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Abstract—We introduce a novel video-rate hyperspectral imager with high spatial, temporal and spectral resolutions. Our key
hypothesis is that spectral profiles of pixels within each super-pixel tend to be similar. Hence, a scene-adaptive spatial sampling of a
hyperspectral scene, guided by its super-pixel segmented image, is capable of obtaining high-quality reconstructions. To achieve this,
we acquire an RGB image of the scene, compute its super-pixels, from which we generate a spatial mask of locations where we
measure high-resolution spectrum. The hyperspectral image is subsequently estimated by fusing the RGB image and the spectral
measurements using a learnable guided filtering approach. Due to low computational complexity of the superpixel estimation step, our
setup can capture hyperspectral images of the scenes with little overhead over traditional snapshot hyperspectral cameras, but with
significantly higher spatial and spectral resolutions. We validate the proposed technique with extensive simulations as well as a lab
prototype that measures hyperspectral video at a spatial resolution of 600 x 900 pixels, at a spectral resolution of 10 nm over visible

wavebands, and achieving a frame rate at 18fps.

Index Terms—Computational Photography, Hyperspectral Imaging, Adaptive Imaging, Hyperspectral Fusion, Superpixels
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Fig. 1: High resolution video rate hyperspectral imaging. We propose a novel hyperspectral camera that is capable of capturing
high spatial and spectral resolution images at video rate. We achieve this by a sparse, scene-adaptive spectral sampling, and then
fusing it with an auxiliary RGB image. Full video can be accessed from the supplementary material.

1 INTRODUCTION

NE of the classic approaches for plenoptic imaging
Ois to sacrifice spatial resolution of a sensor to obtain
resolution in other dimensions of light. This principle has
been used for sensing color with filter arrays [1], polar-
ization state with per-pixel polarizers [2], light fields with
angle sensitive pixels [3] and integral imagers [4], high-
speed imaging with staggered pixel exposures [5], and high
dynamic range with per-pixel neutral density filters [6].
This trade-off is encapsulated in the concept of assorted
pixels [7] where the pixels in the sensor also sample along
non-spatial dimensions of the incident light — be it time,
spectrum, angle, dynamic range or combinations thereof.
The main challenge in sensing with assorted pixels has been
the steep loss in spatial resolution, especially when we need
to allocate a large portion of samples to other dimensions.
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This paper provides a design template for novel hyper-
spectral cameras that work in the spirit of assorted pixels,
i.e., trading spatial resolution of the sensor to obtain high
spectral resolutions. The key differentiating aspect of our
design is that it performs a scene-adaptive tiling of the spatio-
spectral voxels onto the image sensor, which is in sharp
contrast to prior work where the measurements are non-
adaptive. Our approach relies on an assumption that, for
most scenes, the spectrum of pixels is similar over small
spatial neighborhoods that do not cross texture and material
boundaries, such as superpixels. Hence, if we knew the
regions with homogeneous spectra a priori, then we could
sample one or more spectral profile for each region and
propagate it to the remaining pixels, which would avoid
blurring of the measurements as well as loss of spatial
resolution. We refer to our approach as Super-pixelated
Adaptive Spatio-Spectral Imager (SASSI).

SASSI relies on two components: a guide RGB camera, that
is used to determine the spatial locations where we sample
spectrum; and, a spatio-spectral sampler, that is capable of
measuring the high-resolution spectrum at chosen spatial



locations by spreading their spectrum in space. The spatio-
spectral sampler is identical to that of the single disperser
coded aperture snapshot spectral imager (CASSI) architec-
ture [8] with an exception of programmable spatial mask via
a spatial light modulator (SLM). Both components share the
same view point and are time synchronized.

To acquire the hyperspectral image (HSI) at a time
instant ¢, we first perform super-pixel segmentation on
the guide image acquired at the previous time instant,
say t — 1, to obtain a clustering of compact regions that
have similar RGB intensities; we use this as a proxy for
the material map of the scene. We subsequently create a
spatial mask satisfying two key criteria: first, the mask
pixels are sufficiently far apart from each other so that
their spectral spreads in the spatio-spectral sampler do not
overlap; and second, the number of super-pixels selected is
maximized along with the total sensor pixel count in the
spatio-spectral sampler. We now acquire measurements at
time ¢, with the adaptively-designed mask displayed on the
SLM. Finally, we estimate the HSI by fusing the RGB image
and the spatio-spectral samples acquired at time ¢. Since
all measurements being fused are captured simultaneously
in a time-synchronized manner, we avoid the need for
registration of images across time instants.

Contributions. We propose SASSI, an adaptive HSI sensing

approach, and make the following contributions.

o Optical design. We provide a compact, light efficient design
for the SASSI camera.

e Reconstruction of the HSI. We propose two recovery ap-
proaches applicable to a variety of scenarios. The first
one is a rank-1 reconstruction where each pixel within
the superpixel is assigned a scaled version of the mea-
sured spectrum at the centroid. The second one is a
per-wavelength neural network based reconstruction that
relies on learnable guided filtering.

o Lab prototype. We build a prototype of the SASSI camera
that is capable of acquiring HSIs with a spatial resolution
of 600 x 900 over a visible waveband 400 — 700 nm at a
spectral resolution of 10 nm, operating at 18 fps.

We provide extensive evaluation using simulations and
real data captured using the prototype. Our results come
with a new HSI dataset with 50 scenes, including some
microscopic samples. The dataset, training scripts, and pre-
trained models can be downloaded from [9].

Limitations. The limitations of SASSI are three fold.

o Thin spatial structures and clutter. Our setup requires that
sampling locations not be close to each other, which pre-
cludes measurement of highly complex spatial structures.

e Scenes with rapid motion. Our approach fuses RGB and
spectral measurements from the same time instance; how-
ever, rapid motion between frames may create sampling
locations that are off from the desired pattern.

o Metamerism. For scenes with metamerism, we run the risk
of violating the assumption that the spectrum remains
largely the same within each super-pixel.

2 PRIOR WORK

We review some of the key prior art in hyperspectral imag-
ing and adaptive sensing.
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Fig. 2: Various sampling schemes. CASSI-type cameras sense
with a dense spatial pattern requiring spectral demultiplexing.
On the other hand, pushbroom cameras do not require demul-
tiplexing but lead to severe loss in spatial resolution. SASSI
provides a unique tradeoff where the sampling pattern is sparse
enough to avoid any spectral multiplexing, while requiring
only a single scene-adaptive spectral measurement.

2.1 Hyperspectral camera designs

The SASSI architecture is closely related to many existing
designs for hyperspectral imaging; we discuss them next.

Classical hyperspectral cameras. Hyperspectral images
capture information as a function of both space and wave-
length, and can be represented as a 3D volume, H(x,y, A).
Spectral profiles are often unique identifiers of materials and
illuminants and have been used in several scientific [10-
12] and computer vision [13-15] applications. Traditional
cameras image either one wavelength at a time, or all
wavelengths of one row of the image at a time, both of
which require long exposure times. The pushbroom camera
samples a single or multiple spatial columns of the HSI by
smearing their spectral profiles onto the spatial sensor; this
can be seen in Figure 2. Both pushbroom and the proposed
SASSI avoid the spectral streaks from overlapping with
each other, and hence, they both provide a sub-sampled
Nyquist sampling of the HSI. The key difference lies in the
uniform non-adaptive sampling in pushbroom versus the
non-uniform adaptive sampling in SASSI.

Compressive sensing refers to a class of techniques that
senses a signal from a set of random non-adaptive linear
measurements, whose cardinality is smaller than the signal
dimension. The coded aperture snapshot spectral imaging
(CASSI) camera and its variants [8, 16-22] are examples of
compressive imagers where a single spatio-spectrally mul-
tiplexed image is demultiplexed into a full-resolution HSI
using various signal priors [23]. Such cameras lead to severe
loss of spatial resolution, and require solving complex opti-
mization problems. SASSI can be interpreted as an extension
of the CASSI architecture. In addition to being adaptive, our
method avoids multiplexing of spectrum across pixels. This
enables recovery of high resolution spectra without com-
promising spatial resolution. Figure 2 shows the sampling
masks for the CASSI system; the higher density of openings
in CASSI leads to multiplexing of spectral measurements
from different spatial locations, which is a key difference to
the proposed technique.

Hybrid cameras. Hybrid cameras fuse a low-resolution
hyperspectral imager and a high-resolution RGB camera [24,



25] to obtain a high spatial and spectral camera; this process
is also referred to panchromatic sharpening [26, 27]. Cao et
al. [28] used a CASSI system in place of a low-resolution
hyperspectral camera. Instead of obtaining a random and
dense spatio-spectral multiplexing, they rely on a uniform
sparse mask with a transmission efficiency < 0.03% and
then propagate the sparse set of spectral to all other loca-
tions by fusing it with an RGB image. However, a uniform
sampling strategy is not suitable for scenes that have small,
irregular objects.

2.2 Adaptive sampling strategies

Instead of fixing the sampling scheme across all scenes, it
is intuitive that an adaptive sampling tuned to the specifics
of an individual scene can provide higher accuracy [29-31].
In the context of snapshot hyperspectral imaging, Feng et
al. [32] and Ma et al. [33] showed that an RGB image can
be used to tailor the mask for CASSI, thereby creating a
content-adaptive hyperspectral sampling strategy. This is a
promising approach to snapshot hyperspectral imaging, and
in many ways, is a key motivation for our own work.

There are some important differences between SASSI
and the techniques mentioned above. Ma et al. [33] rely on
temporal correction of errors, as well as a simple modifi-
cation of bilateral filtering in the reconstruction procedure,
which requires a very accurate estimation of correspon-
dences across time-frames — a task that is often difficult in
the absence of texture in the scene. SASSI instead relies on
RGB image and spectral information from the same frame,
thereby not requiring any image alignment. Further, we rely
on a learned guided filtering based reconstruction technique
that can recover HSIs with high accuracy.

2.3 Super-pixelation of images

Super pixels provide an over-segmentation of an image
into homogeneous regions [34-36], and have been used
extensively in vision problems. Such an oversegmentation
can be used to guide spectral sampling by assuming that the
spectra is similar within each super pixel. Super pixelation
is computationally light-weight and hence is amenable to
video-rate processing. We used the Simple Linear Iterative
Clustering (SLIC) algorithm [34] — a fast light-weight tech-
nique that is especially suitable for real-time applications.

To verify our hypothesis of similar spectra within a
superpixel, we estimated the similarity between spectrum at
one location and all its neighbors within the superpixels for
some widely used datasets [22, 37-39]. Figure 3 visualizes
the dissimilarity within each super-pixel in terms of spectral
angular mapping (SAM). The average SAM value for any
given HSI was less than 10° — corresponding approxi-
mately to 30 dB — which states that super pixels are a re-
liable way of separating images into homogeneous regions.
Intuitively, it should then suffice to sample at one location
within each super pixel Such a strategy reduces complexity
of sampling by providing a single shot hyperspectral imager
with extremely fast reconstruction.

3 THE SASSI CAMERA

We first describe the SASSI system in detail, starting with
the optical design, and the key processing steps for recon-
struction of snapshot HSIs.
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Fig. 3: Homogeneity of super-pixels. We hypothesize that
super-pixels represent homogeneous regions of spectra. We
estimated similarity between spectral profile at one location
within a super-pixel and all its other members for commonly
available datasets. We observed that spectral profiles inside
a super-pixel are highly correlated, evident from the small
Spectral Angular Mapping (SAM) value.
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Fig. 4: Schematic of the proposed setup. Our optical setup con-
sists of an RGB camera that guides the sampling system, and a
spatio-spectral imager that consists of a spatial light modulator,
a prism and a grayscale sensor. The guide image is utilized to
generate a spatial mask that generates non-overlapping spectral
profiles on the grayscale sensor. The guide image is then fused
with the sparse spectral measurements to obtain a high spatial
and spectral resolution HSL

3.1 Optical schematic

Figure 4 shows a schematic of our optical setup, which
consists of two sub-systems: the guide RGB camera and
the spatio-spectral sampler that involves an SLM for spatial
sampling, a prism for spectral dispersion, and finally a
grayscale camera.

Given the HSI of the scene, H(x,y, \), we now describe
the image formation process at both cameras. An image of
the scene is focused by a main imaging lens and is then
relayed to the RGB guide camera and SLM via a polarizing
beamsplitter. The guide camera senses a color image of
the scene, Ircp(2,y), whose intensities relate to H(z,y, \)
via the sensor’s spectral response. The SLM implements a
transmission mask M (z, y) which results in a modified HS]I,

H(z,y,\) = H(z,y, \) M (z,y). This signal then propagates
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Fig. 5: Super-pixel sampling strategy. We follow a computationally simple, three step sampling strategy for estimating the mask.
Given a super-pixel segmentation, we first create a mask with centroids of super-pixels as sampling locations. Then, we enforce
minimum separation along horizontal direction by moving/removing sampling locations. Next, we re-estimate the super-pixels
with the new sampling locations as centroids. Finally, we increase light throughput by creating sampling locations everywhere
with minimum separation between neighbors. Such a sampling strategy requires less than 2 ms on a modern computer, ensuring

real time mask generation.

through the beamsplitter and the prism which generates the
following spectrally-spread image,

Lopee(2, ) = / Ha—fO)m N e dy, )

where f(-) is a spectral shift induced by the prism and ¢())
is spectral response of the camera. We assume the maximum
spatial spread of spectrum to be NN pixels. Note that (1) is
the image formation model for the single-disperser CASSI
system for a static attenuation mask.

Systems such as CASSI utilize a dense mask which leads
to mixing of spectra at neighboring locations leading to
an ill-conditioned inverse problem. However, if M (z,y) is
designed with a minimum spacing of N pixels between
neighboring openings in the mask, we can ensure that each
pixel in the image Is,ec only measures light from a single
spatial pixel of the SLM. The guide image acquired at time
t — 1 is used to determine the mask at time ¢, M (z, y, t), via
super-pixelation and a judicious sampling of pixels given
the super-pixels. The mask M (z,y,t) is displayed on the
SLM when acquiring the images at time ¢; these images,
along with the mask, are fused to obtain the hyperspectral
image at time ¢. We describe each step in detail next.

3.2 Super-pixel generation

Given the guide image, we perform super-pixelation with
the computationally efficient simple linear iterative cluster-
ing algorithm (SLIC) [34, 40]. The SLIC algorithm essentially
has two parameters, namely the number of super-pixels, @
and the compactness, C. Compactness controls the regularity
of super-pixels; a larger value of C' promotes more regularly
shaped super-pixels, while smaller value ensures that the
super-pixel boundaries adhere to edges in the image. Such
a simple and effective parametrization is favorable to our
mask generation scheme, and hence very crucial. The size
and shape (compactness) of super-pixels depends on num-
ber of pixels over which spectrum is spread at each spatial
point and hence can be effectively set.

3.3 Adaptive spatial sampling

Given the super-pixel image, we next efficiently generate
a scene-adaptive spatial mask that enables and efficient

sampling of the scene’s HSI without spectral multiplexing.
The generated mask aims to satisfy two key requirements:

1) Each super-pixel is sampled at least once, and

2) The sampling locations are horizontally separated by N
pixels to ensure no overlap between the spectral smears
arising from two different spatial locations.

We further seek to increase the light throughput by max-
imizing the number of sampling locations on the SLM.
Generating an optimal mask is a computationally expensive
problem. We instead rely on a simple multi-step approach
to ensure real-time computations.

Step 1 - Initial centroid-based mask. We start by setting the
sampling locations to super-pixel centroids, {(z¥, y’;)}szl
This generates a mask M (z,y) that has Q) openings in total,
which may be small but ensures that all super-pixels are
sampled. To enforce the second constraint, we then modify
the initial mask by moving/removing sampling locations
till every location is separated by at least IV pixels.

Step 2 — Resegmentation of super-pixels. The resultant
mask after step 1 satisfies the second constraint but may
violate the first constraint of one sample per superpixel —
especially if the super-pixels are small. In order to satisfy
the first constraint, we use the updated sampling locations
from first step as the centroids and reestimate the super-
pixels. In case of SLIC super-pixels, this involves running a
simple local K-means clustering which is fast and efficient.

Step 3 — Increasing light transmission. Given a spatial
resolution of H x W and a spectral spread of N pixels,
the mask can have a maximum of Qn.x = % sampling
locations. We followed a greedy approach to achieve this.
Starting from left side of the mask, we open every location
that is not sampled in a 2N — 1 horizontal neighborhood.
This is then repeated for all rows of the image till no more
pixels can be opened. Figure 5 visualizes each step of the
sampling strategy. Given a super-pixel segmentation, the
whole process takes less than 2 ms on a mid-range PC.

3.4 Reconstruction techniques

We propose two approaches to estimate HSIs.

Local rank-1 approximation. We follow a “rank-1” ap-
proximation for each super-pixels, where we assume that



spectrum at each spatial location is a scaled version of the
sampled spectra within its super-pixel neighborhood. Let
Igray(, y) be the grayscale image of the scene obtained from
the guide camera. We illustrate the reconstruction details
for one super-pixel; the method is the same for all other
super-pixels. Let {(zp,yp)}, be sampled locations within
the I super-pixel, and let S,,(\) = H (z,, yp, A) the sampled
spectrum. The spectrum at an unsampled location (z,,, yy,)
within this super-pixel is then computed as,

Toray (T, Yu)
gray us Yu ZS @)
N;

Z Igray(l'payp p=1
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Such a reconstruction strategy is computationally inexpen-
sive, and can be easily implemented on GPUs, making it an
appealing approach for real-time reconstruction.

Learned guided filtering. When capturing measurements
at video rate, the SNR is expected to be low, which gives
rise to artifacts around superpixel boundaries. To overcome
this, we rely on a data-driven approach for high quality
reconstruction even under severely noisy measurements.
The technique is similar in spirit to the well-known guided
reconstruction techniques such as guided filtering [41], and
more recently, a neural-network variant of the same [42].

Our neural network based reconstruction has two dis-
tinct components: first, a guided filter with learnable filters,
and second, a simple 2-layer neural network.

Step 1 —- Guided filter. The first step estimates the spec-
tral image as an affine scaling of the guide, i.e. I¥(z,y) ~
aplk euide T By, for the £ image patch. The values of o, and S,
are estlmated on the fly by solving an optimization problem
of the form,

min ||F o M* © (I"”‘

input
ak,Br P
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where M¥ is the spatial mask for the kth patch, and F' is
a box function in traditional guided filtering. We observe
that the box function is not sufficient when working with
sampled data, and hence we make the parameters of F'
trainable as part of the neural network.

Step 2 — Refinement. We then use the outputs of the
guided filter as inputs to a three-layer neural network,
which acts as a refinement layer to remove any artifacts.
Other architectures based on guided filtering are possible,
but we found this simple architecture sufficed for our pur-
poses. Figure 6 visualizes the reconstruction pipeline.

3.5 Reconstruction approach for video sequence

Since our approach requires fusion of two images, it is
important that they capture measurements of the same
scene. When capturing a video sequence, our optical system
generates color images 1% ;(z,y) which generates masks
M?*(z,y) at time instance ¢. This mask is used to measure
the RGB and spectral images at time instance ¢ + 1, which
is likely different from the scene at ¢ due to motion. Instead
of fusing Igp(,y) and IE! (2, y), which may lead to erro-
neous reconstruction, we combine I5t2(, y) and Ist;‘eg( x,y)
— which ensures that both images are in lock-step. We note
here that step 2 in the mask generation process, where the

super-pixels are re-estimated is an important contributor to
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Fig. 6: Visualization of guided filtering layer. We rely on a
simple modification to traditional guided filtering. We repre-
sent the measurements as an affine scaling of the grayscale
guide image. Then we solve a weighted least squares problem
to estimate the coefficients, which is then used to reconstruct
image at each wavelength band. This is followed by a two-
layer refinement stage to get the final output. The learnable
weights are trained along the two-layer neural network with a
composite loss consisting of SSIM and MSE loss functions.
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Fig. 7: System pipeline. Our method avoids temporal regis-
tration as it relies only on the information captured at time
instance ¢. Specifically, the guide image at ¢ — 1 is used to create
a mask, which is used to capture another guide image and the
spatio-spectral image at time ¢. Instead of fusing guide image
from t — 1, we fuse images only from time instance ¢ which
ensures that there are no motion artifacts.

accurately fusing the two images. By generating mask from
time instance ¢ and using it to estimate super-pixels in time
instance ¢ 4- 1, we avoid temporal registration which is hard
to perform for an arbitrary scene. The timing of the system
pipeline is illustrated in Figure 7.

4 EXPERIMENTS

We first validate SASSI with simulations on a commonly
available datasets, and then demonstrate results with the
optical setup we built in our lab.



4.1 Simulations

We simulated our approach on standard HSI datasets in-
cluding CAVE dataset [37], KAIST dataset [22], Harvard
Dataset [38], and ICVL dataset [39], each with 31 spectral
bands from 400 — 700nm. For video rate results, we used
data from [43] which comprised of 31 video frames, with
each frame consisting of 33, 480 x 752 images sampled from
400 — 720nm.

Modeling noise. We modeled our sensing camera to have a
readout noise standard deviation of 5¢~, a value typical to
scientific cameras. We assumed various light levels, starting
from 100e™ per pixel to 10,000e™ per pixels with the aim of
showing performance variations with noise levels.

Training details. Our neural network consisted of 8 guided
filter layers of 51 x 103 dimension each, followed by two
convolutional layers along with ReLU non-linearity, each
with 32 layers of 3 x 3 filters. Further details about the train-
ing process can be found in the supplementary material.

4.1.1  Number of superpixels

The number of super-pixels is upper bounded by Z¥;

however, the specific number of super pixels that maximizes
reconstruction accuracy depends on spatial complexity of
the scene, and the noise levels. Intuitively, smaller super-
pixels ensure that highly textured scenes are well sampled.
However, each super-pixel will then get fewer samples,
which is not desirable in low light conditions.

We empirically evaluated the effect of number of super-
pixels under varying noise conditions on sample HSIs.
Figure 8a showed accuracy as a function of number of
super-pixels under varying light conditions. At low light,
larger super-pixels are advantageous, while at higher light
levels, smaller super-pixels lead to accurate results. In our
real experiments, we found that Q@ = 1 gave the best
results for short exposure times of 50 ms or lower.

4.1.2 Comparisons to prior art

We simulated densely-sampled mask based reconstruction
approaches with traditional total variation (TV) penalized
reconstruction [44] and a more recent neural network based
approach [22], denoted by TwIST and [Choi et al.], respec-
tively. Figure 8 compares SASSI against [22] and recon-
struction with TwIST [44] across varying light levels, and
Fig. 9 visualizes the reconstructions. These methods do not
utilize an extra guide image. We also compared against
guide image based reconstruction approach by [Cao et al.]
[28] where the HSI is uniformly and sparsely sampled and
reconstruction is done through a modified bilateral filtering.
Among methods that do not utilize a guide image, [22]
had superior performance in terms of visual quality as well
as reconstruction SNR. When using a guide image, SASSI
outperforms other approaches by more than 2dB.

4.2 Experiments with a lab prototype

We first provide details of our optical setup and then
demonstrate results in various settings.
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Fig. 8: Performance with number of superpixels and noise. (a)
As noise increases, a small number of superpixels is advanta-
geous, as the spectra within a superpixel get averaged. (b) Our
rank-1 reconstruction performs well against prior work under
average to high light intensity. (c) At lower light levels, our
guided filtering approach outperforms the rank-1 approach.

4.2.1 Optical setup

Figure 10 shows an image of the optical setup. We used
a FLIR Blackfly BFLY-U3-1652C-CS color camera as guide
camera, and Hamamatsu Orca Flash 4.0 as spatio-spectral
camera, Holoeye HES 6001 LCoS display as SLM operating
at 60fps, and a a 30° prism for dispersion. Additional details
can be found in the supplementary material.

System properties. Our setup was optimized to image from
400 — 700 nm, with spectrum spread over 68 pixels on the
spatio-spectral camera. Due to non-linear dispersion of the
prism, we obtain a spectral resolution of 2 nm at 400nm and
10 nm at 700 nm. All the HSIs captured in the upcoming
sections were captured at a spatial resolution of 600 x 900
pixels. Detailed calibration steps required to scan HSIs are
provided in the supplementary material.

Removing offset in spectral image. Due to finite contrast
ratio of SLMs, the spatial mask can be effectively written
as M = (1 — €)Migeal + €, where ¢ is the non-zero
throughput when the SLM pixel is set to 0. This leads to
a large background offset in the measured spatio-spectral
image, as illustrated in Fig. 11(a). This can be compensated
by capturing an image with an all-zero mask, like Fig. 11(f);
however this requires an additional capture. Instead we
observed that the offset image is smooth and estimated
it from the spatio-spectral image, by first identifying and
removing the spectral streaks, and interpolating the missing
pixels using cubic interpolation. This process is visually
illustrated in Figure 11.
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Fig. 9: Comparisons with CASSI techniques. We compared reconstruction approaches which do not use a guide image [22, 44],
and ones that use guide image [28]. SASSI outperforms other techniques across the board.

Nyquist scanning. To obtain a full scan of scene’s HSI,
we implement a parallelized version of pushbroom scan
where multiple pinhole arrays are displayed on the SLM.
The horizontal spacing of the pinhole array was kept at
100 pixels, and the verticle spacing was 5 pixels. We then
scanned a total of 500 images, with 100 horizontal shifts
and 5 vertical shifts. Figure 2 shows an example of the mask
that is used as well as the corresponding measurement in
this sampling process.

4.2.2 Dataset details

We collected several hyperspectral images of various ob-
jects, under varying illumination conditions. A snapshot of
the training data is shown in Fig. 12. Each capture included
a full scan of the scene, along with a guide RGB image, and
the corresponding super-pixel sampled image. We retrained
the guided filter on this dataset for finetuning it to the
specifics of the prototype. Further details about the training
parameters can be found in the supplementary material.

4.2.3 Results

Unless specified, each measurement involved a single image
captured by the guide and the spatio-spectral cameras.

Comparison of sampling strategies. Figure 13 compares
adaptive, random, and uniform sampling on a real scene.
SASSI captured the intricate spatial details such as the

lips on the face, and small dots on the dress, making a
compelling case for adaptive sampling.

Comparison of reconstruction approaches. Figure 14 shows
guide image, super pixelation, captured spatio-spectral im-
age and an RGB visualization of reconstruction with rank-1
and guided filters approach. Images were captured at an
exposure rate of 33ms. The second row shows spectra at
the marked location, and the third row visually compares
ground truth (right) and guided filters reconstruction (left).
The accuracy of rank-1 reconstruction was 41.5dB with an
SSIM of 0.98, whereas the guided filters approach had an
accuracy of 42.6dB with SSIM of 0.99. We observed the
performance to be similar across all our real experiments.
This is expected, as the guided filters approach is particu-
larly well suited for low light levels. The last row shows a
reconstruction at 501nm for both ground truth (left) and our
method (right).

Static scenes. Figure 15 visualizes reconstruction across a
variety of geometries, spectral profiles, and illumination
conditions. None of the scenes shown in the figure overlap
with the training data for neural networks. We observe the
importance of per-band reconstruction in the third row —
since we only learn on images, and not on the full HSI, we
were able to reconstruct complex spectra such as a scene
illuminated with LED lamp. We also tested our system on
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Fig. 10: Lab prototype. The image above shows a photograph

of our lab setup with key components marked. We also showed
an overlay of ray tracing for easy understanding.

(b) Predicted
streaks

(a) Raw image (c) Image without

streaks

(f) Image with
all-zeros mask

(d) Computed
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Fig. 11: Removing background offset. Since the SLM has
finite contrast ratio, the resultant mask has non-zero values
everywhere, leading to a background offset shown in (a). We
rely on (b) calibration information along with interpolation to
predict the offset image in (d), leading to a cleaned image in (e).
Notice that the offset image is close to an image captured with
all-zeros spatial mask.

microscopic specimens, specifically a small tissue of a dog’s
esophagus. Notice the difference in intensities of the cellular
wall across various wavelengths. Figure 16 shows a plot
of error vs. distance from nearest sampling point, showing
a graceful decrease in accuracy. Across the board, we ob-
served that our sampling and reconstruction approach gave
high quality results, with PSNR exceeding 30dB compared
to a full scan of the scene.

Microscopy

Fig. 12: Training data for learning guided filters. We collected
more than 50 hyperspectral images with various objects and
illuminants. We then used 18 for training the neural network.
None of the training images were used in the testing phase.
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Error map

Fig. 13: Effect of sampling strategy. Adaptive sampling cap-
tures intricate spatial profiles such as the lips, and the small
dots in the figurine.

Dynamic scenes. SASSI is most impactful when capturing
video rate HSIs of scenes with complex geometry and a rich
gamut of spectral profiles. Our setup captured HSIs at a rate
of 18 frames per second. This capture rate was primarily
limited by the vagaries associated with our SLM, and not
an upper limit on the method itself. Timing analysis of each
step of our algorithm is listed in Tab. 1.

Figure 1 shows an example of two Matroshka dolls
rotating on a turnstile. We showed a frame from the video
sequence of three spectral bands over 100 time frames. Full
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Fig. 14: Comparison of rank-1 and NN reconstructions. Recon-
struction results on a scene containing color full object. Shown
are (a) guide image, which is used to generate (b) super pixels
and sampling pattern (white dots), and subsequently (c) the
spatio-spectral measurements. In (d-e) and the plots, we com-
pare reconstructions with a rank-1 and NN approaches along
with full pushbroom scan. The last row shows image at 501nm
for the full scan and the NN reconstruction. Visualization of the
full hyperspectral image can be accessed from supplementary
material.

TABLE 1: Timing per frame. We implemented a highly opti-
mized pipeline for video hyperspectral imaging. Shown below
are the timing for the key steps in our acquisition pipeline.
The numbers provided here were observed on a Dell Alienware
computer with 9" Gen Intel Core i7, 32GB RAM, and NVIDIA
GeForce GTX 1660 Ti.

Remarks

Time taken

Capture guide image 15ms Depends on exposure time of guide
camera

Super pixelation 15ms Depends on number of super
pixels. Can be made faster with
GPU

Mask generation <1.5ms Fast C/Python implementation

Displaying on SLM <1ms Bottlenecked by SLM refresh rate

Capture spatio-spectral < Ims Camera simultaneously exposes

image during other computations

video sequence can be accessed from the supplementary
material. The blue, and red colors on the dolls are distinctly
visible in the spectral bands, along with accurate texture re-
construction. Figure 17 shows frames from two more video
reconstructions. Both scenes show highly dynamic motions
that are challenging to capture; our reconstructions indicate
successful reconstructions of the hyperspectral video.

Spectral reflectance. The high resolution and snapshot ca-
pabilities of SASSI are useful when we want to measure
higher dimensional slices of the plenoptic function such as
the spectral bidirectional reflectance distribution function.
The setup used for this purpose is shown in Fig. 18 (a),
which consisted of the SASSI camera and a dome of twelve
white LED sources well spread over the hemisphere. We
imaged a butterfly, which exhibits rich structural coloration
as the angle of illumination changed. The spatial images
as well as spectral reflectances are shown in Fig. 18 (c)
through (f). Certain illumination conditions, such as view
2, 4 showed strong blue peaks, whereas view 5 produced a
brown colored image, which reveals the eye-like structure
under the wing.

Using this data, we decomposed the measured spectrum
into a basis that separated the blue iridescent reflectance
from the brown underlying reflectance using non-negative
matrix factorization. This provided us with a set of spectral
feature vectors and corresponding vector weights combin-
ing these features at every point. We first applied this only
to the spectral dimension, with a 2-dimensional decomposi-
tion. The results are shown in Fig. 19(a). We observed that
the dominant spectral features consisted of a high intensity
blue spectrum, and a low intensity brown spectrum. These
angles match the view points in Fig. 18 that exhibited deep
blue color and are consistent across different parts of the
butterfly that show iridescence at the same ang]es.

We then decomposed the HSIs along spatial and illumi-
nation directions. By separating these features into irides-
cent and non-iridescent components, we were able to de-
compose an image into two separate images corresponding
to these components. The results of this decomposition are
shown in Fig. 19 (b). Using only one image per illumination
angle, we are were able to separate the blue iridescent
reflectance from the brown underlying reflectance, revealing
the patterns on the butterfly’s wing.

5 CONCLUSION

Our paper showed that adapting the sampling patterns to
the specific instance of a scene can significantly reduce mea-
surement time, without sacrificing spatial, or spectral reso-
lutions. By making hyperspectral imaging faster and robust,
SASSI opens up novel applications in material identification,
biological imaging, and computer vision tasks. It also opens
up the possibility for measuring higher dimensions of light
involving spectrum, angle and polarimetry that has hitherto
been hard to sense. We hence believe the ideas presented
in this paper will push the boundaries of plenoptic imaging
and its associated applications.
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Fig. 15: Real experiments. The figure showcases results across a variety of scenes with varying scene, spectrum, and illumination
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