.16% 97.05%

24◦ 73.29% 92.50% 93.05% 95.61% 94.64% 95.42% 95.17% 96.26% 95.25%

30◦ 68.68% 92.33% 90.73% 91.94% 90.00% 92.93% 90.32% 93.43% 90.66%

36◦ 71.07% 82.04% 88.34% 80.19% 91.01% 84.65% 92.20% 87.79% 93.24%

Table 2.2. Design analysis: ray quantity. Average number of observed rays per triangle for different kaleidoscope

designs.

𝛼

𝑁
2 3 4 5 6 7 8 9 10

12◦ 3.63 15.11 16.42 20.44 19.40 22.96 21.09 22.24 22.59

18◦ 2.97 10.27 10.30 14.27 12.29 13.90 13.30 13.65 14.27

24◦ 2.47 5.79 6.56 10.66 7.89 9.83 8.82 11.13 9.83

30◦ 1.66 5.43 4.49 5.66 4.25 6.29 4.85 7.44 5.65

36◦ 1.93 2.47 4.03 2.78 4.59 3.80 5.67 4.97 6.67

Size of mirrors. Table 2.5 demonstrates the impact of mirror size, controlled by adjusting the distance

between the camera and the kaleidoscope, showcasing metrics for a specific mirror count (𝑁 = 4) and

apex angle (𝛼 = 18◦). The findings suggest that increased offsets yield better coverage and accuracy

results. This improvement is attributed to larger mirrors minimizing occlusion among reflected objects,

thereby allowing more efficient pixel utilization. The offset is set to zero when the distance from the

mirror to the object’s center equals the radius of the object (i.e., 2.5 cm).

Discussion. From the analysis, we conclude that a smaller apex angle significantly enhances coverage

and ray quantity, contributing to accuracy, while a larger mirror size improves metrics across both

coverage and accuracy. Additionally, increasing the number of mirrors can marginally boost coverage.

However, we also need to consider practical issues as well as theoretical analysis to construct a real
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Table 2.3. Design analysis: ray angles. Average pair-wise angles between rays per triangle for different kaleidoscope

designs.

𝛼

𝑁
2 3 4 5 6 7 8 9 10

12◦ 20.39 41.06 91.52 87.54 61.77 91.72 29.04 57.02 28.29

18◦ 33.09 86.72 35.99 71.84 53.95 37.08 47.35 49.53 68.14

24◦ 65.01 46.67 44.83 42.98 40.52 49.12 53.83 68.45 19.15

30◦ 110.63 99.65 48.08 37.88 37.79 85.14 36.82 33.92 57.88

36◦ 136.38 102.74 37.04 70.12 31.80 49.99 55.79 38.89 19.55

Table 2.4. Design analysis: ray conditioning. Average condition number of triangulation matrix for different

kaleidoscope designs.

𝛼

𝑁
2 3 4 5 6 7 8 9 10

12◦ 6.89 2.41 2.46 2.81 3.07 2.52 2.36 3.31 2.75

18◦ 5.33 2.92 2.46 2.81 2.32 2.77 2.48 3.63 2.41

24◦ 3.36 2.29 12.00 3.49 2.93 2.42 3.07 2.60 3.61

30◦ 3.26 3.05 2.82 18.18 7.74 6.48 3.01 17.46 3.27

36◦ 2.95 2.43 3.43 2.44 2.47 2.91 2.54 3.05 2.81

kaleidoscope. Two primary issues are system size and mirror boundaries.

First, system size needs to be considered for efficient kaleidoscopic imaging. A small apex angle

combined with large mirrors leads to an excessively long kaleidoscope. This design complicates object

placement, camera mounting, and robust kaleidoscope construction, hindering the ease of use. Thus,

when the improvement is marginal, maintaining moderate values for apex angle and mirror size is

advisable.

Second, real-world setups face challenges with pixels near mirror boundaries. These areas are unstable

due to gaps between mirrors and calibration errors. Minor inaccuracies can dramatically alter reflection

sequences, resulting in signifincatly different reconstruction. Figure 2.2 illustrates how large mirror

counts reduce segment size, exacerbating these issues. As the number of mirrors increases, the segment
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Table 2.5. Design analysis: size of mirrors. 𝑁 = 4, 𝛼 = 18◦

offset coverage ray quantity condition angles

0mm 94.24% 8.36 2.79 56.80

10mm 94.97% 8.94 2.67 66.70

20mm 95.32% 9.49 2.56 51.89

30mm 95.51% 9.97 2.54 45.35

40mm 95.64% 10.34 2.48 56.12

size diminishes, meaning rays are more likely to hit near mirror boundaries during reflections. In practice,

these boundary areas pose significant problems, as small discrepancies can lead to large errors in final

triangulations. Therefore, it is preferable to avoid relying on pixels near the boundary regions, and

thereby use moderate number of mirrors.

Further analysis with square-pyramid shape. We analyze the square pyramid additionally, which

shows good coverage and accuracy, with small boundary region, and also proved to be effective from

Xu et al. [2018]. Having more viewpoints is important for improving the accuracy of the multi-view

triangulation procedure our technique uses. This is different from the methodology of Xu et al. [2018],

where the ToF depth-sensing mechanism does not require having multiple views of the same point.

Having more views also helps improve coverage, and thus can enable reconstructing occluded parts of

objects with highly complex visibility. Fig. 2.4 shows that the sharp pyramid provides significantly more

virtual projectors and cameras than one with a larger angle. The sharp configuration also provides good

scanning coverage, as we show empirically in Fig. 2.5, where we visualize the number of projector and

camera pixels that observe each vertex of an object mesh. We leave the systematic optimization of the

kaleidoscope configuration as an important future research direction.

2.2 Kaleidoscope calibration

We describe how we calibrate kaleidoscopes by obtaining mirror geometry from a kaleidoscopic image.

2.2.1 Initial calibration

We calibrate our projector-camera pair using the algorithms of Zhang [2000] and Moreno and Taubin

[2012]. We calibrate the kaleidoscope using the algorithm of Takahashi et al. [2017]; Takahashi and
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(a) Wide pyramid (b) Sharp pyramid

Figure 2.4. Mirror design. Virtual projectors and cameras produced by pyramidal kaleidoscopes with different tip

angles. A sharp pyramid produces more virtual projectors and cameras, which can provide better coverage. The apex

angles are (a) 36◦ and (b) 18◦, and the number of the virtual cameras (or projectors) are 27 and 145, respectively.

Nobuhara [2021], which estimates the location and pose of the mirrors relative to the camera from

correspondences of a single 3D point. We refer readers to Takahashi et al. [2017] for the initial calibration

of pose of the mirrors, which can be formualted as a linear inverse problem.

2.2.2 Kaleidoscopic bundle adjustment

To improve upon this initial calibration, we use a bundle adjustment procedure inspired by Xu et al.

[2018]. As we show in Fig. 2.6, we optimize the parameters of the projector, camera, and mirrors, based

on scanning results for a reference object (sphere of diameter 40mm). We first sparsely scan the reference

sphere for a few pixels that can be easily labeled manually (e.g., direct and one-bounce), and fit a sphere

to the reconstructed point cloud. With this initial sphere fitting result, we can label every pixel using ray

tracing, and completely reconstruct the object. Then, we update the extrinsic parameters of the projector

and mirrors relative to the camera by minimizing an objective combining triangulation error (distance

of a reconstructed point from its corresponding backprojected rays), reprojection error (distance of the

projection of a reconstructed point from its corresponding pixel locations), and sphere fitting error of the

reconstructed point cloud. After bundle adjustment, we achieve a root-mean-square triangulation error
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Figure 2.5. Surface coverage. Our kaleidoscopic structured light system generates hundreds of virtual projectors

and cameras, which densely sample the light-view space. The heatmaps visualize the number of camera and projector

pixels that intersect each surface facet (normalized in each object), and the BRDF heatmap shows the number of

samples in each light-view angle in bivariate space.

of 33 μm, reprojection error of 1.3 pixels, and sphere fitting error of 361 μm.
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(a) Manual label (from initial sphere fitting) (b) Bundle adjustment results

Figure 2.6. Calibration. We calibrate the projector, camera, and mirrors using a reference spherical object of known

diameter. We manually label pixels using an initial sphere fitting result, and perform bundle adjustment to minimize

triangulation error, sphere fitting error, and reprojection error.
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In this chapter, we introduce kaleidoscopic structured light, which serves as the kaleidoscopic counterpart

to traditional structured light. The kaleidoscope enhances the conventional structured light system by

virtually replicating the projector and camera setup. It behaves as a virtual multi-view structured light

system, simulating the hundreds of projectors and cameras, which would be challenging to achieve in a

real-world setup.

The key challenge when using a kaleidoscope, lies in interpreting the captured image and decoding

the numerous views of the object that it provides. Specifically, we need to identify the virtual viewpoint

corresponding to each pixel on the captured image. We call this the labeling problem. The labeling

information allows us to decompose the single captured image into multiple segments, one for each

virtual viewpoint. In the absence of this information, we cannot estimate the 3D shape by triangulating

from correspondences across different views. The fact that in a kaleidoscope it is common to observe

hundreds of virtual views that are interwoven with each other makes the labeling problem particularly

challenging.

We propose a full-surround 3D imaging system that we call kaleidoscopic structured light, comprising

a projector, a camera, and a kaleidoscope. Our main technical result is to show that we can correctly

label the virtual projectors and virtual cameras for arbitrary kaleidoscope configurations, by using their

epipolar geometry and other physical constraints arising from image formation for this setup. With this

result, our kaleidoscopic structured light system can serve as a multi-view structured light system with

tens, if not hundreds, of virtual projectors and cameras, which are hard to construct with real devices. Our

system allows us to reconstruct shape (in the form of triangular meshes) of highly complex objects with

intricate features, by providing correspondences from multiple viewpoints with full-surround coverage.

Contributions. Our work advances the state of the art of 3D scanning, by facilitating the reconstruction

of challenging objects, such as textureless or glossy objects, with complex 3D geometry. This is made
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(b) Scanning (c) Labeling (d) Full surround 3D reconstruction(a) Imaging setup

Structured 
light

Kaleidoscope

Figure 3.1. Kaleidoscopic structured light. (a) We propose a system for full-surround 3D imaging using an imaging

setup that consists of a projector, a camera, and a kaleidoscope. (b) The camera and projector observe the object from

a large number of virtual viewpoints, which unravel the complex geometry of the object. (c) To use the kaleidoscopic

image for multi-view stereo, we label each pixel, i.e., identify the sequence of mirrors that the ray backprojected from

the pixel encounters before intersecting the object. (d) This labeling allows us to reconstruct the shape of the object

using multi-view triangulation. Our system enables us to reconstruct, with high accuracy and full coverage, highly

complex objects that have intricate geometric features, including concavities and self-occlusions. Reconstructed

point clouds and full-surround videos are available on the project webpage [Ahn et al., 2021b].

possible through the following contributions.

• Labeling using epipolar geometry. We develop a labeling technique that takes as input correspondences

between a projector pixel illuminating a point on the object, and multiple camera pixels observing that

point. Our labeling technique uses constraints specific to the kaleidoscopic setup, and in particular the

epipolar geometry across these multiple correspondences, to jointly decode the mirror sequences at

the projector and camera pixels.

• Theoretical guarantees on the recoverability of labels using epipolar geometry. Weprove a theoretical result

that establishes the uniqueness and correctness of the labels we decode with our labeling technique.

Specifically, we show that the labels we recover from the projector-camera pixel correspondences

are accurate, provided the epipolar planes corresponding to the projector-camera geometry are not

parallel to the mirror normals. This condition is easy to achieve by placing the camera and projector in

asymmetric poses relative to the kaleidoscope.

• Fast scanning techniques. We develop heuristics for speeding up our scan, exploiting the fact that

the labeling problem is highly over-constrained due to multiple camera pixels mapping to the same

projector pixel.

These advances in kaleidoscopic imaging allow us to push the boundaries of 3D scanning in terms of the
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complexity of the objects that can be reconstructed. Fig. 3.1 shows an example 3D scan of an object that

fully encompasses another smaller object, and is characterized by concavities, a large genus number, and

complex self-occlusion. We have released our code and data on the project website [Ahn et al., 2021b], to

facilitate reproducibility and follow-up research.

Limitations. The main limitation of the proposed kaleidoscopic structured light technique is the

time it requires for scanning an object. The baseline version of our technique relies on point scanning,

which can take a prohibitive amount of time. We provide parallelized scanning techniques to speed up

acquisition, but our scan times remain considerably longer than those achieved by traditional structured

light acceleration techniques. Unfortunately, the complex nature of kaleidoscopic light transport makes

these traditional techniques inapplicable to our setting.

3.1 Overview

We provide an overview of the proposed kaleidoscopic structured light system and its associated recon-

struction pipeline.

3.1.1 Imaging setup

Hardware. We construct the kaleidoscopic structured light system by combining a projector, a camera,

and a kaleidoscope. We create the kaleidoscope by placing four planar mirrors in a pyramidal shape,

which Xu et al. [2018] report empirically to provide good scanning coverage. We place the projector and

camera at the bottom of the pyramid, oriented to look at its tip. We calibrate the intrinsic parameters

of the projector and camera, and the extrinsic pose of the projector and mirrors relative to the camera.

Then, we place the object inside the mirror system, either by hanging it with strings, or by placing it on

the mirrors directly. The kaleidoscopic arrangement provides hundreds of virtual projectors and cameras.

We show a schematic of our setup in Fig. 3.1, and provide details about our hardware prototype and

calibration procedure in Section 3.4. Fig. 3.1 also outlines the steps of the imaging pipeline—scanning,

labeling, and shape reconstruction—which we review next.

Scanning. We first scan the object by turning “on” a number of projector pixels, which illuminate a set

of object locations, and thus camera pixels. To simplify exposition, we describe our approach assuming

that we activate only a single projector pixel at a time. In Section 3.4, we discuss techniques for speeding

up acquisition by simultaneously activating multiple projector pixels. The projector pixel that we activate
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illuminates a single point on the object surface, either directly or after one or multiple reflections on the

kaleidoscope. The illuminated point is observed at multiple camera pixels, each via a different sequence

of mirror reflections, and we save the locations of these pixels. This provides us with a correspondence

between a single projector pixel and multiple camera pixels, all of which also correspond to a single

object point. This interpretation assumes that interreflections on the object are weak enough to not

overwhelm the direct observation of the illuminated point; in our experience, this is generally true except

for when the scanned object is a mirror or highly-specular.

Labeling. We now have a correspondence between a single projector pixel and multiple camera pixels.

However, we cannot directly use this correspondence for triangulation, because we do not know the

mirror sequence encountered by the rays corresponding to the projector and camera pixels. For each

projector or camera pixel, we refer to the sequence of mirrors that the ray from the pixel encounters before

intersecting the object as the pixel’s label [Reshetouski et al., 2011]. We refer to the task of determining

the labels for all projector and camera pixels as the labeling problem. Solving the labeling problem is the

core challenge of kaleidoscopic imaging. Labeling and shape reconstruction are interwoven, as labeling

requires reasoning about the object shape, and shape reconstruction requires using the labels to perform

triangulation. We will define the labeling problem more formally in Section 3.1.2, and show how to solve

it using epipolar geometry constraints in Section 3.2.

Shape reconstruction. The projector-camera correspondences and labeling information allow us to

reconstruct 3D geometry using multi-view triangulation: For each projector pixel, we use its correspon-

dence with multiple camera pixels to estimate a 3D point that comes closest to intersecting all pixel rays

(Section 3.3).

3.1.2 Basics of kaleidoscopic imaging

Before we introduce how to solve the labeling problem, we review the transformation of rays and points

by planar mirrors, and the epipolar geometry between the virtual projectors and cameras.

Transformation by planar mirrors. To represent the transformation by a single planar mirror𝑚, we

define the mirror as a plane with normal n and distance from origin 𝑑 (represented in world coordinates).

Then, the 4 × 4 reflection matrix in homogeneous coordinates can be written as

D𝑚 =


I − 2nn⊤ 2𝑑n

0 1

 . (3.1)
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Mirror 1 Mirror 2

𝐗

𝐗! = 𝐃𝟐𝐗

𝐗!! = 𝐃#𝐗! = 𝐃#𝐃$𝐗

Real camera

Mirror 1 Mirror 2

Virtual camera

(a) Virtual-object interpretation (b) Virtual-camera interpretation

Virtual object

Real object

Figure 3.2. Mirror transformation interpretations. We can interpret the mirror transformation in two mathe-

matically equivalent ways: (a) Virtual object—the location of the virtual point in the real camera coordinate system,

corresponding to unfolding the ray from the object side. (b) Virtual camera—the location of the real point in the

virtual camera coordinate system, corresponding to unfolding the ray from the camera side.

Note that D𝑚 is an involutory matrix (i.e., D2
𝑚 = I), as the reflection of a reflected point is the same as the

original point.

The transformation by multiple planar mirrors can be represented by multiplying the reflection

matrices {D𝑚} corresponding to each mirror. Consider the example of Fig. 3.2: a ray from a 3D point

X bounces off mirrors 2 and 1 before being observed at a camera pixel, as shown in Fig. 3.2. Then, the

intermediate virtual point after the first reflection at mirror 2 equals X′ = D2X, and the final virtual point

seeing X′ through mirror 1 equals X′′ = D1X′ = D1D2X.

Labels. As mentioned earlier, successful shape recovery requires us to decode the light path between

a scene point and the projector or camera pixel observing it. Following Reshetouski et al. [2011], we

represent this path using a sequence of mirror labels; for a kaleidoscope with𝑀 mirrors, and a light path

with 𝐾 reflections, the label sequence is:

ℓ ≡ (𝑙𝑘 )𝐾𝑘=1 = (𝑙1, 𝑙2, 𝑙3, . . . , 𝑙𝐾 ), (3.2)
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𝐱! : Projector → Mirror 1 → Mirror 2 → Object
: (1, 2)

𝐱"! : Camera ← Mirror 2 ← Object
: (2)

𝐱"" : Camera ← Mirror 3 ← Mirror 2 ← Object
: (3, 2)

Mirror sequence (Label)

Figure 3.3. Label definition. The label of a projector or camera pixel is the sequence of mirrors that the ray

backprojected from the pixel reflects off of before reaching the scanned object.

where 𝑙𝑘 ∈ {1, 2, ..., 𝑀} denotes a mirror label. We use the convention that the labeling starts at the pixel

and ends at the object. For instance, in Fig. 3.3, the number of mirrors are𝑀 = 3, the labels for the light

path shown are ℓ𝑝 = (1, 2), ℓ𝑐1 = (2), and ℓ𝑐2 = (3, 2). With this label definition, the mirror transformation

matrix D(ℓ) can be written as a function of the label ℓ as

D(ℓ) =
𝐾∏
𝑘=1

D𝑙𝑘 = D𝑙1D𝑙2D𝑙3 · · ·D𝑙𝐾 . (3.3)

Virtual cameras and projectors. As Fig. 3.2 shows, the transformed 3D point X′′ = DX can be

interpreted in two ways: (i) virtual object—the location of the virtual point in the real camera coordinate

system; or (ii) virtual camera—the location of the real point in the virtual camera coordinate system. The

first interpretation corresponds to unfolding the ray from the object side, and the second to unfolding

the ray from the pixel side. Each of these equivalent interpretations has its own advantages. For example,

the virtual-object interpretation is useful when we derive the transformation by multiple mirrors, as it

lets us avoid the change of camera coordinates. By contrast, the virtual-camera interpretation is useful

when we derive expressions for triangulated 3D points.

We can use the mathematical equivalence of these two interpretations to represent the extrinsic

matrix of the virtual camera Tvirtual: Let Treal be the 4 × 4 extrinsic matrix of the real camera (i.e., camera

pose in the world coordinate system). Then, the virtual 3D point Xvirtual = DXreal in the real camera

coordinate system equals

TrealXvirtual = TrealDXreal = TvirtualXreal. (3.4)
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This can be interpreted as a real 3D point in the local coordinate system of a virtual camera whose

extrinsic matrix equals

Tvirtual = TrealD. (3.5)

The above derivation applies, mutatis mutandis, to projectors, and their virtual counterparts. We

skip the derivation as, for the most part, projectors can be treated as cameras.

Epipolar geometry of virtual projectors and cameras Now we can represent the virtual projectors

and cameras using the parameters that define the real projector, camera, and mirrors. Let the extrinsic

matrix of the real projector and camera be T𝑝 and T𝑐 , respectively. Then, the extrinsic matrix of the

virtual projector with mirror transformation D𝑝 is T′𝑝 = T𝑝D𝑝 , and that of the virtual camera with mirror

transformation D𝑐 is T′𝑐 = T𝑐D𝑐 . Thus, a 3D scene point X observed from the virtual projector and the

virtual camera equals 
X𝑝 = T′𝑝X = T𝑝D𝑝X,

X𝑐 = T′𝑐X = T𝑐D𝑐X,
(3.6)

where X𝑝 and X𝑐 are the representations of the point in the local coordinates of the virtual projector and

virtual camera, respectively.

To mathematically describe the epipolar geometry between the virtual projector and virtual camera,

we can express the relative transformation between them as

X𝑝 = T𝑝D𝑝X = T𝑝D𝑝D−1𝑐 T−1𝑐 X𝑐 =

R t

0 1

 X𝑐 , (3.7)

where R and t are the relative rotation and translation between the virtual projector and virtual camera,

respectively. Finally, to express the fundamental matrix, we denote by K𝑝 and K𝑐 the intrinsic matrices

of the virtual projector and virtual camera, respectively (i.e., x𝑝 ∼ K𝑝X𝑝 , and x𝑐 ∼ K𝑐X𝑐 ). Then, we can

express epipolar constraints between the virtual projector and virtual camera using the fundamental

matrix F = K−⊤𝑝 [t]×RK−1𝑐 , which satisfies x⊤𝑝 Fx𝑐 = 0.

3.2 Labeling

We now present our main technical results, detailing the conditions under which the label sequence can

be uniquely determined using the epipolar constraints between virtual projectors and cameras.
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Projector Camera
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𝐱"!
𝐱""
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(a) Correspondence from scanning (b) Labeling problem (c) Epipolar labeling

?
𝐱!!

Figure 3.4. Epipolar labeling. We label how each pixel is reflected using epipolar labeling. (a) We obtain correspon-

dences between a projector pixel and multiple camera pixels during scanning. (b) Labeling such a correspondence is

equivalent to determining the number of reflections for each projector and camera pixel given the mirror geometry.

We visualize the possible labels for the pixel x𝑐3 . (c) We show on the camera image the epipolar lines corresponding

to the possible labels, using matching colors. The green line passes through the pixel x𝑐3 , which satisfies the epipolar

constraint, whereas other lines do not. We prove that our epipolar labeling method can correctly determine the label

for generic mirror configurations.

3.2.1 Problem setup

Suppose that we illuminate a pixel x𝑝 on the projector and observe a set of pixels {x𝑐𝑖 } on the camera.

Then, we formulate the labeling problem as follows: given the correspondence of x𝑝 ↔ {x𝑐𝑖 }, find the

label, or mirror sequence, ℓ𝑝 associated with the projector pixel x𝑝 , and the label set {ℓ𝑐𝑖 } for each of the

camera pixels in {x𝑐𝑖 }.

We approach this problem as one of finding label for the projector pixel and each of the camera pixels,

such that the projector-camera pixel correspondences satisfy the epipolar constraints implied by the

labels. Let the mirror transformation of the projector pixel x𝑝 be D𝑝 = D(ℓ𝑝 ), and that of the camera pixel

x𝑐𝑖 be D𝑐𝑖 = D(ℓ𝑐𝑖 ), as defined in (3.3). Then, the relative transformation between the virtual projector

and camera is T𝑝D𝑝D−1𝑐𝑖 T
−1
𝑐 =


R𝑖 t𝑖

0 1

 . The fundamental matrix can now be written as a function of

the labels ℓ𝑝 and ℓ𝑐𝑖 as F(ℓ𝑝 , ℓ𝑐𝑖 ) = K−⊤𝑝 [t𝑖 ]×R𝑖K−1𝑐 . The epipolar distance due to the labels ℓ𝑝 , ℓ𝑐𝑖 and the

correspondence x𝑝 ↔ x𝑐𝑖 can be defined as

𝑑 (ℓ𝑝 , ℓ𝑐𝑖 ; x𝑝 , x𝑐𝑖 ) ≡ |x⊤𝑝 F(ℓ𝑝 , ℓ𝑐𝑖 )x𝑐𝑖 |. (3.8)

We refer to (3.8) as the virtual epipolar distance, and our goal is to find projector and camera labels such

that the virtual epipolar distance is zero for each of the projector-camera correspondences. Note that all

the correspondences share the same projector label. In the presence of noisy correspondences, we seek
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to minimize the total virtual epipolar distance given as

min
ℓ𝑝 ,{ℓ𝑐𝑖 }

∑︁
𝑖

𝑑 (ℓ𝑝 , ℓ𝑐𝑖 ; x𝑝 , x𝑐𝑖 ). (3.9)

3.2.2 Epipolar labeling

Optimizing (3.9) is not trivial, because there are exponentially many possible labels for both projector

and camera; hence, exhaustive search is computationally intractable. The size of the search space for

each projector or camera pixel is𝑂 (𝑀𝐾max ), where𝑀 is the number of mirrors and 𝐾max is the maximum

number of possible reflections in the kaleidoscope. In our prototype, 𝐾max = 10 (calculated by ray tracing

using the calibration results). However, we can reduce the search space using the fact that the true label at

a projector or camera pixel is a pre-subsequence of the label when there is no object in the kaleidoscope.

In particular, we can precompute a pixel’s empty label for an object-free kaleidoscope simply by ray

tracing using the calibration results. The ray will be repeatedly reflected by the mirrors until it escapes

the kaleidoscope. When we put an object in the kaleidoscope, the ray is truncated when it intersects the

object. Thus, if we denote the empty label of a pixel x as

ℓempty (x) = (𝑙𝑘 )𝐾max
𝑘=1 = (𝑙1, 𝑙2, 𝑙3, . . . , 𝑙𝐾max ), (3.10)

the label with an object will be a pre-subsequence of ℓempty (x),

ℓ = (𝑙𝑘 )𝐾𝑘=1 = (𝑙1, 𝑙2, 𝑙3, . . . , 𝑙𝐾 ) ⊂ ℓ
empty (x). (3.11)

Then, given the empty label, the labeling problem reduces to finding for each pixel the number of

mirror reflections till intersecting the object. Let the number of reflections for x𝑝 and x𝑐𝑖 be 𝐾𝑝 and 𝐾𝑐𝑖 ,

respectively. We can rewrite (3.9) as

min
𝐾𝑝 ,{𝐾𝑐𝑖 }

∑︁
𝑖

𝑑 (ℓ𝑝 , ℓ𝑐𝑖 ; x𝑝 , x𝑐𝑖 ). (3.12)

Now the search space size for each pixel reduces from 𝑂 (𝑀𝐾max ) to 𝑂 (𝐾max), and we can solve the

optimization problem (3.12) by linearly searching the number of reflections for x𝑝 and {x𝑐𝑖 }. Importantly,

the fact that this search couples a single projector pixel label with multiple camera pixel labels greatly

enhances the robustness of the labeling procedure. Fig. 3.4 shows an example of epipolar labeling for one

camera pixel, where our procedure finds the label that minimizes the virtual epipolar distance from the

empty label.
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3.2.3 Correctness of epipolar labeling

In Section 3.2.2, we described an efficient procedure for estimating labels for projector-camera pixel

correspondences. We now analyze the correctness of this labeling procedure. Our analysis establishes

two key facts: First, minimizing (3.12) determines labels up to a certain ambiguity. Second, resolving

this ambiguity is possible by simply using the fact that the scanned object must lie in the physical space

enclosed by the mirrors in front of the projector-camera system. Along the way, we derive conditions on

the projector-camera-mirror geometry necessary for the correctness of our labeling procedure.

We define a mirrored label 𝑀 (ℓ,𝑚) of a label ℓ = (𝑙1, 𝑙2, . . .) as

𝑀 (ℓ,𝑚) ≡ (𝑙1, 𝑙2, . . . ,𝑚), (3.13)

which is the label followed by an additional reflection by mirror𝑚. We can generalize this to a multiply

mirrored label, that is

𝑀 (ℓ, ℓ ′) ≡ (𝑙1, 𝑙2, . . . , 𝑙 ′1, 𝑙 ′2, . . .), (3.14)

This mirrored label is useful because all possible labels can be represented as mirrored labels of the true

label. In particular, let the true label for x𝑝 and x𝑐𝑖 be ℓ∗𝑝 and ℓ∗𝑐𝑖 , respectively, that is, 𝑑 (ℓ
∗
𝑝 , ℓ
∗
𝑐𝑖
; x𝑝 , x𝑐𝑖 ) = 0.

Given that all possible labels are also pre-subsequence of the empty label, we can represent them as

ℓ𝑝 = 𝑀 (ℓ∗𝑝 , ℓ ′𝑝 ), ℓ𝑐 = 𝑀 (ℓ∗𝑐𝑖 , ℓ
′
𝑐 ), (3.15)

where ℓ ′𝑝 and ℓ ′𝑐 are arbitrary labels contained in the empty label. We can now prove the following

proposition.

Proposition 1 (Virtual epipolar distance of identically mirrored label.). The virtual epipolar distance

between ℓ𝑝 and ℓ𝑐 is the same as that between𝑀 (ℓ𝑝 , ℓ ′) and𝑀 (ℓ𝑐 , ℓ ′) for any label ℓ ′.

Proof. From (3.3), we can write the mirror transformation matrix of the mirrored label D(𝑀 (ℓ, ℓ ′)) as

D(𝑀 (ℓ, ℓ ′)) = D(ℓ)D(ℓ ′). (3.16)

Then, the relative transformation between identically mirrored virtual projector and virtual camera

becomes

T𝑝D(𝑀 (ℓ𝑝 , ℓ ′))D(𝑀 (ℓ𝑐𝑖 , ℓ ′))−1T−1𝑐 (3.17)

=T𝑝D(ℓ𝑝 )D(ℓ ′)D(ℓ ′)−1D(ℓ𝑐𝑖 )−1T−1𝑐 (3.18)

=T𝑝D(ℓ𝑝 )D(ℓ𝑐𝑖 )−1T−1𝑐 . (3.19)

Therefore, the effect of the additional reflection cancels out, and the relative transformation does not

change by the identically mirrored label. Thus, the epipolar distance does not change either.
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Remark. Proposition 1 implies that, given the true projector-camera label pair ℓ∗𝑝 and ℓ∗𝑐𝑖 , any mirrored

label pair of the form𝑀 (ℓ∗𝑝 , ℓ ′) and𝑀 (ℓ∗𝑐𝑖 , ℓ
′) satisfies

𝑑 (𝑀 (ℓ∗𝑝 , ℓ ′), 𝑀 (ℓ∗𝑐𝑖 , ℓ
′); x𝑝 , x𝑐𝑖 ) = 𝑑 (ℓ∗𝑝 , ℓ∗𝑐𝑖 ; x𝑝 , x𝑐𝑖 ) = 0. (3.20)

Therefore, given the true label, mirroring both the projector and the camera pixel with the same sequence

produces a valid solution. This raises the question: can there be other ambiguous solutions to the labeling

problem? That is, could a differently mirrored label be used for the projector and camera and still satisfy

the epipolar constraints? We eliminate this possibility next.

Proposition 2 (Virtual epipolar distance of differently mirrored label.). Given the true labels, ℓ∗𝑝 and ℓ∗𝑐𝑖 ,

for the projector and camera pixels, the rays corresponding to the mirrored labels𝑀 (ℓ∗𝑝 , ℓ ′𝑝 ) and𝑀 (ℓ∗𝑐𝑖 , ℓ
′
𝑐 )

never meet for ℓ ′𝑝 ≠ ℓ ′𝑐 , i.e,

𝑑 (𝑀 (ℓ∗𝑝 , ℓ ′𝑝 ), 𝑀 (ℓ∗𝑐𝑖 , ℓ
′
𝑐 ); x𝑝 , x𝑐𝑖 ) > 0, (3.21)

provided that the kaleidoscope and the projector-camera pair are in a generic configuration where the epipolar

planes, both real and virtual, and mirror normals are not co-planar.

Proof. Our proof relies on the intuition that the probability of two arbitrary lines in 3D being co-planar

is zero. We explain the proof when the mirrored label introduces a single additional bounce. Without

loss of generality, we assume that the true 3D point is at the origin, and that the last two mirror bounces

before hitting the object are at points p1 and p2, on mirrors 1 and 2, respectively. If we have the true

labels, the rays for triangulation are p1 + 𝑡1 (−p1) and p2 + 𝑡2 (−p2) and intersect at the origin. If we have

the wrong labels, which include additional bounces on mirrors 1 and 2, the rays are p1 + 𝑡1 (I− 2n1n1⊤)p1
and p2 + 𝑡2 (I − 2n2n2⊤)p2. The two rays are co-planar if and only if

det
( [
p1 − p2 (I − 2n1n1⊤)p1 (I − 2n2n2⊤)p2

] )
= 0, (3.22)

which is possible only when p1, p2, n1, and n2 are co-planar.

There exist degenerate cases when the conditions of Proposition 2 do not hold. One example is when

mirrors are perfectly symmetric, as in Fig. 3.5, and consequently a reflected ray is on the same plane

as the epipolar plane of the true label. However, placing the projector-camera pair in an asymmetric

configuration relative to the mirrors avoids such degeneracies. Note that Lanman et al. [2009] used

a system that is in a perfectly symmetric configuration by design. Their focus was on mitigating

interference, with labeling done manually.
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Figure 3.5. Degenerate configuration. When the mirrors and the rays from the projector and camera are perfectly

symmetric, the reflected rays can lie on the epipolar plane of corresponding projector-camera pixels.

Mirror 𝑚Real camera

Virtual ray

front behind

Real ray 

Figure 3.6. Observation. For a physically feasible traced ray involving mirror reflections, the virtual ray that is

unfolded from the real ray before hitting mirror𝑚 is always behind the mirror𝑚.

From Propositions 1 and 2, we know that minimizing (3.12) provides the true labels for projector

and camera up to mirroring by a shared third label. We will resolve the remaining ambiguity with

Proposition 3 below. We first introduce the following observation.

Observation. For a physically feasible traced ray involving mirror reflections, the virtual ray that is

unfolded from the real ray before hitting mirror𝑚 is always behind the mirror𝑚. Figure 3.6 shows an

example: the virtual rays (dotted line segments) unfolded from the real rays (solid line segments) are
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always behind the mirror𝑚. This is true because the mirror reflection transforms a real or virtual point

in front of the mirror to a virtual point behind the mirror.

With this observation in mind, we can now resolve the ambiguity due to identically mirrored labels.

Proposition 3 (Triangulation from identically mirrored labels.). The triangulated point from identically

mirrored labels is always outside the mirror system.

Proof. We denote by X∗ the true 3D point triangulated from x𝑝 and x𝑐𝑖 given the true labels ℓ∗𝑝 and

ℓ∗𝑐𝑖 . When we have incorrect labels 𝑀 (ℓ∗𝑝 , ℓ ′) and 𝑀 (ℓ∗𝑐𝑖 , ℓ
′) that are identically mirrored with a label

ℓ ′ = (𝑙 ′1, 𝑙 ′2, ..., 𝑙 ′𝐾 ′ ), the corresponding virtual projectors and cameras are transformed by the label ℓ ′

relative to the virtual projectors and cameras of the true labels. Therefore, triangulation reconstructs

the transformed point X𝑡 = D(ℓ ′)−1X∗. We will show that X𝑡 is always outside the mirror system, and

specifically, behind the mirror 𝑙 ′
𝐾 ′ corresponding to the last element of ℓ ′.

We can prove this directly using the above observation because: 1) the empty label is from the

object-free traced ray, which is physically feasible; 2) X∗ is the true 3D point, which is on the real ray

before hitting mirror 𝑙 ′
𝐾 ′ ; and 3) X𝑡 = D(𝑙 ′

𝐾 ′ )−1 · · ·D(𝑙 ′1)−1X∗ corresponds to a point on the unfolded

virtual ray frommirror 𝑙 ′
𝐾 ′ . Thus, X𝑡 is behind the mirror 𝑙 ′

𝐾 ′ , and therefore outside the mirror system.

In summary, Propositions 1–3 establish that we can determine the labels associated with a projector

pixel and its corresponding camera pixels by searching over the empty labels associated with each pixel

for the labels that have zero (or smallest) total virtual epipolar distance, and produce a triangulated point

inside the mirror system. In the absence of noise, this procedure provably produces correct labels.

Remark. We note that, even though we only discuss adding labels to the true label, our derivation

automatically covers removing labels as well. This is a consequence of the fact that the matrix D𝑚 , which

describes the mirror transformation, is involutory. Hence, adding the trailing end of a mirror sequence in

reverse is equivalent to deleting the trailing end from the sequence.

3.2.4 Comparison to other labeling methods

Visual hull. Reshetouski et al. [2011] propose solving the labeling problem using the visual hull,

approximated through space carving from background pixels. For objects with simple shapes that are

predominantly convex, the labeling from a crude visual hull is often a good approximation to the true

labeling. However, for objects that have complex geometry and self-occlusions, the visual hull invariably

fails to capture concavities, especially when there are not enough background pixels. Fig. 3.7 shows
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an example of such a failure case. (For the visualization of labels, we sorted the mirror sequence in

ascending order and used the “cool” MATLAB colormap—magenta-to-cyan linearly.) For such objects, the

resulting labeling can significantly deviate from the correct labeling. The labeling accuracy for projector

and camera is 76.13 % and 83.47 % for the visual hull method, and 99.96 % and 99.99 % for ours. The visual

hull results also depend on the quality of background segmentation and the initial shape for carving.

In the simulation for Fig. 3.7, we used the ground-truth background segmentation and set the initial

shape to be a cube that is 20 % larger than the ground-truth shape in each axis. Ihrke et al. [2012] used

a structured light system with a kaleidoscope as we do, but relied on the inaccurate labeling from the

visual hull, resulting in artifacts as we discuss in Section 3.5.

Pulsed ToF. Xu et al. [2018] combined a kaleidoscope with a pulsed ToF camera, with the source and

detector collocated. The ToF measurement provides a simple solution to the labeling problem: As the

source and detector are collocated, simply ray tracing from the detector pixel for a distance equal to half

the measured ToF provides the location of the 3D point. However, this technique requires a high-cost

pulsed ToF camera for precise ToF measurements.

3.3 Surface Reconstruction

In the previous section, we have shown how to establish labeled correspondences x𝑝 ↔ {x𝑐𝑖 } between a

projector pixel x𝑝 and multiple camera pixels {x𝑐𝑖 }. We now explain how to recover a 3D point q from a

labeled correspondence, as well as how to reconstruct the surface of the scanned object from multiple

such 3D points.

Multi-view triangulation. A naive approach for reconstructing 3D points q from a labeled corre-

spondence x𝑝 ↔ {x𝑐𝑖 } would be to apply the classical two-view triangulation procedure [Hartley and

Zisserman, 2004] to each projector-camera pixel pair x𝑝 ↔ x𝑐𝑖 separately. However, this approach does

not take into account the information that each of these projector-camera pixel pairs is an observation of

the same underlying 3D point q. These multiple observations of the same point correspond to different

viewpoints and baselines, and thus taking them into account jointly can greatly improve the robustness of

the reconstruction of the unique 3D point q. The naive approach produces multiple perturbed versions of

this point, resulting in a noisy and redundant point cloud that impedes subsequent surface reconstruction

procedures.

We adopt a multi-view triangulation approach, which uses all the geometric information from the

one-to-multiple labeled correspondence x𝑝 ↔ {x𝑐𝑖 }, to reconstruct a single 3D point q. We obtain this
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Figure 3.7. Comparison to visual hull. Reshetouski et al. [2011] solved the labeling problem using the visual hull.

Their approach fails when there are insufficient background pixels, or for non-convex objects. Green and red colors

in “label error” indicate correct and incorrect labels, respectively.

point by solving a linear least-squares problem:

q = argmin
q

∑︁
𝑖

ℎ2𝑖 (3.23)

= argmin
q

∑︁
𝑖

∥
(
I − v𝑖v𝑖⊤) (q − o𝑖

)
∥2 (3.24)

= argmin
q

q⊤Aq − 2b⊤q + 𝑐 (3.25)

= A−1b, (3.26)

where ℎ𝑖 is the distance from the 3D point q to each ray, o𝑖 is the ray origin, v𝑖 is the ray direction,

and we use A ≡ ∑
𝑖 (I − v𝑖v𝑖⊤), b ≡

∑
𝑖 (I − v𝑖v𝑖⊤) o𝑖 . and c ≡ ∑

𝑖 o⊤𝑖 (I − v𝑖v𝑖⊤) o𝑖 . Fig. 3.8 compares

point clouds produced using the naive two-view and our multi-view triangulation procedures. For this

comparison, we use simulated data where we perturb measurements of camera pixel locations with

Gaussian noise of variance 5 pixels. We observe that the point cloud from multi-view triangulation is

less noisy than that from two-view triangulation. We empirically found this to be the case across all our
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(a) Two-view triangulation (b) Multi-view triangulation

Figure 3.8. Triangulation. Given the correspondence between a projector pixel and multiple camera pixels, we

can perform either (a) two-view triangulation for all pairs in the correspondence; or (b) multi-view triangulation.

Multi-view triangulation reconstructs a single 3D point that is closest to all the rays, making it more robust than

two-view triangulation. Multi-view triangulation produces less noisy results than two-view triangulation when

there is noise in the measurements.

experiments. Therefore, we use multi-view triangulation throughout this section.
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Table 3.1. Components used in our hardware prototype.

Description Company Model name

laser projector Sony MP-CL1A

camera FLIR GS3-U3-91S6M

camera lens Nikon AF Nikkor 24mm f/2.8D

mirror Edmund Optics 46-656 (custom)

Outlier rejection. The multi-view triangulation estimate of (3.26) is susceptible to outlier rays due to

incorrect pixel detections (e.g., pixels illuminated due to direct illumination of the camera from a virtual

projector, or indirect illumination effects). Such outliers can cause severe errors in the estimation of the

unknown 3D point q. We address this issue using RANSAC [Fischler and Bolles, 1981]: We repeatedly

perform two-view triangulation between projector-camera pixel pairs x𝑝 ↔ x𝑐𝑖 randomly selected from

the labeled correspondence x𝑝 ↔ {x𝑐𝑖 }. For each reconstructed 3D point, we choose as inliers the pixels

in {x𝑐𝑖 } whose corresponding rays are close enough (0.5mm) to the reconstructed point. Finally, we

perform multi-view triangulation between x𝑝 and the largest inlier set to get a robust estimate of the 3D

point.

Surface reconstruction. Our triangulation procedure produces a 3D point for each labeled correspon-

dence x𝑝 ↔ {x𝑐𝑖 }. The last step in our reconstruction pipeline is to use the resulting 3D point cloud to

reconstruct the object surface. For this, we first compute PCA normals [Hoppe et al., 1992] for each point

in the point cloud. We then reconstruct a mesh representation of the scanned object by using screened

Poisson surface reconstruction [Kazhdan and Hoppe, 2013], which estimates an implicit surface from the

oriented point cloud, and extracts an isosurface.
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Figure 3.9. Interference in parallel scanning of a spherical object. The graph quantifies the trade-off between

interference and acquisition speed, by plotting the number of points interfered by mirror reflection against the

number of simultaneously illuminated projector pixels.

3.4 Implementation

ProjectorCamera

Kaleidoscope

Object

We have developed a hardware prototype for a kaleidoscopic structured

light system, comprising a laser projector, a monochrome CCD camera,

and a kaleidoscope. The inset shows a photograph of our prototype.

For the kaleidoscope, we use four planar metal-coated mirrors (surface

flatness 4–6𝜆, dimensions 200mm × 307mm) that we cut to be shaped

as isosceles triangles. Table 3.1 lists the exact parts used in our prototype.

In the rest of this section, we describe how we calibrate our system, and

how we accelerate scanning.

Parallel scanning. Up to this point, we have assumed that scanning

works by sequentially illuminating all projector pixels, one at a time.

However, sequential scanning makes acquisition times impractically long.

We now describe a parallel scanning technique for faster acquisition.

Similar to traditional structured light techniques, our parallel scanning
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technique operates by simultaneously illuminating multiple projector pixels with a temporal code, and

decoding the measurements made at a pixel to obtain projector-camera correspondences. However,

a key difference in the kaleidoscopic setting is the complexity of the epipolar geometry (and thus,

interference patterns) produced by the multiple mirrors, which makes traditional column-scanning

schemes inapplicable. Instead, we randomly sample groups of 28 − 1 projector pixels, encode each

pixel with an 8-bit binary code, and project the sequence of binary images (and their inverses for

improved robustness) that correspond to each bit of the binary code. Then, we obtain the camera pixels

corresponding to each projector pixel by decoding the binary code from the captured image.

This parallel scanning technique accelerates acquisition, but also exacerbates interference: multiple

projector pixels may illuminate the same 3D point, which could result in erroneous decoding. The

likelihood of this happening increases as we increase the number of projector pixels we simultaneously

illuminate, which creates a trade-off between acquisition acceleration and interference.

To empirically quantify this trade-off, we simulated parallel scanning of a spherical object. Fig. 3.9

plots the number of points having interference in each scan, as a function of the number of simultane-

ously illuminated projector pixels. Based on this plot, we chose to illuminate 28 − 1 projector pixels,

corresponding to an average of one pixel with interference in each scan. This results in few decoding

errors, which are easily handled during triangulation via RANSAC.

3.5 Results

We evaluate our method using simulated and real experiments. Our code and data are available on the

project page [Ahn et al., 2021b].

3.5.1 Simulated experiments

We use a ray tracing implementation (customized to handle multiple specular-specular reflections)

to simulate measurements from our kaleidoscopic structured light system. We use these simulated

measurements to evaluate the results of our labeling and shape reconstruction procedures against known

ground truth. The diameter of our simulated objects is 60mm.

Labeling accuracy. Fig. 3.10 and Table 3.2 show simulated labeling results for three synthetic objects,

with and without Gaussian noise in the camera pixel measurements (𝜎 = 5 px). Our labeling provides

almost 100% accuracy in all cases.
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Figure 3.10. Labeling accuracy for synthetic data. We visualize the labeling results under Gaussian noise for

several simulated objects.

Table 3.2. Labeling accuracy statistics. We report labeling accuracy metrics, with and without adding Gaussian

noise (𝜎 = 5 px) to camera pixel measurements. The labeling is robust to measurement noise.

Labeling accuracy sphere armadillo bunny-grid

Projector (w/o noise) 100.00% 100.00% 100.00%

Projector (Gaussian noise) 99.69% 99.69% 99.43%

Camera (w/o noise) 100.00% 99.99% 100.00%

Camera (Gaussian noise) 99.99% 99.99% 99.98%

Reconstruction accuracy. Fig. 3.11 shows simulated shape reconstruction results, and average distance

between reconstruction and ground truth. We note that the multiple virtual views of our system make it

possible to reconstruct the severely-occluded inner bunny.
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Figure 3.11. Reconstruction accuracy for synthetic data. We simulate scanning of an object with diameter 60mm

using the same imaging system as our prototype, with and without noise. Our system makes it possible to accurately

reconstruct the severely occluded inner bunny.

Comparisons with other kaleidoscopic imaging methods. Fig. 3.12 shows simulated comparisons

to other kaleidoscopic imaging methods. We used pixel binning and depth binning to simulate the finite

resolution of the sensor used in each method. We compare the performance of different approaches using

two metrics: The first metric is accuracy, which we define as the average distance of the vertices of the

reconstructed mesh from the ground-truth mesh; this metric quantifies how the reconstruction is to the

ground truth. The second metric is coverage, which we define as the average distance of the vertices of

the ground-truth mesh from the nearest point of the reconstructed point cloud; this metric quantifies

how well the reconstruction covers each part of the ground-truth shape.

• Fig. 3.12(a) shows results from the visual hull technique proposed by Reshetouski et al. [2011]. We

observe that this technique does not recover the inner bunny, because of the limited background area
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Figure 3.12. Simulated comparison of kaleidoscopic imaging methods. We use simulation to quantitatively

evaluate the performance of various kaleidoscopic imaging methods. Our method provides the best reconstruction

accuracy.

available for space carving.

• Fig. 3.12(b) shows results from a variation of our technique inspired by Ihrke et al. [2012], where we

perform multi-view triangulation with RANSAC, but using labels from the visual hull (Fig. 3.7). We

observe that, even though RANSAC mitigates the effect of incorrect labels, there are still some artifacts

remaining.

• Fig. 3.12(c) and (d) show results from the ToF-based technique of Xu et al. [2018]. We set the spatial

resolution of the ToF camera to be the same as that of our camera, and simulate two different ToF

depth resolutions: Fig. 3.12(c) uses a depth resolution of 0.2mm, corresponding to the calibration error

reported by Xu et al. [2018] using a costly high-end lidar (Leica ScanStation P40 3D Laser Scanner).

Fig 3.12(d) uses a depth resolution of 5mm, corresponding to a low-end lidar of cost comparable to

our setup (Intel Realsense LiDAR Camera L515). We observe that lowering the resolution results in a

severe increase in noise in the reconstructed shape.

• Fig. 3.12(e) shows results from our method. We observe that, compared to the visual hull technique

(a), our use of triangulation enables reconstructing the concave and occluded parts of the shape.

Additionally, using accurate labels from our labeling technique reduces artifacts and improves accuracy
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Figure 3.13. Real object scans from our prototype. Reconstructed point clouds and full-surround videos are

available on the project webpage [Ahn et al., 2021b].

by two orders of magnitude compared to using visual hull labels (b). Our technique has a similar

accuracy improvement when compared to ToF using a lidar of cost comparable to our setup (d). Lastly,

our technique achieves comparable accuracy with the ToF setup of Xu et al. [2018], while using a much

more affordable imaging setup.

3.5.2 Real experiments

Scanned objects. Fig. 3.13 shows reconstructions of a variety of real objects obtained using the

kaleidoscopic structured light prototype of Sec. 3.4. For each object, we show a kaleidoscopic image under
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Table 3.3. Effective number of per-vertex projector and camera views. The number is generally smaller for

larger objects because of occlusion.

#views elephant skeleton cat brush treble clef skull

projector 5.2 6.3 4.8 9.1 4.7

camera 5.4 6.9 4.5 10.2 4.3

pair 31.8 51.5 24.3 96.5 22.2

uniform projector illumination, camera labels, and reconstructed mesh surface. Our setup allows scanning

objects of size up to about 10 cm (e.g., the skull has dimensions 5 cm × 10 cm × 7.5 cm). To visualize the

appearance of the reconstructed surface, we use a simple texture mapping procedure by projecting each

vertex to all visible (virtual) cameras, and computing the average intensity of the corresponding pixel

values. As our setup uses a monochrome camera, we obtain per-pixel color by projecting color channels

sequentially from our RGB projector. We additionally visualize PCA vertex normals, to help better assess

the quality of the reconstructed mesh. Fig. 3.1 shows an additional scanned object. We observe that our

kaleidoscopic structured light system produces high-quality reconstructions for a variety of objects with

complex visibility and reflectance properties.

Visibility. Fig. 3.14 and Table 3.3 report the effective average number of projector views, camera views,

and unique projector-camera pairs per mesh vertex, for the scanned objects of Fig. 3.1 and Fig. 3.13.

These numbers are strongly affected by the size and location of the object inside the kaleidoscope. For

example, the skull has an average of 22.2 projector-camera pairs per vertex, whereas the smaller treble

clef has an average of 96.5 pairs per vertex.

Quantitative evaluation. To quantify the reconstruction accuracy and coverage of our technique, we

used our setup to scan a 3D-printed object for which a ground-truth mesh is available. The object had a

width of 8 cm, and was 3D-printed at a layer resolution of 0.17mm. Fig. 3.15 shows the results. We aligned

the reconstructed mesh with the ground-truth one using the iterative closest point algorithm [Besl and

McKay, 1992]. By comparing the two meshes, we estimated an accuracy of 0.235mm and coverage of

0.305mm for our method. By comparing these numbers with those in Fig. 3.12(e), where we used the

same ground-truth mesh for a simulated experiment, we can also quantitatively assess the impact of

calibration errors and other hardware imperfections on reconstruction quality.
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Figure 3.14. Effective projector and camera views for different objects. We visualize and report the number of

the effective projectors and cameras around the object. Overall, there are almost 100 virtual projectors and cameras

surrounding each object.

Comparison with kaleidoscopic ToF system. We performed an experiment where we replaced the

projector-camera pair in our prototype with a commercial lidar of cost comparable to our setup (Intel

Realsense LiDAR Camera L515, same depth resolution as that used for the simulated experiments of

Fig 3.12(d)). We used this modified system to scan the same spherical calibration object as in Fig. 2.6. We

show the results in Fig. 3.16. We note that, because of the low depth resolution and noisy ToF measure-

ments of our lidar, we were unable to obtain accurate calibration information for the modified imaging

setup using the calibration procedure of Xu et al. [2018]. In turn, the lack of accurate calibration meant

we could not produce a meaningful shape reconstruction using their proposed ray folding procedure. We

show, instead, our reconstructed unfolded point cloud, which we observe to be a lot noisier than the one

obtained by our technique (Fig. 2.6). As Xu et al. [2018] and our simulations in Fig. 3.12 both have shown,

using a high-end lidar can alleviate these issues and achieve the same reconstruction accuracy as our

structured light technique, albeit at a much higher hardware cost.

3.6 Discussion

PCA normals. The combined use of our labeled correspondences and multi-view triangulation with

RANSAC robustly reconstructs accurate point clouds. However, the screened Poisson surface reconstruc-

tion [Kazhdan and Hoppe, 2013] algorithm we use to create the final mesh reconstructions requires as

input oriented point clouds. We produce those by assigning PCA normals [Hoppe et al., 1992] to our

reconstructed unoriented point clouds. Unfortunately, PCA normals can be inaccurate for shapes with

complex topology, resulting in inaccurate meshes. As an example, in Fig. 3.17 we show scan results

for a slinky: The reconstructed point cloud accurately represents the object’s interwoven thin parts;

however, the reconstructed mesh has strong artifacts near the center, because of the inaccurate PCA
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Figure 3.15. Real scan of a 3D-printed mesh. We 3D-printed and scanned the mesh used in the simulation results

of Fig. 3.12. We report performance metrics comparing the reconstructed and ground-truth meshes.

normals. Combining our technique with more accurate normal estimation procedures, including ones

using shading information, can help improve the accuracy of the final mesh reconstructions.

Pose of the object in the kaleidoscope. Fig. 3.18 shows results from scans of the same object from two

different poses: in pose 1, we placed the object directly on the kaleidoscope, whereas in pose 2, we hung it

using strings. In the former case, the parts on the mirrors (e.g., head, tail) are visible from few viewpoints,

and thus are not reconstructed. By contrast, in the latter case, these parts are well reconstructed. This

example highlights the strong impact object pose can have on the final reconstruction, and suggests

object pose optimization as an important future research direction.

Comparison to neural rendering. 3D reconstruction by moving a flash-camera pair around an object,

in the style of IDR [Yariv et al., 2020] and NeRF [Mildenhall et al., 2020], has recently seen immense
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(c) Point cloud (unfolded) (d) Zoom in (noisy surface)

(a) RGB image (b) Depth map

Figure 3.16. Kaleidoscopic time-of-flight experiment. Unfolded point cloud obtained from the depth map

of a commercial low-resolution lidar. The depth measurements are a lot noisier than those obtained using our

kaleidoscopic structured light system for the same object (Fig. 2.6).

success. This is advantageous over our technique in terms of cost, object size, acquisition time, and

overall user convenience. By contrast, our structured light technique can handle textureless objects

where passive techniques fail. Our technique can also handle very complex shapes where, due to visibility,

flash photography methods can produce poor results, unless the number of views becomes impractically

large. In the future, it is possible that using neural rendering algorithms to process measurements from

kaleidoscopic structured light setups can lead to scanning technologies that combine the complementary

advantages of the two approaches.
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Figure 3.17. Effect of PCA normals. We show an example of how of failures in normal estimation impact

reconstruction quality: Our system estimates an accurate point cloud of a very thin object, for which the PCA normal

estimates are inaccurate. As a result, the reconstructed mesh has strong artifacts, especially at the center where

different rings intersect.

Summary. We introduced a full-surround 3D imaging technique that combines a projector-camera pair

with a kaleidoscope, to produce a virtual multi-view structured light system. We derived an algorithm

that uses the epipolar geometry between virtual projectors and virtual cameras to produce provably

correct labels for pixels in the kaleidoscopic image, in terms of which virtual projector and virtual camera

these pixels correspond to. By combining these labels with multi-view triangulation, we showed that our

system can achieve high reconstruction accuracy and full coverage, even when scanning objects with

complex geometry and reflectance.
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Figure 3.18. Effect of object pose inside the kaleidoscope. Changing the object pose impacts reconstruction

quality. Having enough space between the object and mirrors can reduce occlusion and improve the reconstruction.
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In this chapter, we introduce a technique for full-surround 3D reconstruction with a single kaleidoscopic

image in the framework of inverse rendering using the neural surface representation. Our key insight

is that a single pixel in a kaleidoscopic image is equivalent to multiple such pixels in its multi-camera

counterpart. For example, the pre-image of the background pixel, which is the collection of 3D points

that map to that pixel, in a kaleidoscope does not intersect with the object; this implies that is also a

background pixel in all virtual views associated with it. Similarly, even a foreground pixel that intersects

with the object can be used to carve out space since all of the light path prior to a ray’s intersection with

the object can be considered as background.

Armed with these insights on the nature of information encoded in a kaleidoscopic image, we propose

a technique that we call kaleidoscopic space sculpting; sculpting sets up an optimization problem that

updates a neural implicit surface [Yariv et al., 2020] using a collection of cost functions that encode

background information (to remove regions) and foreground regions (to add regions), as well as the

texture of the object. Interestingly, our technique does not explicitly calculate the label information.

Despite this, it provides robust single-shot full-surround 3D reconstructions. For dynamic objects, we

apply our technique separately on each frame of a kaleidoscopic video, to obtain full-surround 3D videos.

Figure 4.1 shows a gallery of objects placed beside their 3D printed counterparts, obtained using neural

kaleidoscopic space sculpting.

4.1 Related Work

Neural rendering. The proposed technique relies on recent advances in neural rendering and rep-

resentations, which have found immense success in shape estimation [Yariv et al., 2020] and novel

viewpoint synthesis [Barron et al., 2021; Mildenhall et al., 2020; Verbin et al., 2022]), especially for scenes

that are largely static. There have been some recent works towards extending these techniques for
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Figure 4.1. 3D printing of shape reconstructions. The proposed neural kaleidoscopic space sculpting can generate

replicas of real objects with a range of shapes and reflectances.

dynamic scenes [Park et al., 2021a,b; Pumarola et al., 2021]. The most successful among these work use

class-specific priors for faces and the human body [Liu et al., 2021; Peng et al., 2021a,b; Wang et al.,

2021; Xu et al., 2021]. In contrast, our technique provides a low-cost (vs. multi-view) solution for general

objects (non-class specific). As our technique can reconstruct the scene frame by frame from a video, it

can handle topology and color changes that cannot be modeled as rigid deformations.

4.2 Overview

Our problem formulation is as follows: given a kaleidoscopic image I and its silhouette mask M, we seek

to reconstruct a 3D surface that is photo- and silhouette-consistent. There are many solutions to the

multi-view version of this problem, where the input is multiple images instead of a single kaleidoscopic

image, including neural-rendering approaches [Mildenhall et al., 2020; Yariv et al., 2020] that have recently

found great success. However, multi-view approaches do not directly apply to our problem, because the

kaleidoscopic image has an additional challenge—the labeling problem. We discuss labeling and other

concepts related to our approach.

Labels. We define a label as the sequence of mirrors that the ray backprojected from a pixel encounters

before intersecting the object [Ahn et al., 2021a; Reshetouski et al., 2011]. With the label information, and
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Figure 4.2. Background. (a) Labeling is needed to utilize a kaleidoscopic imaging system as a virtual multi-view

imaging system. (b) The kaleidoscopic visual hull [Reshetouski et al., 2011] has the same silhouette as the true object

but may have different labels because of the lack of label information in the silhouette.

given the mirror geometry, we can decompose the kaleidoscopic image into the corresponding virtual

camera images, by unfolding backprojected rays and assign the virtual viewpoints for each pixel. In

particular, given the mirror geometry, we can determine the label from the number of bounces 𝑏 for each

pixel x. As the label of an empty kaleidoscope (i.e., without object) can be precomputed, 𝑏 ∈ {0..𝐵∅x }

can determine the label and thereby the pose of the virtual camera, where 𝐵∅x is the length of the empty

label [Ahn et al., 2021a]. Figure 4.2(a) shows a labeling example where the empty label (1, 2) is the

sequence of mirror numbers. If we can figure out the number of bounces before hitting the object being

𝑏 = 1 ∈ {0, 1, 2} (𝐵∅x = 2), then the resulting label becomes (1), implying that this ray is equivalent to

the ray from the virtual camera generated by the label (1). Thus, labeling allows kaleidoscopic imaging

to serve as a virtual multi-view imaging system and to reconstruct the object geometry via multi-view

stereo (MVS). However, it is challenging to obtain the label since it itself is a function of the unknown

object shape.

Kaleidoscopic visual hull. Visual hull [Kutulakos and Seitz, 2000; Laurentini, 1994], initially used for

multi-view images, is obtained by “carving" the voxels that are not consistent with the silhouette of the

input images. A visual hull can provide a good approximation of 3D shape, if we have ample multi-view

images and if the object under consideration is not overly complex.

Visual hulls have been utilized for kaleidoscopic images [Reshetouski et al., 2011] where the back-

ground rays are reflected multiple times. To be specific, this method backprojects a ray from a pixel x and

reflects it with mirrors, and computes the rays r𝑏x (𝑡) = o𝑏x + 𝑡d𝑏x for each bounce 𝑏. o0x is the real camera
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location, d0x is the backprojected direction, o𝑏+1x is the intersection point between r𝑏x (𝑡) and the mirrors,

and d𝑏+1x is the reflected direction. Once the visual hull is obtained, the label can also be obtained simply

by ray tracing to the visual hull inside the kaleidoscope. The key idea underlying this approach is that it

requires only background pixels, which are easy to label as the background labels are independent of the

object shape.

A useful property of the visual hull is that it is the maximal shape among silhouette-consistent

shapes [Kutulakos and Seitz, 2000]. Based on this property, the possible labels can be narrowed down by

ignoring the bounces that do not intersect with the visual hull [Reshetouski et al., 2011]. To be specific,

for a pixel x, if we define the set of bounces hitting the visual hull as

H vh
x = {𝑏 | r𝑏x (𝑡) intersects with the visual hull}, (4.1)

then the true bounce should satisfy 𝑏true ∈ Hvh
x . Furthermore, when |H vh

x | = 1, implying there is only

one bounce intersecting with the visual hull, the label of the pixel can be uniquely determined, which is

refered to as a reliable pixel.

However, there is ambiguity in determining the equivalence of shapes under silhouette consistency,

as the visual hull cannot resolve these inherent ambiguities in silhouette information. First, it cannot

reconstruct concave objects, as concavity cannot be captured by silhouette. Second, kaleidoscopic visual

hull cannot disambiguate shapes with the same silhouette but different label maps. We refer to this effect

as virtual occlusion, as it is caused by the visual hull not being carved when the background is occluded

by a virtual object. The ambiguity causes errors in decomposing the images into multi-view images,

which results in an incorrect shape (Figure 4.2(b)). To resolve these ambiguities and obtain better labels,

it is essential to use texture information from foreground pixels, which requires labeling, setting up a

chicken-and-egg problem.

Neural surface representation. We represent the surface using neural signed distance function

(SDF) [Park et al., 2019; Yariv et al., 2020]. In particular, we optimize for the surface using IDR [Yariv

et al., 2020], which we briefly review here. In IDR, shape and texture are represented by two separate

neural networks 𝜃 and 𝜙 , which are updated to achieve a silhouette-consistent and photo-consistent

shape based on input mask images {M} and RGB images {I}. To update these networks, IDR backprojects

a ray rx (𝑡) from a pixel x, checks if it intersects with the current shape, and computes a rendered mask

M̂(x, 𝜃 ). The intersection is computed using the sphere tracing algorithm [Hart, 1996] since the surface is

represented as SDF 𝑓 (·;𝜃 ). If the ray hits the surface (i.e., M̂(x) = 1), it computes an RGB value Î(x;𝜃, 𝜙)

by giving the intersection point, surface normal, and view direction to the texture network. To be specific,
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it computes the point along the ray that has the minimum SDF, which is represented by

px (𝜃 ) = argminp∈rx (𝑡 ) 𝑓 (p;𝜃 ). (4.2)

IDR updates the shape and texture with the following loss:

loss(𝜃, 𝜙) = losstex (𝜃, 𝜙) + lossmask (𝜃 ) + losseik (𝜃 ). (4.3)

The texture loss losstex (𝜃, 𝜙) compares the rendered image and the input image as

losstex (𝜃, 𝜙) = 𝜆tex/|X |
∑︁

x∈Xin
|I(x) − Î(x;𝜃, 𝜙) |, (4.4)

where 𝜆tex is theweight for texture loss,X is a set of pixels in the image, andXin =

{
x | M(x) = 1 and M̂(x) = 1

}
.

The mask loss lossmask (𝜃 ) compares the rendered mask and the input mask as

lossmask (𝜃 ) = 𝜆mask/|X |
∑︁

x∈Xout
BCE (𝑚(px (𝜃 )),M(x)), (4.5)

where 𝜆mask is the weight for mask loss, BCE is the binary cross-entropy function, 𝑚(·) is the soft

binarization function for SDF defined as

𝑚(p) = sigmoid (−𝛼 𝑓 (p)) , (4.6)

to make the loss differentiable, 𝛼 is a parameter that controls the softness, and Xout = X − Xin. The

eikonal loss losseik (𝜃 ) enforces the gradient of the SDF to have a unit norm as

losseik (𝜃 ) = 𝜆eikE
(
∥∇p 𝑓 (p;𝜃 )∥ − 1

)2
, (4.7)

where 𝜆eik is the weight for eikonal loss, and p is uniformly distributed in a bounding box of the scene.

4.3 Method

Our goal is to jointly solve the labeling and geometry reconstruction from a kaleidoscopic image. To

solve this problem, we propose a method that we call kaleidoscopic space sculpting, which updates the

shape both in additive and subtractive ways without the necessity of labels.

Our method uses two observations, which follow from the definitions of background and foreground

pixels.

Observation 1 (Background rays). Background rays do not intersect with the object for all bounces, that is,

for a background pixel x,

∀𝑏 ∀𝑡, 𝑓 (r𝑏x (𝑡)) > 0, (4.8)

where 𝑓 is the object SDF, and r𝑏x (𝑡) is the pre-image of the pixel including mirror reflections.
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Observation 2 (Foreground rays). Foreground rays intersect with the object for at least one bounce, that is,

for a foreground pixel x,

∃𝑏, min𝑡 |𝑓 (r𝑏x (𝑡)) | = 0, (4.9)

where r𝑏x (𝑡) is a ray bounced 𝑏 times in a kaleidoscope after being backprojected from pixel x, and 𝑓 is the

object SDF.

From these observations, we can update the 3D shape by carving the points on the background rays,

as they will never intersect the object; and modeling a point on the foreground rays, as there will be at

least one intersection with the object. To do so, we need to answer the following questions: (1) How do

we select points on the rays to carve and model? (2) how do we represent the shape and update it?

Point selection and labeling. The point selection for carving is straightforward, as all bounces can

be used for carving in background rays. However, this is problematic for foreground rays, as we do not

know which foreground ray bounce r𝑏x (𝑡) will intersect with the object among all the possible bounces

𝑏 ∈ {0..𝐵∅x }. We need to select a point on the ray with the correct bounce 𝑏 to avoid erroneous solutions.

We can expect the current shape to be close to the true shape as the iteration proceeds, especially since

an initial shape estimates can be determined by the background rays. Thus, we pick the foreground

bounce with the minimum distance value in each iteration for selecting the modeling points. This turns

out to be a simple yet effective approach. We now proceed to introduce how to update the shape with

the silhouette constraint and texture constraint.

4.3.1 Silhouette constraint

To obtain a silhouette-consistent shape from a kaleidoscopic silhouette maskM, we use the following

loss function to update the neural SDF 𝑓 (·;𝜃 ) inspired by the IDR [Yariv et al., 2020]:

losssil (𝜃 ) =losscarve (𝜃 ;Pcarve (𝜃 ))+

lossmodel (𝜃 ;Pmodel (𝜃 )) + losseik (𝜃 ).
(4.10)

Pcarve (𝜃 ) is the set of points for carving, Pmodel (𝜃 ) is the set of points for modeling, losscarve (𝜃 ) is the

carving loss,

losscarve (𝜃 ) ≡ 𝜆carve/|X |
∑︁

p∈Pcarve (𝜃 )
BCE(𝑚(p), 0), (4.11)

and lossmodel (𝜃 ) is the modeling loss,

lossmodel (𝜃 ) ≡ 𝜆model/|X |
∑︁

p∈Pmodel (𝜃 )
BCE(𝑚(p), 1), (4.12)
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where𝑚(p) is the soft binarization function defined in Equation (4.6), and 𝜆carve and 𝜆model are the weights

for the carving loss and modeling loss, respectively. The difference in our method compared to IDR is

that we use different point selection methods because rays are multiply reflected in the kaleidoscope

with unknown labels. Next, we describe the point selection methods in detail for carving and modeling.

Figure 4.3 illustrates the point selection methods.

Carving. Selecting the points for the carving Pcarve (𝜃 ) from background rays is straightforward as all

the points p on the background rays should have positive SDF values (i.e., Observation 1) and thereby

𝑚(p) should be zero. However, instead of using all the points on the ray (e.g., stratified sampling), we

use a single point per each ray that has the minimum SDF value following IDR, which is more memory

efficient and provides promising results. For a background pixel x, these points can be expressed as

Pbg
x (𝜃 ) =

{
p | argmin

p∈r𝑏x (𝑡 )
𝑓 (p;𝜃 ), ∀𝑏 ∈ {0..𝐵∅x }

}
. (4.13)

We collect Pbg
x (𝜃 ) for all background pixels x ∈ Xbg and obtain {Pbg

x (𝜃 )}x∈Xbg . We use Xbg, which is

different from Xin in IDR [Reshetouski et al., 2011]. Then, the point set for carving becomes

Pcarve (𝜃 ) = {Pbg
x (𝜃 )}x∈Xbg . (4.14)

Figure 4.3(a-b) illustrates the point selection for background pixels for carving the shape.

Modeling. For the modeling, we select a point on the foreground ray with the minimum distance to

the current shape without knowing the label. As we will select the point with the minimum SDF value

again on this ray, the selected point will have the minimum value on all foreground rays {r𝑏x (𝑡)}
𝐵∅x
𝑏=0. We

select points only when the ray does not hit the object (i.e., M̂(x) = 0) because the ray already hitting the

object should not model the space further. Thus, the points for modeling Pfg,nh
x (𝜃 ) from a foreground

pixel x is

Pfg,nh
x (𝜃 ) =


argmin

p∈{r𝑏x (𝑡 ) }
𝐵∅x
𝑏=0

𝑓 (p;𝜃 ) if M̂(x) = 0,

∅ if M̂(x) = 1.
(4.15)

We collect Pfg,nh
x (𝜃 ) for all foreground pixels x ∈ Xfg and compute {Pfg,nh

x (𝜃 )}x∈Xfg . Then,

Pmodel (𝜃 ) = {Pfg,nh
x (𝜃 )}x∈Xfg . (4.16)

Figure 4.3(c) shows the point selection for foreground pixels for modeling the shape.
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Figure 4.3. Point selection for sculpting. We select the points for sculpting differently in each case: (a-b)

Background pixel (Equation (4.13)). (c) Foreground pixel not hitting the current shape (Equation (4.15)). (d) Foreground

pixel hitting the current shape.

4.3.2 Visual-hull constraint

Although the point selection method described above works promisingly, we introduce another constraint

that can be naturally incorporated into our method—the visual hull constraint based on Equation (4.1). As

the true bounce 𝑏true satisfies 𝑏true ∈ H vh
x , we can exclude the bounces that are not inH vh

x (i.e., outside

the visual hull) from the modeling. The points on these bounces are represented as

Povh
x = {p | argmin

p∈r𝑏x (𝑡 )
𝑓 (p;𝜃 ), ∀𝑏 ∉ H vh

x }, (4.17)
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(a) Without 
visual hull constraint

(b) With 
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Figure 4.4. Visual-hull constraint. The rays not intersecting with the visual hull never intersect with the true

shape, so we can exclude the points on these rays from modeling.

and these points should be carved rather than modeled. We compute {Povh
x }x∈Xfg for all foreground

pixels, then the point sets for carving and modeling becomes

Pcarve (𝜃 ) = {Pbg
x (𝜃 )}x∈Xbg ∪ {Povh

x (𝜃 )}x∈Xfg , (4.18)

and

Pmodel (𝜃 ) = {Pfg,nh
x (𝜃 ) − Povh

x (𝜃 )}x∈Xfg . (4.19)

Figure 4.4 illustrates the visual hull constraint. Note that our kaleidoscopic sculpting technique naturally

handles unreliable pixels as well as reliable pixels.

4.3.3 Texture constraint

One of the main advantages of our technique compared to the visual hull technique [Reshetouski et al.,

2011] is that ours is designed to utilize foreground pixels as well as background pixels, and thereby

can take advantage of texture information on the foreground pixels. On the other hand, the visual hull

technique relies only on the background pixels, ignoring foreground pixels that provide the information

of correspondence, and thus it cannot capture concavity, virtual occlusion, or high-frequency details on
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Table 4.1. Comparison of the kaleidoscopic visual hull [Reshetouski et al., 2011] and the proposed neural

kaleidoscopic space sculpting.

Visual hull [Reshetouski et al., 2011] Space sculpting (ours)

Background pixels ✓ ✓

Foreground pixels ✗ ✓

Texture ✗ ✓

Shape representation voxel neural SDF

Shape update subtract add & subtract

the surface. The texture loss is the same as the texture loss in IDR (Equation (4.4)), but we use the first

intersection points along all the bounces as there can be multiple bounces intersecting with the object.

We collect these points from all foreground pixels and use them for the texture loss as

Ptex = {Pfg,h
x (𝜃 )}x∈Xfg . (4.20)

Figure 4.3(d) shows the point selection for foreground pixels for the texture constraint.

4.4 Information in a kaleidoscopic image

A kaleidoscopic image encodes information in a more complicated way compared to an image without

any reflection—a kaleidoscopic pixel x is associated with multiple rays {r𝑏x (𝑡)}
𝐵∅x
𝑏=0, whereas a regular

pixel is associated with just a single ray (i.e., backprojected ray).

Conventional kaleidoscopic imaging methods [Ahn et al., 2021a; Xu et al., 2018] chose the ray out

of all the bounces that is intersecting with the object (i.e., labeling) and it could achieve the benefit of

the redistribution of the ray in the kaleidoscope. Ours not only achieves this benefit but also achieves

another benefit of using multiple rays {r𝑏x (𝑡)}
𝐵∅x
𝑏=0 per pixel either for carving or modeling. Interestingly,

not only the background rays but also the foreground pixels can be multiply used by making use of the

rays not hitting the visual hull for carving.

Comparison to kaleidoscopic visual hull [Reshetouski et al., 2011]. Table 4.1 summarizes the

differences between the visual hull and ours. They use the same number of rays for background pixels

but ours additionally uses foreground pixels and thereby texture information. Also, we have more rays

to carve as we collect points for carving Povh
x from foreground pixels.
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4.5 Implementation

Camera

Kaleidoscope

Object

Figure 4.5. Prototype.

Hardware and calibration. Figure 4.5 shows our

hardware prototype used for the the experiments, com-

prising an RGB camera (FLIR Blackfly S BFS-U3-200S6C)

and four triangular mirrors (Edmund Optics 46-656 cus-

tomized). The mirrors are coated with metal, with the

size of 200mm × 307mm and the surface flatness of

4–6𝜆. The image size is 5472 px × 3648 px. We cali-

brated the kaleidoscope following our kaleidoscopic

structured light [Ahn et al., 2021a], which uses a refer-

ence sphere object of diameter 40mm. The calibration

error is 346 μm in sphere fitting error and 1.327 px in

reprojection error.

Algorithm. Algorithm 1 shows how the points are selected and used for the optimization in the

proposed neural kaleidoscopic space sculpting.

Implementation Details. We obtain the input mask by computing the difference between the images

with and without the object, and manually refining the mask using Adobe Photoshop for some pixels.

For the shape and texture network, we use the same architecture as IDR [Yariv et al., 2020]. The shape

network is initialized to be an SDF of an approximate unit sphere [Atzmon and Lipman, 2020]. We

provide the results with a different initialization in the supplemental where the network is pretrained to

represent the visual hull using [Gropp et al., 2020]. For the final mesh results, we ran a marching cube

from 𝑓 (·;𝜃 ) and extracted the largest connected part for the final results [Yariv et al., 2020]. The weights

used for the loss are 𝜆tex = 1.0 𝜆eik = 0.1 𝜆model = 100.0 𝜆carve = 20.0. Note that 𝜆carve is smaller than

𝜆model by 5, which is about the average number of rays per pixel.

Mask processing for visual hull. For the implementation of the baseline visual hull [Reshetouski

et al., 2011], we dilate the input mask to handle the false background pixels caused by the incorrect

masking or the gap between mirrors. Figure 4.6 shows the visual hull results with different dilations. We

use 8 pixels of dilation for the baseline results used in comparisons, and conservatively use 16 pixels of

dilation ignoring mirror boundary for obtainingH vh
x for the visual hull constraint. The voxel resolution

of the visual hull is 128 on each axis.
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Input: Kaleidoscopic image I and mask M

Output: Neural network 𝜃 , 𝜙 for shape and texture

Initialize Pcarve = ∅, Pmodel = ∅;

for 𝑏 = 0 : 𝐵∅x do

for x ∈ Xbatch do
Compute intersection b/w r𝑏x (𝑡) and 𝑓 (·;𝜃 );

if M(x) = 0 then

// BG (Eq.(14))

Pcarve ← Pcarve ∪ Pbg
x ;

else

// FG ((Eqs.(17-19)))

Pmodel ← Pmodel ∪ Pfg,nh
x − Povh

x ;

Pcarve ← Pcarve ∪ Povh
x ;

Ptex ← Ptex ∪ Pfg,h
x ;

end

end

end

Update 𝜃 and 𝜙 with loss(𝜃, 𝜙 ;Pcarve,Pmodel,Ptex);

Repeat with different batches;
Algorithm 1: Algorithm for neural kaleidoscopic space sculpting

Manual mask refinement. We obtain the input mask first by computing the difference between

the images with and without the object, and then manually refining the mask using Adobe Photoshop

for correcting some pixels. Figure 4.7 shows the effect of the manual mask refinement. Although they

provide similar results overall, the manual refinement provides better results in the regions where the

difference between the images with and without the object is not clear (e.g., the tail of Toy).

Initial shape. We use an approximate unit sphere as an initial shape [Atzmon and Lipman, 2020] in

the experiments. Figure 4.8 shows the effect of the initial shape by comparing the result with another

initialization obtained by fitting the SDF to the visual hull using IGR [Gropp et al., 2020]. We observe the

initial shape does not affect to the final shape significantly.
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Figure 4.6. Mask processing for the baseline method (kaleidoscopic visual hull [Reshetouski et al., 2011]).

We dilate the input mask to compute the visual hull to handle the incorrect masking and the gap between mirrors.

4.6 Results

We evaluate the proposed method through both simulated and real experiments. Our implementation

and data are available on our project page [Ahn et al., 2023].

4.6.1 Simulated experiments

We simulate a kaleidoscopic image of an armadillo of height 60mm, and Figure 4.9 and Table 4.2 show

the qualitative and quantitative results for the simulated experiment.

Comparisons to baseline methods. We compare our method with other kaleidoscopic imaging

methods: kaleidoscopic visual hull [Reshetouski et al., 2011], and IDR after decomposing the kaleidoscopic

image into virtual multi-view images. For the virtual multi-view decomposition, we test several variations

in the use of background rays while using the foreground label from the visual hull: (1) use only first

background rays, (2) use only final background rays, and (3) use all background rays. Also, we have: (4)

use only reliable pixels, and (5) use the ground-truth labels with all background rays. Figure 4.9(a-e)

shows the results for the baselines (1–5), and Figure 4.9(f) shows the kaleidoscopic visual hull.
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Figure 4.7. Effect of manual mask refinement. (a) Mask automatically generated from the difference between the

images with and without the object. (b) Mask additionally refined using Adobe Photoshop manually.

Ours with all constraints performs best overall qualitatively and quantitatively, with the exception

of PSNR where it ranks second. There are artifacts near the left ear of the armadillo in (Figure 4.9(c-

d)) because of the incorrect label from the visual hull. This is caused by the virtual occlusion as the

background near the left ear is occluded by another virtual object and observed as a foreground, and

thereby the space is not carved. Our method does not have this problem as we are jointly solving the

labeling and 3D reconstruction.

Figure 4.10 shows the comparison to the baseline method of kaleidoscopic visual hull [Reshetouski

et al., 2011] with more synthetic kaleidoscopic images. We observe the proposed method produces

superior results than the baseline method.

Ablation study. We conduct an ablation study with the silhouette constraint, visual hull constraint,

and texture constraint as shown in Figure 4.9(g-j) and Table 4.2. Silhouette constraint provides the result

without details, and texture constraint captures the detail on the surface. Adding the visual hull constraint

additionally improves the result.
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Figure 4.8. Effect of initial shape. We observe the initial shape (i.e., approximate unit sphere or visual hull) does

not affect to the final shape significantly.

Table 4.2. Quantitative results for simulated experiments.

Method PSNR [dB] ↑ chamfer [μm] ↓ mask err [%] ↓ label err [%] ↓

visual hull [Reshetouski et al., 2011] - 9.11 0.93 4.12

IDR w/ VH label (first ray) 6.92 2.3 × 103 26.8 37.71

IDR w/ VH label (last ray) 12.21 1.8 × 103 21.63 20.67

IDR w/ VH label (all rays) 21.84 4.42 0.80 2.74

IDR w/ VH label (reliable) 21.89 4.39 0.78 2.64

IDR w/ GT label 22.53 1.87 0.62 1.42

ours, SIL 13.73 5.53 0.95 3.11

ours, SIL+VH 13.95 6.22 0.80 2.45

ours, SIL+TEX 23.04 2.56 0.59 1.66

ours, SIL+VH+TEX 22.85 1.87 0.57 1.39
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(c) IDR w/ VH label
(all BG rays)

(d) IDR w/ VH label
(reliable pixels)

(a) IDR w/ VH label
(first BG ray)

(b) IDR w/ VH label
(last BG ray)

(e) IDR w/ GT label

Virtual multi-view decomposition

(f) Visual hull (g) Silhouette (h) Silhouette 
+ Visual hull

(i) Silhouette
+ Texture

(j) Silhouette + 
Visual hull + Texture
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Figure 4.9. Simulated experiments. We compare our method with other kaleidoscopic imaging methods on the

simulated image of the armadillo. (a-e) Virtual multi-view decomposition followed by IDR, where the kaleidoscopic

image is decomposed into virtual multi-view images either with the visual hull label or ground-truth labels. (f)

Kaleidoscopic visual hull. (g-j) Ablation study of our method.

4.6.2 Real experiments

We capture a kaleidoscopic image with our hardware prototype and reconstruct the 3D shape. The

objects are placed inside the kaleidoscope either directly on the mirror or hung with strings. The size of

the object is within 100mm (e.g., Treble clef has the height 100mm).

Scanned objects. Figure 4.15 shows the reconstruction results on the real objects exhibiting a range of

shapes with different visibilities and reflectances with different textures and materials. The label map

is visualized by sorting the label in ascending order and using the “rainbow” Matplotlib colormap. We

observe that our technique produces high-quality results for this variety of objects.

Statistics. Table 4.3 shows the statistics of the results for each object. The number of viewpoints (i.e.,

the number of different labels) is about 100 viewpoints for all objects, which shows the light direction is

redistributed well by the kaleidoscope. The number of rays per pixel is 5.67 − 5.80 for foreground pixels

and 5.97–6.34 for background pixels, which shows each pixel in a kaleidoscope produces about 6 times

more information compared to a regular pixel without any reflection. PSNR and mask error shows the

reconstructed shape is photo-consistent and silhouette-consistent.
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(a) Kaleidoscopic image (d) Ground truth(b) Visual hull (c) Ours

Figure 4.10. Comparison to visual hull [Reshetouski et al., 2011] on synthetic data.

Table 4.3. Statistics for real experiments.

object #views FG #rays / #pixels BG #rays / #pixels PSNR [dB] ↑ mask err [%] ↓

Toy 107 5.68 6.08 20.47 1.55

Chair 112 5.77 6.34 22.19 1.38

Treble clef 123 5.72 5.97 15.91 3.73

Venus 88 5.72 6.02 25.83 1.07

Monkey 84 5.80 5.99 21.77 2.42

Spinner 111 5.67 6.06 21.62 0.75

Comparison to kaleidoscopic visual hull. Figure 4.14 show the comparison to the baseline method

of kaleidoscopic visual hull [Reshetouski et al., 2011] for real data. We observe the proposed method

produces superior results than the baseline method.

Comparison to kaleidoscopic structured light. Figure 4.11 shows the comparison to the kaleido-

scopic structured light [Ahn et al., 2021a], which uses a projector additionally for labeling and better

correspondences. We compare the results from our method and baseline methods to the result of kaleido-
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Figure 4.11. Comparison to kaleidoscopic structured light [Ahn et al., 2021a]. Our method produces a

comparable result to kaleidoscopic structured light that uses an additional projector for active illumination.

scopic structured light for Treble clef object. For each result, we compute the distance of each vertex

from the kaleidoscopic structured light mesh, and visualize it as the vertex color. Our technique produces

high-quality results both qualitatively and quantitatively.

Comparison to Nerfies [Park et al., 2021a]. Figure 4.12 shows the comparison with Nerfies, which

can handle dynamic objects. We captured the video of Monkey data where the monkey playing on the

swings using a smartphone camera (iPhone SE 2) from surrounding views. Nerfies cannot capture the

deformation of this dynamic object and fail to reconstruct the object. By contrast, ours can capture

multiple viewpoints in a single shot and obtain the full-surround reconstruction. Note that both methods

use different inputs, where our method captures multiple viewpoints of a dynamic object in a single frame,

whereas Nerfies reconstructs dynamic objects from multiple frames by optimizing for a deformation field.

Ablation study. Figure 4.13 shows the ablation study on the real chair data. The result using only

silhouette constraint produces an over-carved result, partly because of the imperfect input mask. Adding

the visual hull constraint improves the over-carved parts. Adding the texture constraint greatly improves

the result, and applying the visual hull constraint additionally improves some artifacts on the armrest.

4.7 Discussion

High-genus topology with neural implicit representations. In this chapter, our focus did not

include handling objects with high-genus topology, unlike our approach in the kaleidoscopic structured

light. This limitation stems from the restricted representational capacity of neural surface representations.
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Figure 4.12. Comparison to Nerfies [Park et al., 2021a]. Nerfies fail to model the large deformation between the

different views of the swinging monkey, whereas ours does not suffer from the dynamic movement since we capture

multiple viewpoints in a single shot.

For instance, complex high-genus objects like the elephant could not be effectively reconstructed using

neural representations, even with real multi-view images that provide far more pixel information than a

kaleidoscopic image. Future advancements could explore improvements through topological derivatives,

as suggested in recent studies Mehta et al. [2022, 2023], which are methods of incorporating discrete

topology changes into the modeling of complex shapes and surfaces.

Summary. We introduce a single-shot full-surround 3D reconstruction method producing a silhouette-

consistent and photo-consistent shape from a single kaleidoscopic image. Based on neural SDF represen-

tation, our method carves and models the space by selecting adequate points without the necessity of

labels, and jointly solves the labeling and 3D reconstruction problems. We show that our method takes

the advantage of the information in the kaleidoscope by reusing the pixels multiple times by the number

of reflections.
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Figure 4.13. Ablation study on Chair data.

(a) Kaleidoscopic image (b) Visual hull (c) Ours

Figure 4.14. Comparison to visual hull [Reshetouski et al., 2011] on real data.
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(c) Visual hull

Figure 4.15. Real object reconstructions from neural kaleidoscopic space sculpting. Please zoom in to see the

differences.





5Conclusion
Throughout this thesis, we have established a foundation for the theoretical and practical application of

kaleidoscopic techniques in full-surround 3D reconstruction. Our focus has been primarily on recon-

structing highly complex objects, particularly those with intricate geometries and self-occlusions.

From a theoretical standpoint, this thesis has formulated a kaleidoscopic parallel to the multiple

view geometry in classical computer vision. On a practical level, we have introduced a system that is

straightforward to build, calibrate, and deploy, making advanced 3D reconstruction techniques accessible

to the average consumer of 3D technology.

Chapter 1 of the thesis delved into the motivation for using kaleidoscopic imaging, providing a com-

parative analysis between traditional methods of full-surround 3D reconstruction and the kaleidoscopic

approach. This comparison highlighted the enhanced capabilities and efficiencies brought about by the

kaleidoscopic method.

Chapter 2 delved into the design and calibration of kaleidoscopes. Here, we outlined crucial design

considerations, including the quantity and configuration of mirrors, and developed quantitative metrics

to evaluate these designs. This chapter demonstrated how a design, considering factors like the number

and size of mirrors and their configuration, can impact the efficacy of the kaleidoscopic system.

Chapter 3 introduced kaleidoscopic structured light, a novel adaptation of traditional structured light.

Key in this chapter was the development of epipolar labeling and its theoretical implications. Our labeling

technique, using constraints specific to the kaleidoscopic setup, particularly the epipolar geometry, allows

for the decoding of mirror sequences at projector and camera pixels. This method offers theoretical

guarantees on the recoverability of labels, enhancing the practicality and accuracy of 3D reconstruction.

Chapter 4 presented kaleidoscopic neural rendering, integrating neural rendering within a kalei-

doscopic framework. This approach not only improves the handling of reflections but also enables

single-shot full-surround 3D reconstruction. This capability is particularly crucial for dynamic objects

as each frame contains all necessary information for complete surround coverage. Theoretically, this
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chapter is significant for solving labeling and 3D reconstruction jointly, thereby removing the need for

explicit labeling.

5.1 Limitations

Our technique has a number of limitations, which are inherent in the use of a kaleidoscope. First, the size

of objects we can scan is restricted by the kaleidoscope; for our lab setup, this constrains our technique

to objects that fit in a sphere of diameter 4 inches. Second, the total number of pixels that we have

at our disposal is limited to that of a single image sensor; divvying this pixel budget across the many

(virtual) views results in lower resolution imagery, especially when we consider multi-view alternatives

where the total pixel count grows linearly with the number of cameras. Third, it is challenging to

reconstruct transparent objects or objects with refraction and reflection effects. Reconstruction of such

objects is challenging for many 3D reconstruction techniques that need to establish correspondences

across viewpoints, and not just ours. Compared to non-kaleidoscopic techniques, our kaleidoscopic

method further needs the assumption that the object is opaque in order to be able to establish unique

correspondences between each pixel and a single virtual camera (i.e., a unique label for each pixel).

5.2 Future directions

Despite the kaleidoscopic 3D reconstruction techniques developed in this thesis, both in theoretical

foundation and practical applications, there are still several aspects of the kaleidoscopic imaging problem

that remain unsolved and provide several exciting future research directions:

• Uncalibrated kaleidoscopic imaging. Development of methods for kaleidoscopic 3D reconstruction

using uncalibrated kaleidoscopic images could significantly enhance the technology’s accessibility.

Our current technique depends on a calibrated kaleidoscopic system, requiring a reference object

with initial manual labeling. An intriguing future direction would be the kaleidoscopic equivalent of

structure-from-motion techniques, such as the five-point method for calculating the essential matrix,

termed as ‘structure from mirrors’. This advancement could allow kaleidoscopic methods to be applied

in a more versatile, in-the-wild manner, such as in gyms with mirrored walls or even in Yayoi Kusama’s

Infinity Mirror Rooms.

• Non-planar mirrors. Exploring the use of non-planar mirrors may offer a more diverse distribution of

rays, potentially capturing more complex geometries and textures [De Zeeuw and Sankaranarayanan,

2022]. Non-planar mirrors could provide continuously varying viewpoints due to the different angles
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at which each ray intersects with the mirror surface. The construction and calibration of non-planar

mirrors, particularly their pose relative to the camera, is challenging but an interesting future direction.

• Arbitrary mirror reconstruction. Expanding 3D reconstruction to include mirrors of arbitrary

shapes and configurations in natural settings, such as the reflective surfaces of Chicago’s Cloud Gate

(‘The Bean’), could significantly broaden the scope of kaleidoscopic 3D reconstruction. Although the

production of non-planar mirrors typically incurs higher costs, which diverges from the initial aim

of creating a cost-effective 3D scanner, the capability to reconstruct any mirror shape and position

in real-world environments offers vast potential. This advancement would not only facilitate the use

of common reflective surfaces like windows in 3D scanning but also open up the possibility of the

extraction of reflective data from these surfaces, thereby enriching the kaleidoscopic 3D reconstruction

in the wild.

• Mirror detection. Identifying mirrors in uncontrolled, or in-the-wild environments represents a

promising research direction. Combined with arbitrary mirror reconstruction, mirror detection could

transform the use of reflective surfaces in 3D scanning, leading to the natural kaleidoscope in unknown

environments. Key to this detection are cues like edge discontinuity or the correlation between real

and mirrored images, including changes in orientation (i.e., left-handed and right-handed). Such

identification opens up the possibility for leveraging any reflective surface for 3D scanning, broadening

its application scope, especially in forensic imaging where it offers novel information cue from limited

observation.

• Material property acquisition. Kaleidoscope can provide rich information for the acquisition of

material property, such as BRDF or subsurface scattering, by offering a large range of diverse set of

illuminating and imaging directions. Although this kaleidoscopic setup involves a key challenge of

interreflections, which mix the effects of multiple illumination directions [Shem-Tov et al., 2020], it

offers a richer set of constraints on the material property compared to the equivalent setup without

interreflections, which can be resolved computationally.

• Diffuse kaleidoscope. Beyond extracting reflections from glossy surfaces, utilizing diffuse reflections

presents a novel research area. With the advancements in non-line-of-sight imaging, which treats

diffuse walls as mirrors, exploring the use of multiple diffuse surfaces (i.e., diffuse kaleidoscope) for

complete 3D scanning is an interesting direction. This would require tackling the labeling problem in

conjunction with non-line-of-sight imaging techniques.
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• Kaleidoscope for non-optical signals. Another intriguing possibility lies in employing non-optical

signals, such as sound, in kaleidoscopic imaging. Due to its longer wavelength, sound inherently

offers more specular reflection, providing cues for 3D reconstruction both acoustically and visually.

Combining optical and acoustic signals could yield synergistic benefits for applications like source

separation, detection, dereverberation, as well as 3D reconstruction.
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