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Abstract

Real-time, robust, and accurate stereo depth-prediction
algorithms deliver cutting-edge performance in applica-
tions ranging from autonomous driving to augmented re-
ality. Many state-of-the-art approaches produce subpixel
error and subsecond runtimes on commodity hardware, but
improving even these remains an area of active research.
We focus on improving accuracy and efficiency in stereo-
based depth prediction by contributing two generic tech-
niques to improve performance and runtime. First, we pro-
pose encoding the ground truth disparity as a discrete dis-
tribution that can be trained via cross-entropy loss. Specif-
ically, we use the minimum variance and unbiased ‘Soft’
encoding, where two adjacent bins are weighted so the ex-
pected value is ground truth. We demonstrate that training
with cross entropy loss using this encoding decreases er-
ror rate by 10% on synthetic and LIDAR datasets over the
more popular regression losses such as Huber and MAE.
Second, we propose a bottleneck tri-cost volume composed
of the sum of absolute difference of the features as well as
two reference channels. Replacing the standard 64-channel
concatenation popular in state-of-the-art networks with this
3-channel cost-volume maintains metric performance and
can reduce runtime by over 22% on PSM-Net architectures.

1. Introduction

As an enabling technology, real-time, robust, and accu-
rate depth prediction stands to improve occlusion interac-
tions in augmented reality [1], lower costs for 3D object de-
tection in autonomous vehicles [2], provide 3D mapping of
scenes for virtual exploration [3], and advance widespread
3D visualization of objects [4]. As such, over the last few
years, the computer vision community has witnessed an
explosion of research in depth prediction via monocular,

Kitti 2015 Test Set D1 Time (s)

PSM [5] 2.32 0.41
PSM-BTC [ours] 2.09 0.32

Table 1: State-of-the-Art Comparison. We show a 10% D1
improvement and 22% speed improvement with our pro-
posed changes. BTC, or Bottleneck Tri-Cost, is a reference
to our use of a bottleneck tri-cost volume and Soft cross
entropy loss to learn the probability distribution directly.

stereo, and multiview algorithms. We focus on stereo ap-
proaches, where cost volume architectures are pervasive in
state-of-the-art [5–12].

The design of stereo networks commonly requires pre-
diction of a probability distribution over a cost volume, a
geometry-based structure from classical stereo vision. A
cost volume is a 4D tensor of disparity, height, width, and
costs (or features) where the disparity dimension typically
accounts for methodical single-pixel shifts of the one of
the stereo images against the other. After networks pro-
cess the cost volume, a Softmax is taken over the dispar-
ity dimension to produce a discrete probability distribution.
Many papers use the expected value, commonly termed the
“Soft argmax” by Kendall et al. [13], over this distribution
to estimate the true disparity of each pixel [5–11, 14–16].
Typically, regression losses, such as mean absolute error
or Huber loss, train the network so the expected value has
small deviation with ground truth, but the learned distri-
bution may be multi-modal due to depth edges, repeating
structure, or low-texture areas, resulting in a degraded ex-
pectation [10,17–20]. Unfortunately, such regression losses
suffer one-to-many relationship between the expected value
and the probability distribution, which can add local min-
ima noise to the gradient and degrade learning.

We argue that instead of learning expected value via
regression, the probability distribution should be directly



learned through a categorical cross entropy (CCE) loss and
a local expected value should predict the disparity. There
has been some interest in pursuing this in the literature, but
prior work suggests that regression loss performance is sim-
ilar or superior [13, 18, 19]. However, we believe this result
is strongly influence by the choice of the ground truth en-
coding. Thus, we propose a minimum variance, unbiased
‘Soft’ encoding whose expected value equals the ground
truth disparity and demonstrate improved performance over
regression losses with this technique.

In addition to proposing a new loss function, we also
investigate efficient cost volume design. Existing litera-
ture uses a variety of architectures and multiple studies
have demonstrated trade-offs between memory consump-
tion, runtime, and metric quality. For instance, PSM Net
concatenates 32 features from both views to allow the net-
work to learn a distance metric [5]. AA Net uses a single
cost, a dot product with no additional features [11], while
GWC Net concatenates 12 features from each view and 40
correlation costs, each generated from 8 features, to im-
prove performance [6]. Rao et al. use per-channel variance
of 32 features in NLCA Net [8]. Several papers use single-
channel cost-volumes to achieve real-time performance, but
doing so often result in lower metrics, as shown in Ta-
ble 2. We introduce a solution in the form of an efficient
tri-channel cost volume, one we term the ”bottleneck tri-
cost volume” which maintains performance with standard
64-channel concatenation cost volumes at a fraction of the
memory and computational cost.

On PSM-Net, we demonstrate a 10% decrease in the
error rate from our proposed Soft encoding and a 22%
faster runtime from the bottleneck tri-cost volume on the
Kitti2015 benchmark (Table 1).

1.1. Contributions

We make the following contributions to benefit cost-
volume stereo networks.

C1. Experiments showing a simple minimum variance, un-
biased ‘Soft’ ground truth encoding for cross-entropy
loss enables networks to learn more accurate proba-
bility distributions than standard regression losses. At
inference, this translates to 10% lower error rate across
synthetic and LIDAR-based datasets.

C2. Evidence that a bottleneck tri-cost volume, constructed
with sum of absolute differences and 2 reference fea-
tures, provides performance comparable to cost vol-
umes 21 times larger in memory. During training, this
enables larger patch or batch sizes. At inference, this
translates to a 22% faster inference time on PSM-Net.

We report a series of experiments comparing loss func-
tions and cost volume architectures to gain insight and guide
development of the above contributions. These experiments

Figure 1: Example of a stereo network. FE stands for the
feature extractor, which is Siamese, performing the same
operations on the left and right images. The cost-volume is
a 4D tensor generated without any learned parameters. The
cost aggregator processes the 4D tensor to make a predic-
tion. Image 110 from the Kitti 2015 test set.

evaluate `2 (mean squared error), `1 (mean absolute error),
Huber (smooth `1), and categorical cross entropy (CCE)
loss with Guassian, Laplacian, Hard, and Soft encoding
of the ground truth. For the cost volume, we assess sev-
eral distance metrics, including the absolute difference, eu-
clidean distance, variance, and correlation functions. We
consider these metrics per-channel and over all channels.
We evaluate standard concatenation and compact represen-
tations. In order to demonstrate performance on state-of-
the-art, we perform an ablation study on PSM-Net, compar-
ing performance differences between the base network and
ones trained with each of our proposed changes.

2. Background

Many stereo papers use a 3-stage network composed
of feature extraction, cost volume, and cost aggregation,
as shown in Figure 1. Typically, the feature extractor
is a Siamese network that uses shared weights to extract
matched features from a pair of images. The cost vol-
ume generates a comparison between the reference and sec-
ondary features, over the range of disparities under consid-
eration. Finally, the cost aggregator processes the cost vol-
ume to make a final dense prediction for disparity.

The majority of the top performing networks on the
Kitti 2015 benchmark today use a cost-volume network,
including NLCA Net [8] AM Net [9], ACF Net [10], GA
Net [7], CSP Net [21], and optical expansion net [22]. Only
SUW-Learn does not have a cost volume; instead it uses
monocular time-series data [23], which includes an unsu-
pervised warping loss between time-steps. While single-
frame monocular approaches have made remarkable strides
over the last few years, monocular predictions tend to report
worse metrics than stereo predictions [24]. In fact, Ranjan
et al. demonstrated that developing an optical flow archi-
tecture with cost volumes leads to more robust performance
in the face of adversarial attacks than an encoder/decoder
architecture [25]. This work suggests that while processing
cost volumes may be expensive, such representation is more
robust than other approaches.



Real-time networks often have similar architectures to
state-of-the-art, although they typically sacrifice low error
rates for speed. For instance, networks focussd on com-
pute speed, such as HD3-Net [26], RTS2-Net [16], Any-
Net [15], and Stereo-Net [14], MAD-Net [27], Disp-Net-
C [28], AA-Net [11], and HIT-Net [12] achieve impressive
FPS on the Kitti test set, as shown in Table 2. The major-
ity of these networks, inspired by optical flow techniques,
achieve high speed by generating multiple cost volumes in
the style of PWC-Net [29], where each successive cost vol-
ume is generated at a higher resolution and attempts to re-
fine the residual error of the lower resolution prediction. We
do not directly address such architectures in this work, but
our Soft encoding and bottleneck tri-cost volume are appli-
cable to these networks.

Of particular note, Yin et al.’s optical flow network,
HD3, introduces ‘Vector to Density’ [26], a ground truth
encoding scheme mathematically equivalent to the Soft en-
coding, and train with Kullback-Leibler (KL) divergence,
which is equivalent to minimizing CCE. Yin et al. demon-
strate proficiency training mutliresolution cost volumes and
flow networks using Soft KL. However, their contribution
is distinct from ours. Yin et al. work to show their unique
network, when trained by Soft KL loss, is competitive with
state-of-the art and near real-time performance. In contrast,
we demonstrate Soft CCE loss is superior to standard re-
gression losses. We hope this generalized insight helps re-
searchers push forward state-of-the-art on their networks.

2.1. Cost Volume Architectures

In the literature, distance metrics used by cost volumes
vary substantially, as demonstrated in Table 2. For in-
stance, NLCA Net uses 32 variance features and reports
2-4% metric improvements over concatenation [8]. AM Net
introduces an extended cost volume, including concatena-
tion, multiplication, and absolute difference of each feature.
They do not clarify the number of channels, but they do pro-
vide a series of experiments showing a steady improvement
by combining these metrics [9]. GA Net, GC Net, and RTS
Net simply concatenate reference and secondary features to
produce a 64-channel cost volume [7, 13, 20]. GWC Net
carries out a series of experiments on cost-volume construc-
tion with correlation groups. They work with 320 channels
from the feature extractor, and show performance improves
as they increase the number of groups from 1 to 160. Their
best cost volume uses 40 correlation groups concatenated to
12 channels from each view, for a total of 64 channels [6].
Stereo Net creates a cost-volume of C features by taking the
difference of channels between the two candidates.

Many networks optimized for speed use only a single
channel in their cost volumes. For instance, Any Net uses
the sum of absolute differences (SAD) [15]. DispNetC uses
correlation at a low resolution and uses features from the

Net Losses CCV D1 Time (s)

Select State-of-the-Art on Kitti 2015

PSM [5] Huber 64 2.32 0.41
GWC [6] Huber 64 2.11 0.32
ACF [10] Huber

Focal
Confidence

64 1.89 0.48

AM [9] Huber
Segmentation

4C 1.84 0.9

NLCA [8] `1
SSIM
Warping

32 1.83 0.44

GA [7] Huber 64 1.81 1.8
CSP [21] `1 64 1.74 1.0

Select Real-Time Networks

Any [15] Huber 1 6.2 0.097
Stereo [14] Huber C 4.83 0.015
MAD [27] Photometric 1 4.66 0.02
DispNetC [28] `1 1 4.34 0.06

RTS2 [16] Huber
Segmentation

C 3.56 0.02

AA [11] Huber 1 2.03 0.06
HIT [12] `1

Huber
Slant
Confidence

1 1.98 0.015

Select Studies on the Distribution

ES [30] Gaussian 1 4.54 1.0
RTS [20] Focal 64 3.41 0.02
GC [13] `1 64 2.87 0.9
PS [18] Laplacian 8 2.58 0.5
PSM-CD [17] Wasserstein 64 2.29 0.4
NS [19] `1

Laplacian
64 2.27 0.6

PSM-BTC [ours] Soft 3 2.09 0.32

HD3 [26] Soft >C 2.02 0.14

Table 2: Stereo Networks. D1 is reported on the Kitti 2015
test benchmark. CCV is cost volume channels. C is the
number of channels from the feature extractor. HD3 in-
cludes feature correlation, reference features, and an em-
bedding vector. Note: Some networks, such as HIT and
HD3 predict disparity at multiple resolutions.

reference image to upsample the prediction [28]. MAD Net
generates correlation cost-volumes at multiple resolutions;
at each higher resolution, MAD uses the lower-resolution
prediction to warp the secondary image into the reference
view, generates a new correlation cost-volume, and refines
the disparity prediction.

Similarly, AA Net generates cost volumes from the cor-
relation of all features at each resolution, and then uses a
series of multiscale deformable convolutions to refine re-



sults [11]. HIT Net uses the sum of absolute differences to
quickly produce disparity initializations at multiple resolu-
tions and proceeds to refine these hypotheses with tiles of
the disparity, slant, estimated cost, and 16 reference view
features (at highest resolution), achieving close to the state-
of-the-art in real-time [12]. Single cost networks introduce
some questions. How much information is really lost by
using a single cost? Are they making up for significant
degradations with their unique aggregators or are large cost
volumes an extremely inefficient component of stereo net-
works? Is AA Net’s use of correlation a wiser choice than
HIT Net’s `1 distance?

2.2. Categorical Cross Entropy (CCE) Losses

As shown in Table 2, the top-performing stereo networks
use regression losses. However, we contend that properly
formulated CCE losses are more competitive than regres-
sion losses because stereo networks perform regression by
first predicting the underlying distribution, and then calcu-
lating the expected value over this distribution. Thus, the
regression suffers from a one-to-many relationship between
the expected value and predicted distribution, as shown at
the bottom of Figure 2. That is, the expected value of many
plausible distributions can result in a given ground truth.
Zhang et al. recognize this problem and suggest a series
of constraints to improve performance in ACF Net [10].
Among other techniques, Zhang et al. use a focal cross-
entropy loss with Hard one-hot encoding to improve the
learned distribution. Similar to Zhang’s work, Garg et al.
focus on learning the distribution with a Wasserstein loss.
They learn a Hard one-hot distribution and an offset to the
ground truth, and demonstrate that this technique improves
results on benchmark models [17].

Various CCE losses have been proposed for stereo net-
works. Luo et al. used an approximate Gaussian distribu-
tion in their 2016 ES Net [30]. In 2017, Kendall et al. ar-
gued that between Luo et al.’s Gaussian distribution, a Hard
one-hot encoding, and `1 loss, `1 regression outperforms
CCE losses in the long term on their GC Net, even though
the cross entropy loss initially learns faster. Notably, GC
Net is trained up to 120,000 iterations, whereas we train
for 170,000 iterations. GC Net had an EPE of 2.5 px for
`1, over 5.0 px for Hard CCE, and 5.4 px for Gaussian
CCE [13]. In 2018, Tulyakov et al. used a Laplacian CCE to
improve the 3PE metric on their PS Net and use sub-pixel
MAP estimation to further improve results [18]; however,
their results on EPE were worse for Laplacian CCE than
`1 loss. In 2019, Lee and Shin reported that a focal loss
centered around a Hard one-hot encoding could learn effec-
tively in their RTS Net, which runs in 0.02 sec. Instead of
sub-pixel MAP, they proposed using the Top K lowest cost
disparities to estimate the disparity [20]. In 2020, Chen
et al. used a Laplacian CCE loss to slightly improve the

learned distribution of PSM Net [19].

2.3. Application to SOTA

As demonstrated in Table 2 and our background discus-
sion, almost all state-of-the-art (SOTA) networks use cost
volumes. Our bottleneck tri-cost volume is a drop-in re-
placement for other cost volumes. Depending on the ar-
chitecture, single-cost networks, such as HIT-Net [12] and
AA-Net [11] have specialized backends and may not be de-
signed to use the bottleneck tri-cost volume as-is. HIT-Net
already makes use of reference features whereas AA-Net
expects a single feature for processing.

Our loss function is also widely applicable to SOTA.
For most networks, it can be implemented as a drop-in re-
placement for Huber or MAE loss. On multistage networks,
such as PWC-Network (which is originally implemented for
optical flow prediction), where cost-volumes are generated
at multiple resolutions around a narrow disparity window
using warped features, Soft CCE is still applicable. The
ground truth encoding would simply shift to encompass the
correct disparity window at each refinement stage.

3. Methodology
3.1. Soft Categorical Cross-Entropy Loss

Our proposed Soft CCE encoding is a neighboring 2-
bin probability distribution whose expected value equals
ground truth. For instance, if the cost volume has 8 dis-
parity levels starting at 0 px disparity with shifts of 1 px
per step, and the ground truth disparity for a pixel is 0.4 px,
the CCE ground truth would be [0.6, 0.4, 0, 0, 0, 0, 0, 0], as
shown in Figure 2. Soft encoding is the “ideal” distribution
that could be learned via regression as it is the minimum
variance, unbiased distribution for a given expected value.

We compare Hard, Gaussian, and Laplacian encodings
from literature against our proposed Soft encoding in Fig-
ure 2. Hard is a one-hot encoding, with disparity rounded
to its nearest index. Gaussian encodes the ground truth
by forming a normalized Gaussian distribution centered
around the true disparity with variance σ2 = 2

π based on
ES Net [30]. We create a normalized Laplacian distribution
centered around the ground truth disparity with b = 2 based
on on PS Net [18], resulting in a much larger bandwidth
than the Gaussian distribution. Due to bin boundaries, there
is no guarantee that the expected value over Hard, Gaussian,
or Laplacian distributions equals ground truth.

Regression losses do not necessarily learn minimum-
variance distributions, as demonstrated by [10]. For in-
stance, a distribution learned from regression losses could
be [0.8, 0, 0.2, 0, 0, 0, 0, 0] since 0.2 ∗ 2 px. = 0.4 px, as
shown in Figure 2. Additionally, since many different dis-
tributions can equal a given expected value, the gradient
may not be very clear, resulting in slower training, as noted



Figure 2: Minimum loss probability distributions for 0.4 px
disparity. Bins are bounded by min (0 px) and max (7 px),
which degrades Gaussian and Laplacian ground truth en-
codings. Gaussian and Laplacian distributions centered
around 3.4 px would have small error in expected value.
The two regression distributions both minimize the regres-
sion loss, demonstrating how minimization over regression
has one-to-many solutions with multiple local minima.

Figure 3: Predicted distribution for ground truth 5.6 pix
disparity before and after applying local MAP re-
normalization. The left probability distribution is the net-
work’s prediction with two local maxima probabilities, per-
haps along a depth discontinuity. The expected value
3.4 pix deviates greatly from the true disparity, and will re-
sult in a blurred edge. The right probability distribution is
the result after applying local MAP re-normalization with
δ = 1. As can be seen, the new expected value greatly re-
duces error with ground truth and results in a sharper edge.

by [13, 18].
The apparent drawback of Soft CCE is that, at training

time, it penalizes all disjoint errors equally. For instance, a
disjoint distribution producing 3 px error results in as much
loss as disjoint distribution producing 100 px error, which
intuitively seems undesirable, but actually makes Soft CCE
more robust to challenging outliers.

For instance, suppose there are two pixels in an
image, each with ground truth disparity Soft encod-
ing [0.3, 0.7, 0, 0, 0, 0, 0, 0] (0.7 pix). Let us as-
sume the network makes the following two predictions:
P1 = [0, 0, 0.6, 0.4, 0, 0, 0, 0] (2.4 pix) and P2 =
[0, 0, 0, 0, 0, 0, 0.2, 0.8] (6.8 pix). Let’s assume that for nu-
meric stability, ε = 1e-7. The loss for each of these pre-
dictions is CCE Loss = −(0.3 ∗ log(ε) + 0.7 ∗ log(ε)) =
−log(ε) = 16.12. In comparison, `1,P1 = |2.4−0.7| = 1.7
and `1,P12 = |6.8 − 0.7| = 6.1. For MSE, `2,P1 = 1.72 =
2.89 and `2,P12 = 6.12 = 37.2. MAE loss puts more em-
phasis on correctly predicting the more challenging pixels
than CCE Loss while MSE does this to an even greater ex-
tent. We compare training on MSE, MAE, and Soft CCE
in Table 3. We show that MAE greatly outperforms MSE,
suggesting that heavily weighing challenging outliers harms
optimization.

In practice, we find that Soft CCE improves learning and
propose three explanations:

1. Progress in stereo networks and datasets has reduced av-
erage prediction error to subpixel, enabling CCE to pre-
dict subpixel distributions accurately.

2. Soft CCE Loss is more robust than regression losses
since it penalizes all disjoint predictions equally, spend-
ing fewer resources on challenging outliers.

3. The one-to-many relation between expectation and
probability distribution results in noisy gradients with
many local minima for regression losses, slowing train-
ing and limiting learning.

3.2. Local Maximum A Posteriori (MAP)

As detailed in Zhang et al. [10], Garg et al. [17],
Tulyakov et al. [18], Chen et al. [19], and Lee et al. [20], the
predicted disparity distributions may be multimodal, hav-
ing various local minima due to repeating structure, depth
boundaries, pixel noise, or low texture. In such situations,
simple expected value may pull the prediction away from
the true ground truth, as shown in Figure 3. Each prior
work proposes their own solution to this problem, such as
Top K [20] or Wasserstein distance loss [17]. The Top K
approach would still be susceptible to multiple local min-
ima, so we choose to use the subpixel MAP introduced by
Tulyakov et al. to estimate disparity at inference [18] by the
following equation:

dMAP
δ =

d̂+δ∑
d=d̂−δ

d · P̂ (d = d|xL, xR) (3.1)



Left Image Ground Truth PSM PSM Error PSM-BTC [ours] PSM-BTC Error

Figure 4: Examples of PSM-BTC [ours] inference on FlyingThings3DClean Test images A/0057/0009, B/0097/0009, &
C/0062/0009. PSM-BTC uses local MAP while PSM uses regression in this example. These predictions are made at 1

4
resolution and bilinearly upsampled before calculating the expected value. Note that local MAP (δ = 1) with Soft CCE
sharpens edges and better distinguishes depth discontinuities in complex scenes where multiple local cost minima may be
present.

where d is a disparity step and the maximum probability
disparity, d̂, is

d̂ = argmax
0≤d≤D

P (d = d|xL, xR) (3.2)

We do clarify that P̂ is locally normalized from the full pre-
dicted distribution P by

P̃ =

d̂+δ∑
d=d̂−δ

P (d = d|xL, xR) (3.3)

P̂ (d = d|xL, xR) =

{
P (d=d|xL,xR)

P̃
|d̂− d| ≤ δ

0 else
(3.4)

When δ = ∞, we sum over all predicted indices.
We slightly modify Tulyakov’s equation by specifying that
when δ = 1

2 , we only sum over two indices: the maximum
probability index and the highest probability adjacent in-
dex. This additional capability enables intuitive comparison
of our predicted probability distribution against the Soft-
encoded ground truth. We only use subpixel MAP at infer-
ence time; training of regression losses occurs with δ =∞.

We demonstrate the benefits of local MAP trained with
Soft CCE loss over a regression model trained with Huber
loss in Figure 4. Near complicated depth boundaries, dis-
parity edges tend to appear crisper under local MAP. To ob-
serve the improvements under local MAP, it is important to
not interpolate over the depth dimension.

3.3. Bottleneck Tri-Cost (BTC) Volume

As covered in the background, cost-volume experiments
have been performed before, but results are difficult to com-
pare between disparate networks, training methods, and
datasets. There is no consensus in the literature on how to
construct the cost-volume efficiently. We aim to fill that gap
and provide a more complete picture by performing a series
of experiments where we examine different distance met-
rics, multi-cost volumes, and compact representations. The
full list of experiments is in the appendix, and a truncated
version highlighting the most relevant experiments appears
here. Some of the cost volumes we consider are demon-
strated visually in Figure 5.

Based on our experimental results, we propose the bot-
tleneck tri-cost volume, which is composed of the sum of
absolute differences (SAD) plus two separate reference fea-
tures. This is 21 times smaller than the popular concatena-
tion technique but has comparable performance. To gener-
ate this cost volume, we start with the standard 32 channel
output for each view from the feature extractor. We increase
the output channels to 34. For a given disparity, SAD is
taken over 32 of the features. The final 2 features of the ref-
erence view are concatenated along the channel axis of the
SAD result, while the final 2 features of the secondary view
are discarded. The secondary view is then shifted to the
next disparity step, and the process is repeated until the full
3-channel cost volume composed of both stereo and monoc-
ular cues is generated. This procedure does replicate the
same 2 reference features across all disparity steps, result-
ing in an inefficient representation of the monocular infor-



Concatenation Multi-Cost Bottleneck

Per-Channel AD 4 SAD Groups SAD

Figure 5: Cost Volume Visualization. In this example, the
feature extractor outputs 12 channels for the reference and
secondary views, represented by dark and light gray. Costs
may be absolute difference (AD), correlation, variance, etc
and are in color. SAD is sum of AD.

mation and presenting opportunities for future research to
improve performance.

3.4. D½ Error Metric.

Due to the improvement in EPE in recent years, we in-
troduce the D½ metric, derived from the D1 metric. The D1
metric is an error rate that classifies all pixels over 5% rel-
ative error and 3 px absolute error as erroneous pixels. In-
stead of the typical 3 px threshold of the D1 metric, we use
a 0.5 px absolute error threshold in the D½ metric, which
is more discriminative of errors in distant regions where ac-
curacy may be important for autonomous cars moving at
highway speeds. D½ provides tighter 5% error bounds from
10 px to 60 px, where the D1 metric is dominated by the
3 px threshold.

4. Experiments
We perform a parameter sweep over loss functions and

cost volumes on a lightweight network, known as Small
Simple Training (SST) Net, which is effectively a smaller
version of PSM-Net. For details of the network, setup, re-
sults, and additional experiments, please visit the appendix.

Experiments on SST Net support two main conclusions:

1. Soft CCE Loss outperforms regression losses as well
as other ground truth encoding schemes for CCE Loss
(Table 3). Soft CCE performance increases as local
MAP δ decreases to 1 (see appendix).

2. SAD plus two reference features provides a baseline of
performance that is difficult to meaningfully surmount
(Table 4).

Based on these results, we chose to validate performance
on a state-of-the-art network, PSM-Net, where we carry
out a series of ablation studies comparing these two new
techniques against the reference implementation. On these

MSE1 Hu5 MAE3 L1 Ha1 G3 S5

EPE 2.72 1.37 1.29 1.62 1.46 1.21 1.12

D1 18.5 5.0 4.8 5.4 3.9 3.9 3.8

D½ 46.6 17.2 14.3 30.9 31.4 20.6 11.2

Table 3: Select Lightweight SST Net inference results un-
der local MAP at δ = 2 on FlyingThings3D Test Set. Sub-
scripts indicate the number of times each experiment was
run & averaged. Minimum values per column are bold. Val-
ues within 5% of the minimum of each column are under-
lined. Hu is Huber regression loss, L is Laplacian CCE, Ha
is Hard CCE, G is Gaussian CCE, and S is Soft CCE. In the
appendix, you will find this table reproduced with results
for δ = {∞, 3, 2, 1, 12}.

experiments, we follow the training methodology of PSM-
Net [5].

4.1. Highlighted Experiments on SST Net

We evaluate various losses in Table 3, comparing re-
sults on FlyingThings3D when inferred under local MAP.
For reference, δ = 2 was chosen as it was near-minimum
for each experiment. The appendix include additional ex-
periments for those looking to observe how performance
changes with δ. We find that for each metric we considered,
Soft CCE outperforms every other considered loss.

We compare cost volume performance in Table 4. We
demonstrate metric differences between single-cost and per-
channel distance metrics. Single-cost networks appear to be
limited by the lack of purely monocular cues. We particu-
larly aim to highlight the increase in metrics as additional
reference features are added to a single distance metric, up
to 2, where metric gains level off. While generating a cost-
volume composed of 96 channels is able to make modest
gains, for many use cases, the bottleneck tri-cost volume
has an excellent trade-off of metric quality with computa-
tional expense.

4.2. PSM-BTC Net Ablation Studies

For evaluation on PSM-BTC Net, we modify the orig-
inal cost-volume of PSM Net and change trilinear upsam-
pling to bilinear upsampling to enable Soft CCE training
and local MAP to have meaningful results. We evaluate on
the stacked hourglass & pyramid pooling model with half
the dilation rate. We train according to PSM Net’s specified
methodology [5] and evaluate over the standard 192 pix for
the ablation study and Kitti2015 benchmark; however, we
only pretrain on the FlyingThings3DClean subset of the
SceneFlow dataset. We performed the speed test in Table 1
on an NVIDIA Titan Xp, the same as PSM Net, for direct
comparison.



Architecture GFLOP CCV EPE D1 D½

Concat 636 64 1.30 5.3 15.8
AD 571 32 1.29 5.3 15.4
Muliply 571 32 1.46 5.8 16.7
Variance 571 32 1.36 6.0 16.3

Concat & Multiply 700 96 1.26 5.0 14.4
Concat & Variance 701 96 1.25 5.0 14.5
Concat & AD 700 96 1.25 5.1 14.7

SAD & Concat 4 RF 518 5 1.28 5.1 15.2
SAD & Concat 2 RF 513 3 1.27 5.1 15.3
SAD & Concat 1 RF 511 2 1.36 5.5 16.2

SAD 509 1 1.44 6.1 17.4
Euclidean 509 1 1.55 6.8 19.1
Correlation 509 1 1.55 6.1 17.0
Sum Variance 509 1 1.46 6.1 17.8

Table 4: Select SST Net inference results on FlyingTh-
ings3D Test Set. Concat is concatenation. RF are sep-
arate, additional reference features. CCV is the cost volume
channels. Minimum values are bold. Our bottleneck tri-cost
volume is underlined. The appendix includes this table with
additional experiments.

Our ablation study demonstrates comparable metrics on
the concatenation and bottleneck tri-cost volumes (Table 5).

Notably, the Kitti2015 dataset experiences a large de-
gree of overfitting to the training set (where Soft CCE re-
sults are 33% better in D1) compared to the validation set
(only a 9% improvement) and the test set (10% improve-
ment).

5. Discussion
We demonstrate that a bottleneck tri-cost volume, com-

posed of the sum of absolute differences and two monocular
features, can be adopted easily by popular architectures, po-
tentially reducing memory and compute substantially. We
further show that Soft CCE loss with local MAP can sub-
stantially reduce D1 error rate when compared to training
with regression losses, particularly the popular Huber loss.

Our cost-volume experiments demonstrate that monoc-
ular features are important for stereo prediction. However,
stereo networks should aim to make more efficient use of
monocular features than the popular concatenation tech-
nique. While our bottleneck tri-cost volume attempts to do
so, copying the same 2 reference features across all dispar-
ity dimensions remains an inefficient representation.

Our minimum variance, unbiased Soft encoding is the
ideal distribution that may be learned through regression
losses for a given ground truth. Soft encoding is an intuitive
representation for pixel matching in non-occluded regions,
where a pixel may be spread across two adjacent pixels in
the secondary view. However, in occluded regions, Soft en-

Loss Cost Volume EPE D1 D½ >1 pix

Flying Things 3D Clean Test Set

Huber Concatenation 1.05 3.3 5.8 10.6
Huber Bottleneck Tri-Cost 1.06 3.4 5.9 10.6
Soft Concatenation 0.94 2.7 3.9 7.5
Soft Bottleneck Tri-Cost 0.94 2.7 4.1 7.4

Kitti 2015 160 Image Training Split

Huber Concatenation 0.51 0.97 6.8 9.7
Huber Bottleneck Tri-Cost 0.53 1.00 7.2 10.5
Soft Concatenation 0.45 0.70 4.8 6.9
Soft Bottleneck Tri-Cost 0.45 0.64 5.1 7.4

Kitti 2015 40 Image Validation Split

Huber Concatenation 0.72 1.97 10.4 16.4
Huber Bottleneck Tri-Cost 0.71 2.02 10.7 17.1
Soft Concatenation 0.69 1.90 8.8 14.8
Soft Bottleneck Tri-Cost 0.68 1.79 9.2 15.1

Table 5: PSM-BTC Net ablation study under local MAP at
δ = 1 as D½ minimized here for all experiments. We use
the same data splits reported by PSM-Net, which reported
an EPE of 1.12 pix for FlyingThings3DClean and a D1 of
1.83% on the Kitti2015 validation split [5]. The best metric
on each dataset is bolded.

coding makes less sense. A different loss, such as an ordinal
loss, on occluded pixels could improve training, though we
leave this as an avenue for future research.

Training with Soft CCE and generating the bottleneck
tri-cost volume is straightforward, requiring little custom
code. This makes our proposed changes easy to incorpo-
rate in current and upcoming stereo networks. To help de-
velopers and to demonstrate repeatability, we will release
PSM-BTC Net for PyTorch as well as the weights for our
PSM-BTC models.
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cher, Daniel Cremers, Alexey Dosovitskiy, and Thomas
Brox. A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation. CoRR,
abs/1512.02134, 2015.

[29] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. CoRR, abs/1709.02371, 2017.

[30] W. Luo, A. G. Schwing, and R. Urtasun. Efficient deep learn-
ing for stereo matching. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 5695–
5703, 2016.


