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Abstract

The intermittency of solar power, due to occlusion
from cloud cover, is one of the key factors inhibiting its
widespread use in both commercial and residential settings.
Hence, real-time forecasting of solar irradiance for grid-
connected photovoltaic systems is necessary to schedule
and allocate resources across the grid. Ground-based im-
agers that capture wide field-of-view images of the sky are
commonly used to monitor cloud movement around a par-
ticular site in an effort to forecast solar irradiance. How-
ever, these wide FOV imagers capture a distorted image of
sky image, where regions near the horizon are heavily com-
pressed. This hinders the ability to precisely predict cloud
motion near the horizon which especially affects prediction
over longer time horizons. In this work, we combat the
aforementioned constraint by introducing a deep learning
method to predict a future sky image frame with higher res-
olution than previous methods. Our main contribution is to
derive an optimal warping method to counter the adverse
affects of clouds at the horizon, and learn a framework for
future sky image prediction which better determines cloud
evolution for longer time horizons.

1. Introduction
Solar irradiance, the output of light energy from the en-

tire disk of the sun measured at a location on Earth, powers
renewable photovoltaic energy systems for both residential
and commercial power generation. The amount of solar ir-
radiance being received by these systems is highly influ-
enced by cloud coverage that occludes, reflects, or scat-
ters the rays directly. Cloud cover, shape, thickness, and
height are many variables that are difficult to predict and are
unique day-to-day. As a result, solar energy is invariably in-
termittent, posing a significant challenge in its widespread
usage [20, 23]. This causes energy fluctuations and uncer-
tainties that could lead to subsequent load balancing issues
in power systems [9]. Therefore, predicting solar irradi-
ance for future time instances is essential for grid-connected
photovoltaic systems to effectively schedule and allocate re-
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Figure 1: Predicting future sky images. Left-to-right: Re-
sults from SkyNet-UNet (the proposed technique), PhyD-
Net-Dual [15], optical flow, and ground truth images. The
methods take in as input images [It−5, It−3, It−1, It], and
predict future frames [Ît+1, Ît+2, ..., Ît+5]; From top-to-
bottom.

sources across the grid. In fact, by monitoring solar energy,
power output can be optimized by utilizing a system of mea-



sured parameters to reconfigure the solar panel connection
topology to improve efficiency and robustness in renewable
energy systems [17].

One of the key approaches for predicting solar irradiance
is by monitoring the movement of clouds around a partic-
ular site using sky-images captured by the so called Total
Sky Imager (TSI). In a typical TSI, a hemi-spherical image
of the sky with a 180° field of view (FOV) is captured us-
ing a catadioptric system involving a camera observing the
sky through a curved mirror; Figure 2 provides examples of
such images. Most TSIs capture images periodically, say
once every 30 seconds, and as a result, these images can be
stacked together to create a time-lapse of historical cloud
cover data around a particular site. Such TSIs, coupled with
a pyranometer that measures solar radiation as global hor-
izontal irradiance (GHI), have been utilized in recent stud-
ies to nowcast and forecast solar irradiance [7, 2, 22]. Ex-
isting methods also use previous time instances of GHI to
forecast future time instances of it using statistical models
[3, 5]. More recent methods utilize deep neural networks
to perform sky-image prediction for future time instances
[13] in which solar irradiance information, in the form of
GHI, is extracted using various statistical or learning-based
methods [2].

Many of the initial works that model cloud movement in
sky images utilize optical flow-based prediction; here, opti-
cal flow computed between current and past images is used
to predict future sky images using simplistic modeling of
cloud dynamics such as a constant velocity model. Solely
using optical flow for this application does not produce ac-
curate long-term prediction due to the variability in veloc-
ity and amorphous shapes of clouds which makes forecast-
ing their trajectory difficult. As a result, more recent works
have focused on incorporating more sophisticated reasoning
based on deep neural networks to learn to predict the future
sky image.

The definitions of short and long-term prediction of
cloud movement in sky-images is subjective to the sam-
pling period, T0, at which the images are captured. For this
work T0 is set as T0 = 30 seconds. Therefore, short-term
prediction is quantitatively defined as predicting 30 sec-
onds in the future, whereas long-term prediction is anything
greater than 30 seconds. Overall, however, both short and
long-term prediction is difficult due to the constant chang-
ing shape of clouds. This is exacerbated by distortions in-
troduced by the hemispherical mirror used to capture the
wide FOV sky-image; specifically, in a typical image ob-
tained from a TSI, objects near the horizon are spatially-
compressed and hence, appear much smaller at the horizon
than when they are at the zenith. Due to this non-linear
mapping produced by hemispherical mirrors, uniform phys-
ical motion of clouds leads to apparent motion of varying
magnitude on the image plane. Clouds at the zenith ex-

hibit significantly larger apparent motion than clouds at the
horizon. This in turn affects the accuracy of motion esti-
mates for cloud movement tracking as the apparent motion
at the horizon is extremely small and overhwelmed by the
larger optical flow induced by clouds at the zenith. For fore-
casting longer time horizons, the small movement of these
clouds are what determines how the texture of clouds evolve
over time. We attempt to counter this problem by warping
the original image to a different space where the apparent
motion is uniformly preserved both at the zenith and the
horizon. This allows us to achieve longer forecasting times
when modeling cloud evolution in sky images.

Contributions. In this work, we propose SkyNet, which fo-
cuses on improving sky-image prediction. Our main contri-
butions are as follows:
• Cloud forecasting via spatially warped images. Our pri-

mary contribution is in showing that spatially-warping the
sky images during training facilitates longer-forecasting
of cloud evolution. This counters the adverse affects of
resolution loss near the horizon.

• Incorporating larger temporal context. We adapt prior
work on future frame prediction in videos [16] to the case
of sky images. Here, to increase precision in forecasting,
we go beyond two input frames to usher in a larger tem-
poral context. Specifically, to predict the image at time
t + 1, we take in as input four input images spanning
{t− 5, t− 3, t− 1, t}.

• Training and validation. We train and evaluate our ap-
proach on a large dataset of sky images and demonstrate
the ability to accurately forecast sky image frames with
higher resolution metrics than previous cloud forecast-
ing methods. We further use the forecasted sky-images
to evaluate our results on estimating the GHI value for
future time instances; Which is discussed in the Supple-
mental Material.

The accuracy of the proposed SkyNet predictions are shown
in Figure 1 where we show our ability to predict up to sky
images for future time-instants to t+5. Each frame denotes
a time lapse of 30 seconds in this dataset and hence, we
predict up to two and a half minutes into the future.

2. Prior Work
We discuss prior work in modeling cloud dynamics with

the goal of predicting solar irradiance.

2.1. Modeling Sky Evolution Using Optical Flow

Early works for cloud motion tracking such as those of
Ai et al. [1] and Jayadevan et al. [12] use a grid or block-
based optical flow technique to model cloud velocity and
motion. This optical flow method involves constructing a
set of grid elements across the sky image in which the di-
rection and velocity is then found between the correlation



of grid blocks between adjacent frames. Although accurate
for short-term cloud movement prediction, approximately
1 min, using this block based optical technique becomes
increasingly difficult when complex cloud dynamics are in-
volved. Therefore, this method becomes less accurate and
tougher to forecast for long-term time horizons.

Recent advances of optical flow techniques have im-
proved upon block-based optical flow methods. Differen-
tial methods for optical flow estimation such as the Lucas-
Kanade and Horn-Schunck are common and popular tech-
niques for estimating cloud motion [6, 8, 26, 24].

Solely using optical flow to model cloud dynamics has
immediate consequences due to the variability and constant
changing of shape of clouds which makes forecasting their
trajectory difficult. More recent methods have seen better
success by incorporating deep-learning methods, coupled
with optical flow and other variables, to model cloud dy-
namics and evolution in the sky.

2.2. Modeling Sky Evolution Using Deep Learning

Many of the works that utilize deep neural networks to
model cloud dynamics predict a subsequent sky image for
a future time instance using a convolutional neural network
(CNN). This predicted sky image is then used to predict
solar irradiance at that time instance.

Kato and Nakagawa [13] use a convolutional long short-
term memory network (LSTM) with optical flow vectors
and past sky images as input to generate a predicted sky im-
age by extrapolating the flow vectors with the input images.
Andrianakos et al. [4] utilize a generative adversarial net-
work (GAN) for sky image prediction to counter the adverse
blurry image effects of using traditional mean squared error
loss (MSE) for image prediction. Le Guen and Thome [15]
incorporate physical knowledge in deep models based on
PhyDNet [10] that exploits physical dynamics to enhance
cloud motion modeling.

Deep neural networks are currently the most recent
methods for modeling cloud dynamics in sky image frames.
However, precise forecasting of future sky image frames for
longer time horizons is hindered by artifacts induced by the
imager. Fisheye camera lenses and hemispherical mirrors,
commonly used for capturing sky images due to their wide
angle FOV, compress the imagery near the horizon which
affects the prediction of cloud evolution when forecasting
sky images. To counter this, in our work, we present a uni-
form warping scheme on the captured images to ensure that
clouds further from the zenith of the hemispherical mirror
have similar apparent motion to those in the periphery, so as
to ensure accurate forecasting.

3. Background and Problem Setup
We begin by describing how sky images are captured

along with the basic notation of how cloud occlusion relates

Figure 2: Sample images captured by a TSI [25].

to the amount of solar radiation being received at a site.
We follow this by deriving the proposed uniform warping
method for sky images.

3.1. Total Sky Imagers and Solar Irradiance

A TSI provides a time-lapse video sequence from an
RGB camera that observes the sky via a hemispherical mir-
ror [25]. Generally, these systems are deployed to capture
imagery of the sky at regular intervals for applications such
as solar irradiance forecasting and visualizing cloud dynam-
ics. To prevent damage of the camera sensor from direct ex-
pose of the sun, the TSI typically includes a mechanical arm
that travels along the path of the sun throughout the images
to occlude direct exposure. Figure 2 shows some images
from a TSI.

The RGB image captured from the TSI provides a sky
map from which we can identify the location of clouds,
their movement over time, and even a crude understanding
of their absorption properties by associating the cloud cover
at a time instance with it’s associated GHI value when using
a ground-based pyranometer. Suppose that we have a solar
panel collocated with the TSI, denoted by the location x. If
the area of this panel is A in m2, then the radiant flux Φ(t)
measured at time t is given as:

Φ(t) = A

∫
λ

Q(λ)Ex(λ, t)dλ,

where Q(λ) is the quantum efficiency of the panel, and
Ex(λ, t) is the spectral irradiance at the location of the
panel, at the wavelength λ and time t, expressed in the units
of J/(nm · m2). This spectral irradiance can be related
to the spectral radiance Lx(ω, λ, t) — the flux at a point x
along a direction ω in the units of J/(nm ·m2 ·Sr). There-
fore, the radiant flux Φ(t) can now be written as:

Φ(t) = A
∫
λ∈Λ

Q(λ)
[∫

ω∈Ω
Lx(ω, λ, t)max(0,nTω)dω

]
dλ (1)

The set Ω defines the solid angle over which light is received
at the solar panel and n is the surface normal, or the orienta-
tion of the solar panel, in the same coordinates as ω. As an
approximation, this integral (1) can be written as the occlu-
sion map produced by the clouds multiplied by the spectral
radiance due to sunlight as well as skylight which can be
pre-measured.



3.2. Problem Definition

The goal of this paper is to provide a framework for short
term prediction of the sky image. Specifically, the TSI takes
an image every T0 seconds to provide a time lapse video.1

For simplicity of notation, we denote this time-lapse video
as a collection of frames {. . . , It−1, It, It+1, . . .}, where
t is an integer-valued index for the sequence, keeping in
mind that any two successive images are obtained T0 sec-
onds apart by the TSI.

Given {. . . , It−2, It−1, It}, the past and current images
in time lapse sequence at a time instant t, our goal is to pre-
dict {It+1, It+2, . . .}, the images in the time lapse sequence
for the next few instants. Since clouds often move fast, there
is little correlation between images taken at sufficiently far
away time instances; hence, we can restrict the time hori-
zon of images that we consider both for the input images
(from the past) as well as the predicted output images (of
the future). Hence, our objective can be refined to using
the image set {It−Tp

, . . . , It−1, It} to predict the image set
{It+1, It+2, . . . , It+Tf

}, where the choice of the input time
horizon Tp and output time horizon Tf are discussed later.

Challenges. Modeling the evolution of the sky and predict-
ing images at future time instants faces challenges that stem
from the clouds themselves as well as features induced by
the imager. Clouds are amorphous, lacking the rich features
that are prized in traditional motion modeling and flow es-
timation. Such domain-specific concerns can be handled by
using learning techniques that implicitly build a prior for
the underlying imagery. However, even when using soph-
icated learning techniques, there are significant challenges
that arise from the spatial distortions introduced by the TSI.

Getting a 180◦ FOV photograph with a TSI results in a
highly nonlinear mapping between the sky and the image as
is seen in Figure 3. The effect of this distortion is easily seen
in Figure 2. An immediate consequence of this nonlinear
warping is that motion near the horizon is not easily observ-
able; for the same amount of cloud movement, the perceived
optical flow on the image plane of the camera is signifi-
cantly smaller at the horizon. This makes motion modeling
near the horizon fragile to small perturbation. This problem
is exacerbated by optical flow estimation, which is hard to
perform on cloud imagery that lack high-contrast textures
and the resulting flow estimates are inherently fragile, es-
pecially near the horizon. While using enforcing smooth-
ness priors on the flow estimates often leads to robustness
especially at the zenith, they tend to make the flow at the
horizon nearly zero. Hence, the nonlinear spatial resolution
is not conducive for predicting cloud evolution over longer

1For the dataset that we work with, this sampling period T0 = 30
seconds. This choice balances the need to monitor fast moving clouds,
that would benefit from shorter sampling period, and the size of the dataset,
which scales inversely with T0.

cloud height

poor resolution at the 
horizon

Figure 3: A cloud subtends a smaller angle when it is further
away from the zenith. This results in the nonlinear spatial
warping that is seen in Figure 2, and poses critical chal-
lenges for effective forecasting of cloud movement.

time horizons.

Solution outline. To address these challenges in motion es-
timation, and provide a framework for precise prediction of
sky images, we make two modifications to traditional ideas
in future frame prediction.

• Optimal spatial warping. First, under a simple model of
image formation, we propose a warping of the TSI im-
age so as to preserve motion of clouds over the spatial
field. This serves to amplify motion near the horizon that
is otherwise small. We describe this in Section 4.

• Multi-image prediction. Second, since the image after
warping is still smooth, we use multiple frames from
the past to stabilize motion estimates. We perform this
by adapting prior work on two-frame activity prediction.
This is described in Section 5.

4. Optimal Warping of Sky Images
The warping of sky images is necessary because the ap-

parent motion of clouds around the periphery of the hemi-
spherical mirror will be much smaller than when at the
zenith. As a result, we can only get good optical flow esti-
mates at the zenith at the cost of poor optical flow estimates
elsewhere. For better long-term prediction of cloud evo-
lution and as a result, better long-term prediction of solar
irradiance, we spatially warp the images so that the appar-
ent motion is more uniform. We design a warping scheme
so that over a specific site, we can achieve uniform optical
flow.

Image formation model. We model the imager as being an
orthographic camera observing the sky through a spherical
mirror of radius Rm. The optical axis of the camera points
is normal to the ground, and the optical center is aligned to
the center of the spherical mirror. We model the ground as
being planar, an assumption that is reasonable given that the
radius curvature of the earth is couple of orders of magni-
tude larger than the geographic region we can image with
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Figure 4: Overview of how the 3D position of a cloud in
the world space gets mapped to a point on the image plane
using a hemispherical mirror.

the TSI. Given this, we adopt a world coordinate system
whose origin is at the center of the spherical mirror. The xy
coordinate plane is aligned with the ground plane and the z
axis is pointing towards the sky and hence, the optical axis
of the camera is aligned to [0, 0,−1]⊤. Figure 4 provides a
schematic of this setup.

Suppose that a cloud at Xc = [xc, yc, h]
⊤ maps to image

pixel coordinates [uc, vc]
⊤. We now seek to estimate the

relationship between these quantities. We first move from
cartesian coordinates on the ground plane to polar coordi-
nates, which allows us to exploit the rotational symmetry
of the mirror about the z-axis. With this, we can write the
cartesian coordinates of the cloud as

Xc = [xc, yc, h]
⊤ =

[
ρ cos θ ρ sin θ h

]⊤
(2)

and that of the image pixel coordinates as

[uc, vc]
⊤ =

[
s cos θ s sin θ

]⊤
, (3)

where (ρ, θ) and (s, θ) are polar cordinates for ground and
image plane location, respectively, for the cloud. Note that
we have effectively used the rotational symmetry of the mir-
ror in insisting both the clouds and its corresponding camera
pixel subtend the same angle θ in polar coordinates.

Let’s denote P as the point on the mirror that reflects the
cloud to its corresponding image plane pixel. Given that the
camera is orthographic, we can derive the P to be

P =
[
s cos θ s sin θ

√
R2

m − s2
]T

(4)

This comes from the fact that the point P is on a sphere of
radius Rm. We can now enforce Snell’s laws of reflection
to relate ρ and s to each other, thereby getting the functional
relationship between the position of the cloud in world coor-
dinates to its location on the image plane. Specifically, we
can write the surface normal at P , which is simply a unit

norm vector oriented along P , to be equal to the average
between the line produced by the point P and the vertical
line at ez: (

Xc − P

∥Xc − P∥
+ ez

)
· 1
2
=

P

∥P∥
. (5)

Noting that ∥P∥ = Rm, the radius of the sphere, we can
express the 3rd coordinate of (5) as

1

2
·

[
h−

√
R2

m − s2

∥Xc − P∥
+ 1

]
=

[√
R2

m − s2

Rm

]
.

We can now solve for ∥Xc − P∥ to get

∥Xc − P∥ = γ(s) =
h−

√
R2

m − s2

2
√

R2
m−s2

R − 1
≈ h

2
√

R2
m−s2

Rm
− 1

Now plugging γ(s) = ∥Xc − P∥ back into (5), we get

Xc − P

γ(s)
+ ez =

2P

Rm
,

from which we can obtain an expression for Xc as

Xc = γ(s)

[
2P

∥P∥
+ ez

]
+ P (6)

Therefore, we can expand (6):ρ cos θ
ρ sin θ
h

 = γ(s)

 2

Rm

 s cos θ
s sin θ√
R2

m − s2

−

0
0
1

+

 s cos θ
s sin θ√
R2

m − s2


From the top two rows of the previous equation, we can
relate ρ to s as follows:

ρ =

(
2γ(s)

Rm
+ 1

)
s =

(
2h

2
√
R2

m − s2 −Rm

+ 1

)
s

≈ 2hs

2
√

R2
m − s2 −Rm

(7)

Instead of modeling ρ directly, we can model ρ
h which gives

us height invariance

ρ̃ =
ρ

h
=

2s

2
√
R2 − s2 −R

(8)

Therefore, it does not matter the height at which the cloud
is and therefore, we do not need to specify h.

Remarks. While there is a significant distortion of the sky
in the image plane of the camera, we can undo this distor-
tion by redefining the image in terms of ρ̃ instead of s. That
is, using the expression in (8), we can map the image plane
from (s cos θ, s sin θ) to (ρ̃ cos θ, ρ̃ sin θ). This has the ben-
efit of normalizing the observed optical flow so that it no
longer suffers from the spatial distortion. More specifically,
in the transformed coordinates, the observed flow magni-
tude is the same, immaterial of where the motion occurs in
the field of view of the device.
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Figure 5: We show how the appearnce of an input image
changes under the proposed warping. The plot on the left
visualizes how we map from radial distances on the image
to radial distances in the proposed representation. Choosing
different values of the range of ρ̃ produces different FOVs
and associated distortions. This is visualized in the center
column. The right column shows the image after inverting
the warp to obtain the original image.

Inverting the warping function. We can invert the rela-
tionship between ρ̃ and s in (8), using some algebraic ma-
nipulation to get the following inverse relationship.

s =
−Rmρ̃+Rmρ̃

√
1 + 3(1 + ρ̃2)

2(1 + ρ̃2)
(9)

Implementation details. To implement the warping func-
tion, we need to find the radius of the mirror Rm. We ob-
serve that for an orthographic camera and a planar ground,
the horizon maps to a circle with a radius of Rm/

√
2. We

use this to estimate Rm in pixel count. The other important
parameter that we need to set is the maximum value of ρ̃.
Setting ρ̃ ∈ [0, ρ̃max] defines the FOV of the device to be
restricted to ± tan−1 ρ̃max; for example, choosing ρ̃ ∈ [0, 1]
corresponds to a FoV of the sky of ±45°. Figure 5 shows
warped and unwarped images for different values of this
range. A small value of this range leads to poor coverage
of the sky and a large value has textures that are extremely
blurred due to the nonlinearity of the warp as well as incor-
poration of trees and buildings. For all of our experiments,
we choose a range for ρ̃ ∈ [0, 3] corresponding to a FoV
of ±71◦ which provided a good balance between coverage
and distortions. Finally, to avoid loss of information, we
upsample the image dimensions by a factor of three.

Figure 5 also shows how the warping can be inverted so
as to revert back to the original image space. It is worth
observing how the relative sizes of clouds at the zenith and
horizon changes in the warped space. This warping ensures
that motion magnitude is preserved and spatially-invariant.
We next look at a learning framework for multi-image pre-
diction.

5. SkyNet
To forecast sky images, we learn a deep neural network

that we refer to as SkyNet that takes in as input multiple
images and predicts the next frame in the time lapse video.

Network input. As mentioned earlier, using multiple im-
ages to forecast provides us robust estimates of slow mov-
ing clouds as well as to combat the distortions introduced
by the imager. To faciliate this, we use the stack of images
{It−5, It−3, It−1, It} to predict the image at It+1. This
choice reflects the need to have a long time horizon in the
past, but given the redundancy, dropping some of the inter-
mediate images help alleviate training time. The images are
warped using the approach described in Section 4.

Network architecture. We consider 2 network architec-
tures for our SkyNet Model. Initially, our first network ar-
chitecture, SkyNet-UNet, adapts the future frame prediction
model proposed for activity forecasting in [16]. The back-
bone of this architecture is a U-Net [19] that takes in the
input images to predict the image at the next time instant in
the time lapse. Our second network architecture, SkyNet-
LSTM, performs the same task as our initial network archi-
tecture, however, incorporates a convolutional long short-
term memory network (ConvLSTM) [21]. Both architec-
tures incorporate the same loss function further described
below. Figure 6 shows the structure of both forecasting
models used.

SkyNet-UNet starts with the number of input channels
representing the number of time steps being considered. For
each layer of the encoder, the number of channels are dou-
bled until the bottleneck of the architecture which has 512
layers. The decoder, with skip connections between the en-
coder, brings the number of channels down to the target im-
age size.

SkyNet-LSTM incorporates a similar encoder-decoder
architecture using 2 ConvLSTM cells for the encoder.

Loss functions. The forecasting model enforces the pre-
dicted frames to be close to their ground truth in the spatial
space as well as enforcing the optical flow between the pre-
dicted frames to be close to their optical flow ground truth as
well. This is done by imposing a combination of penalties
as network loss functions between the predicted frame Ît+1

and ground truth It+1. The network is trained using three
loss functions based on intensity, gradient, and motion. The
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Figure 6: The proposed SkyNet forecasting method that in-
corporates the U-Net [19] or ConvLSTM [21] neural net-
work architecture used to forecast a subsequent sky-image
frame.

intensity loss ensures that pixels in the RGB space are sim-
ilar by minimizing the ℓ2 distance between Î and I:

Lint(Î , I) = ∥Î − I∥22 (10)

When forecasting frames using the standard Mean Squared
Error (MSE) loss function, the predicted images are blurry.
This is due to the fact that MSE generates the expected value
of all the possibilities for each pixel independently which
causes a blurry Image. Therefore, the gradient loss is used
to sharpen the predicted image:

Lgd(Î , I) =
∑
i,j

∥ | Îi,j − Îi−1,j | − | Ii,j − Ii−1,j | ∥1

+ ∥ | Îi,j − Îi,j−1 | − | Ii,j − Ii,j−1 | ∥1, (11)

where i and j are the spatial indices of the image.
To predict an image with the correct motion, we place

a loss on the optical flow field generated by the predicted
image and the input image. In our work, a pre-trained CNN
optical flow network is used [11] for the optical flow esti-
mation. Denoting f as the optical flow network used, the
motion penalty is expressed as:

Lop = ∥f(Ît+1, It)− f(It+1, It)∥1 (12)

The three functions above are combined to define the
overall loss function as:

L = λintLint(Ît+1, It+1) + λgdLgd(Ît+1, It+1)+

λopLop(Ît+1, It+1, It) (13)

We define λint, λgd, and λop as 0.5, 0.001, 0.01 respect-
fully.

Training Details. Our implementation of the models are
in Python using the PyTorch framework [18]. Training un-
til convergence ends around 40 epochs with a learning rate
of 0.001 using Adam optimization [14]. We run all of our
experiments on 3 NVIDIA GeForce RTX 2080 Ti GPUs.

Long-Term Forecasting. To forecast a sky image frame
longer into the future, we implement a simple recursive
method. Once we have a prediction for Ît+1, to pre-
dict the image at time t + 2, we use the image set
{It−4, It−2, It, Ît+1}; that is, we use the predicted image at
t+ 1 to recursively predict the next image in the sequence.
We can repeat this multiple times to increase the time hori-
zon of the predictions.

6. Experiments
We compare our method to prior deep-learning ap-

proaches to model cloud evolution in sky images along with
the benefit of warping the sky images to achieve better long-
term prediction.

6.1. Sky-Image Dataset

We use a publicly available dataset of TSI images for
training and evaluation [25]. The source of the dataset is a
TSI located on the Nauru Island and available for down-
load at the Atmospheric Radiation Measurement facility.
Images in the dataset were captured over a duration span-
ning November 2002 to September 2013. Each successive
image pairs are 30 seconds apart and are at a resolution of
352 × 288 pixels. In total, the dataset includes 4, 272, 938
images. However, for our study, we utilize a subset of the
available data as our primary train and test sets. We utilize
42, 171 images from the year 2002 for training and valida-
tion and a disjoint set of 5, 271 images from 2003 for test-
ing. Figure 2 shows sample images from the dataset.

6.2. Comparison to Previous Methods

Figure 1 provides qualitative comparison between the
SkyNet predictions, as well as basic optical flow-based pre-
diction using a constant velocity model, and the PhyD-Net-
Dual approach [15]. As is seen in Figure 1, SkyNet pre-
dictions are of a significantly higher quality than the com-
petitors. We provide quantitative evaluation in the form of
PSNR for these competing methods in Figure 7. Here we
also compare with a version of the SkyNet models without
the optimal warping applied to it to study the influence that
the warping function has. We observe that there is a sig-
nificant drop in performance when forecasting without the
warping functions especially looking beyond the first fore-
casted image.

We also compare against a two-frame version of SkyNet-
UNet, both with and without spatial warping, to test the ef-
fectiveness of using a larger time horizon. In this version,
we only provide {It−1, It} as inputs to the network. As we
expect, the performance of the prediction drops by a small
amount when given a smaller past horizon, and by a larger
amount when we disable spatial warping.

It should also be noted from Figure 7 that although the
SkyNet-UNet model performs the best at time instance t+1,
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Figure 7: Performance in image forecasting for various
methods for a time horizon of one to five images.

as the images are forecasted longer into the future, the
SkyNet-LSTM model outperforms all other tested models.
This may be attributed to the long-term memory units of the
convLSTM network however, further research will be done
to solidify this argument.

6.3. Dataset Size Dependent Results

On a different training datasets and a new test dataset,
we experiment with varying the size of the training data and
asses how it influences our results. As shown in Table 1, as
we increase the amount of training data from 1000, 10000,
and 100000 respectfully, the model performs better. This is
due to the fact that more data allows the model to generalize
better. At the same time, although we train on a small sub-
set of the sky-image dataset, there are upwards of millions
of images in total that can be utilized for training. There-
fore, with the right amount of training, our method can be
improved even further.

7. Conclusion and Discussions
In this work, we presented SkyNet which improved sky-

image prediction to model cloud dynamics with higher spa-
tial and temporal resolution than previous works. Our
method handles distorted clouds near the horizon of the
hemispherical mirror by patially-warping the sky images
during training to facilitate longer forecasting of cloud evo-
lution. Although our method performs well, the textures

PSNR values in dB

Ît+1 Ît+2 Ît+3 Ît+4 Ît+5

1K Dataset 31.24 31.05 30.94 30.88 30.84
10K Dataset 32.16 31.71 31.4 31.19 31.05
100K Dataset 33.2 32.64 32.28 32.03 31.84

Table 1: Comparison of the peak signal-to-noise-ratio for
various dataset size dependent results for 1K, 10K, and
100K sizes.

are still blurred near the horizon which is hard to undo and
further degrades when predicting longer into the future. In
future works, we plan to move away from the RGB image
space and capture the 3D distribution of clouds. This will
allow us to obtain a sense of the absorption and reflectance
properties of clouds across a large scale to better attenuate
how they affect the amount of solar radiation being received
at the ground. Also, we would like to develop computa-
tional imaging approaches that captures wide-angle FOV
images without the expense of objects being distorted near
the horizon. Above all, we believe our work is the first step
toward precise prediction of solar irradiance to enable the
widespread use of solar power both commercially and resi-
dentially.

Limitations. Although SkyNet improves upon previous
works modeling cloud dynamics, our method has limita-
tions. First, due to the fact that we are using a learning-
based algorithm, we are restricted to modeling clouds in the
image intensity space where physical factors are not mea-
sured. Second, our model is also dataset dependent, infer-
ring that sky images captured using a different camera than
a TSI will require retraining on that camera specific dataset.
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