
Reference Wave Design for Wavefront Sensing
Wei-Yu Chen, Anat Levin, Matthew O’Toole, and Aswin C. Sankaranarayanan

Abstract—One of the classical results in wavefront sensing is phase-shifting point diffraction interferometry (PS-PDI), where the phase
of a wavefront is measured by interfering it with a planar reference created from the incident wave itself. The limiting drawback of this
approach is that the planar reference, often created by passing light through a narrow pinhole, is dim and noise sensitive. We address
this limitation with a novel approach called ReWave that uses a non-planar reference that is designed to be brighter. The reference
wave is designed in a specific way that would still allow for analytic phase recovery, exploiting ideas of sparse phase retrieval
algorithms. ReWave requires only four image intensity measurements and is significantly more robust to noise compared to PS-PDI.
We validate the robustness and applicability of our approach using a suite of simulated and real results.

Index Terms—Wavefront sensing, Phase retrieval, Interferometry
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Fig. 1: PS-PDI and ReWave results. Wavefront sensing techniques can capture the phase mask pattern of a Fresnel lens,
and refocus the wave to form an image of a target (e.g., a resolution chart) beyond it. (a) PS-PDI recovers a noisy phase
pattern of the Fresnel lens, and cannot be used to form an image of the resolution chart. (b) Our reference wave design
technique, ReWave, clearly reproduces the quadratic phase pattern of the Fresnel lens. By correcting for the phase of the
Fresnel lens, we can also successfully synthesize a sharp image of the resolution chart.

1 INTRODUCTION

Image sensors only measure the intensity of the incident
illumination. However, the field incident on them has an
associated phase which is desired in many applications.
Wavefront sensing systems try to address this challenge,
attempting to measure both the amplitude and phase of
a light wave. While there are numerous techniques for
wavefront sensing based on phase retrieval [3], [6], [7] and
interferometry [8], [9], [10], it remains a challenge to build a
fast and high-resolution wavefront sensor that is robust to
noise [6].

Among the numerous wavefront sensing approaches,
phase-shifting point diffraction interferometry (PS-PDI) [1],
[11] is perhaps one of the most elegant. PS-PDI creates a
planar self-reference wave from the incident wave that is
being sensed. Interference patterns observed between the
wave and the reference, under multiple phase shifts, pro-
vide analytic extraction of the phase of the incident wave.

PS-PDI has many desirable properties: it creates a self-
reference wave that bypasses the need for an external refer-
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ence wave, requires only three intensity measurements, pro-
vides a simple analytical solution to the wavefront sensing
problem, and can measure wavefronts at the spatial resolu-
tion of the image sensor. However, its key limitation is the
need for a planar reference wave, produced by collimating
light that has been passed through a narrow pinhole mask.
The self-reference wave is extremely dim, and the resulting
technique is therefore highly sensitive to noise.

We propose ReWave, an adaptive wavefront sensing tech-
nique that overcomes the limitations associated with PS-
PDI, by designing a mask with higher light throughput to
produce a brighter reference wave. ReWave uses a second
image sensor to observe the light intensity distribution in
the Fourier plane and identify candidate pinholes where the
light intensity is brightest. As the resulting reference would
no longer be planar, we need to recover an unknown refer-
ence wave as part of our algorithm. For that, the reference
mask is strategically chosen such that the resulting reference
wavefront can be uniquely and analytically recovered using
a key result from sparse phase retrieval [12]. This result
relies on the design of a so-called “collision-free mask”,
where any two pairs of pinholes have a unique displace-
ment between them. When put together, ReWave creates
a significantly brighter reference wave for phase-shifting
interferometry, while also retaining the many advantages
of PS-PDI. These advantages include a reference wave that



TABLE 1: Different phase acquisition approaches: A summary of the advantages and drawbacks of different approaches.

Shack-
Hartmann [2]

Gerchberg-
Saxton [3]

Multi-
planes [4] WISH [5] PS-PDI [1] ReWave

(ours)

limiting resolution lens array camera camera camera camera camera
analytical solution yes no no no yes yes

number of measurement 1 2 ∼20 >8 3 3 +1
reference brightness low high

is created from the incident signal, and a small number of
measurements that are required to recover the wave through
a simple analytical expression.

Contributions. This paper proposes ReWave, an analytical
wavefront sensing method that advances PS-PDI with an
adaptively-constructed reference wave to enable robustness
to noise. Our main contributions are as follows:
• Adaptive reference wave construction. Our primary contribu-

tion is the adaptive design of a non-planar reference wave
that is significantly brighter than the traditional planar
reference that is typically used in PS-PDI, which makes
the resulting technique robust to noise. Further, following
work in sparse phase retrieval, the reference wave is
created so as to permit an analytical reconstruction.

• Analytical solution. In the context of phase retrieval, our
method provides an analytical solution with only four
measurements. In contrast, state of the art techniques
based on phase modulation [5] require more measure-
ments, and are computationally intensive requiring iter-
ative optimization while lacking convergence guarantees.

• Experimental prototype. We have implemented our algo-
rithm on a lab prototype and successfully demonstrated
various tasks like refocusing and imaging through scatter-
ing media.

In Fig. 1, we recover the phase profile of a Fresnel lens
using PS-PDI and ReWave. The reconstruction from ReWave
shows a clear quadratic phase profile, while that of PS-PDI
is riddled with errors. As a consequence, when we computa-
tionally correct the ghosting introduced by the Fresnel lens,
ReWave produces a higher quality result. Note that the code
and data associated with the paper can be found at https://
github.com/Image-Science-Lab-cmu/ReWave ICCP2021.

2 RELATED WORK

Prior work in wavefront sensing can be categorized in three
groups: classical, phase retrieval, and interferometry-based.
We summarize them here. A list of representative works and
their relative merits is provided in Table 1.

2.1 Classical approaches for wavefront sensing

One of the basic wavefront sensor designs relies on the
Shack-Hartmann sensor [2]. This sensor uses a lenslet array
to capture a wavefront in a single snapshot. Assuming the
wavefront is locally planar over each lenslet, the location
of the brightest spot beneath each lenslet corresponds to
the tilt of the local wavefront. Despite its simplicity, the
main disadvantage of the Shack-Hartmann sensor is its poor
spatial and angular resolutions.

There have been many attempts to improve on the
standard Shack-Hartmann design. Pyramid wavefront sen-
sor [13] uses a pyramidal-shaped prism to encode the gra-
dient of the incident wave. However, adapting the working
range of the approach relies on moving components [14].
A curvature wavefront sensor [15] captures the Laplacian
of the phase, recovered by using the Transport of Intensity
Equation (TIE) [16]. The method cannot reconstruct smooth
waves where the Laplacian is small. A coded wavefront sen-
sor [17] achieves higher resolutions by replacing the lenslet
array with a coded mask, and measures the wavefront by
observing local shifts in a diffraction pattern. However,
this method assumes the wave has uniform amplitude and
smooth phase.

2.2 Phase retrieval

2.2.1 Phase retrieval using iterative methods

Phase estimation is challenging as cameras can only mea-
sure the intensity of the wave, which is nonlinearly related
to the complex wave of interest. One class of techniques
acquires multiple intensity images of the incident wave,
under a set of transformations. The unknown wavefront is
estimated using an iterative scheme, where in each iteration,
the intensity of the transformed wave is simply replaced by
the measured one. This iterative scheme has a fixed point
solution that produces the measured intensities under the
approriate set of transformations.

The classic technique in this class is the Gerchberg-
Saxton (GS) algorithm [3], where the intensity of the wave
and its Fourier transform are measured. Although simple
to implement, convergence guarantees are limited as the
solution space is riddled with local minima [18].

Nonlinear optimization has been successfully applied
with other type of measurements. For example, multi-plane
propagation [4] measures the intensity of the incident waves
at multiple depth planes. Other techniques provide more
diverse measurements using an amplitude [19] or phase
based [5] masks implemented using a spatial light mod-
ulator (SLM). Compared with the original GS algorithm,
these intensity observations capture more information on
the phase and usually converge to a better solution, but still
have little theoretical guarantees. It is also noted empirically
that they require at least eight input images for robust
performance.

2.2.2 Convex optimization in phase retrieval

While phase retrieval itself is a non-convex optimization
problem, it is possible to relax it as a convex problem. For
example, PhaseLift [20] and PhaseCut [21] map the problem
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Fig. 2: PDI vs. ReWave setup. A 4f interferometric setup used to implement classical PDI and our ReWave approach. (a)
Point diffraction interferometry — the incident wave is split by a beamsplitter (BS) into two arms. One arm reflects the
incident wave as is using a mirror, while the other includes a pinhole, which when collimated, forms a planar reference
field which corresponds to the DC component of the target incident wave. (b) ReWave — As with PDI, the incident wave
is split into two arms using a BS. On one arm, we replace the pinhole with a phase only spatial light modulator which
implements a mask M for the reference field; as explained in Sec. 4.1, this arm reflects both the target and reference fields.
On the other arm, we include an image sensor which measures the intensity on the Fourier plane of the incident field; this
intensity image is used to select pixels on the phase SLM, or equivalently, design the mask M that is used to build the
non-planar reference wave.

to a semi-definite programming or a relaxed MaxCut prob-
lem. Jaganathan et al. [22] design specific masks to ensure a
unique solution. However, all of these techniques rely on
lifting, mapping a length-n vector into a matrix with n2

elements. This lifting operation is impractical when dealing
with high resolution wavefronts, where n is large.

2.2.3 Sparse phase retrieval
The phase retrieval problem can be solved more efficiently
when the underlying wave is sparse [12], [23], [24], [25].
The work of Ranieri et al. [12] is central to this paper, as
it provides the conditions under which a unique analytic
solution is feasible. We will discuss this approach in detail
in Sec. 4.4.

2.3 Interferometry-based wavefront sensing
2.3.1 Phase-shifting interferometry
Phase-shifting interferometry (PSI) [9] is a technique for
recovering the wavefront by interfering it with a reference
wave under three or more phase shifts. In a typical imple-
mentation, the illumination source is split into two arms.
One of them interacts with the target sample, while the
other arm serves as a known reference. The two-path design
make the set-up bulky and sensitive to vibrations. Moreover,
in applications like adaptive optics [26] in the context of
astronomy, we do not have access to the coherent source
and, consequently, the reference.

2.3.2 Common-path interferometry
The proposed work falls under the category of common-
path interferometer, where the reference and target waves
travel along the same optical path. For example, lateral
shearing interferometry interferes the wave with a shifted
copy of itself, resulting in the wavefront gradient. Dif-
ferent implementation includes quadri-wave lateral shear-
ing interferometry [27] or optical differentiation wavefront
sensor [28]. However, these methods generally require the
wavefront to be smooth for successful recovery.

2.3.3 Point diffraction interferometry
Point diffraction interferometry [11] creates a reference
plane wave by passing the incident wave through a pinhole.
Phase-shifting point diffraction interferometry (PS-PDI) [1],
[29] captures 3 shots while changing the phase of this
reference wave. Our work builds upon PS-PDI, but allows
for a brighter reference and thus has a higher SNR [30].
While most PDI is a common-path setup, it can also be
implemented using a two-path design [31], which we use
in Sec. 3 to introduce the ReWave setup.

2.4 Combination of phase retrieval and interferometry

Interferometry-based wavefront sensing can be used in
conjunction with phase retrieval techniques. For example,
in Fourier holography [32], a single interference pattern (a
hologram) between the far-field diffraction of an object and
a known reference wave is measured. Recently, Barmherzig
et al. [33] applied phase retrieval technique to estimate
phase from the recorded hologram.

3 BACKGROUND ON POINT DIFFRACTION INTER-
FEROMETRY

We start with a review of the point diffraction interferometry
(PDI) technique [11] for measuring the phase of a wavefront,
which forms the basis for the proposed approach.

In PDI, the incident wave, whose phase we aim to mea-
sure, is split into two arms, as illustrated in Fig. 2(a). One
arm transfers a copy of the wave while the other arm creates
a self-reference wave. The self-reference wave is created by
placing a pinhole in a Fourier plane, letting into the system
only a plane wave corresponding to the DC component
of the incident wave. There are many ways to realize this
idea via an optical setup [1], [29], and we illustrate a setup
in Fig. 2(a) which is analogous to what we will use in
our approach below. Specifically, Fig. 2(a) assumes a beam-
splitter and two mirrors in its two arms, reflecting the target



and reference signals. The reflected signals are interfered
via the same beam-splitter and captured by a camera. This
camera is focused such that it images a copy of the input
plane before the beam splitter.

In phase-shifting point diffraction interferometry (PS-
PDI) [1], [29], the reference wave is subject toK ≥ 3 equally-
spaced phase-shifts φk = 2π(k − 1)/K, leading to intensity
images of the form:

Ik(x) = |u(x) + ejφkr(x)|2 (1)

= |u(x)|2 + |r(x)|2 + 2Re
(
u(x)r(x)∗e−jφk

)
,

where u is the incident wave, r is the reference wave, and
x denotes a 2D position on the image plane sensor. From
these measurements, we can extract the interference signal
as in [8]

u(x)r(x)∗ =
1

K

∑
k

Ik(x)ejφk . (2)

As few as K = 3 phase shifts φk are sufficient to recover
the wavefront. In the setup above, the reference wave is
basically a constant plane wave equivalent to the DC of
the target signal. Thus, Eq. (2) provides the desired incident
wave up to a global scale factor.

While this algorithm is extremely simple to derive, in
practice it suffers from a serious disadvantage: the reference
wave is created from a single pinhole and hence, it is ex-
tremely dim and noise sensitive. A well-known result in in-
terferometry [30], [34] states that the performance of phase-
shifting interferometry improves with increasing brightness
of the reference wave, as long as we avoid saturation at
the sensor. Unfortunately, there is no straightforward way
to create a reference wave which is both fronto-parallel and
of high-intensity. For example, if we naively increase the
size of the pinhole, the reference wave would no longer be
planar [11].

4 REWAVE APPROACH

Our proposed ReWave approach is designed to increase the
brightness of the reference wave. We do so by placing a
mask M that lets light through multiple pinholes, rather
than a single one. This brighter reference wave also has a
more complex form, requiring us to derive proper estima-
tion techniques.

4.1 Setup

In the following, we will use Fu,Fr to denote the Fourier
transforms of the target and reference waves, respectively,
and use ω to denote a 2D position on the Fourier plane of
the system.

Our setup is illustrated in Fig. 2(b). We replace the
pinhole in the PDI setup of Fig. 2(a) with a spatial light mod-
ulator (SLM) that will allow us to programmably implement
any desired mask. One approach is to use an amplitude
SLM in the reference arm of the interferometer and a clear
mirror in the second arm, as in the PDI setup of Fig. 2(a). We
instead use a common-path interferometric scheme, where
we instead place a phase SLM on the reference arm; since the
phase SLM does not block light, this generates a reference

wave r which is interfered with an adjusted target u− r on
the same arm of the interferometer in Fig. 2(b), simplifying
both the alignment and reducing vibration issues. This also
frees up the second arm of the beamsplitter as we already
have a copy of the incident wave, sans the reference, to
interfere with the reference.

Given a binary mask M, we define the reference and
target signals as

Fr(ω) = Fu(ω)M(ω), Fu−r(ω) = Fu(ω)(1−M(ω)). (3)

To phase shift the reference, the SLM displays a phase
pattern equal to ejφM + (1 −M), i.e., a phase of φ at the
pixels in the mask M and zero elsewhere. Thus we generate
a phase shift at the mask pixels, and reflect light without
any change at the pixels belonging to Fu−r. At the sensor,
we measure the intensity resulting from the interference of
the reference r with the wave u− r.

The common-arm configuration in Fig. 2(b) is important
in another way. In the second arm of the beam-splitter, we
place a sensor measuring the intensity of the incoming wave
at the Fourier plane. We use this information to adapt the
mask layout to the signal being captured.

4.2 Approach
With the setup as described above, we can capture K = 3
phase-shifted interference patterns of the form

Ik(x) = |u(x)− r(x) + ejφkr(x)|2, (4)

with phase shifts that are equally-spaced, i.e., φk =
2π(k − 1)/K. By interpreting (u(x)− r(x)) as the “incident
wave”, this expression becomes identical to Eq. (1) and
hence we can measure (u(x) − r(x))r∗(x) using Eq. (2).
However, unlike PS-PDI, r(x) is not constant and unknown
to us; hence, we need to estimate it as well.

Our approach to recovering the reference wave has two
steps: first, estimate the amplitude |r(x)|, and second, esti-
mate its phase ∠r(x). The latter is a phase retrieval problem
in its own right, and it is here where the design of the
reference wave, and the selection of the mask M, comes
in play; we invoke prior work in sparse phase retrieval to
obtain an analytical solution. Once we have both magni-
tude and phase, we can form the complex-valued reference
r(x) = |r(x)|ej∠r(x), and subsequently estimate the incident
wave from the measurement of (u(x)− r(x))r∗(x).

4.3 Estimating the amplitude of the reference wave
As mentioned above, we first want to estimate |r(x)|2.
From Eq. (4) we can compute the DC component and the
amplitude of the captured sinusoid, which provide two
constraints on the reference and target waves:

α(x) =
1

K

∑
k

Ik(x) = |u(x)− r(x)|2 + |r(x)|2 (5)

β(x) =
1

K

∑
k

Ik(x)ejφk = (u(x)− r(x)) r(x)∗ (6)

Given α(x), β(x), we can eliminate u(x)−r(x) to get the
following quadratic expression on |r(x)|2:

|r(x)|4 − α(x)|r(x)|2 + |β(x)|2 = 0 (7)



Solving for the roots of a quadratic equation leads to two
candidate solutions for |r(x)|2:

1

2

(
α(x)±

√
α(x)2 − 4|β(x)|2

)
(8)

In a similar way, we can get a quadratic expression for
|u(x) − r(x)|2. In fact, it can be shown that one of the
roots in Eq. (8) corresponds to |r(x)|2, and the other to
|u(x) − r(x)|2. While Eq. (8) provides the values of |r(x)|2
and |u(x)− r(x)|2, it does not tell them apart. However, as
the magnitude of the reference wave is usually lower than
that of the actual signal, we estimate |r(x)|2 as the minimum
of the two values in Eq. (8). A similar assumption has been
used successfully for transmission matrix estimation [35].

4.4 Phase estimation from collision-free masks

The above algorithm estimates |r(x)|2 from the phase
shifted interference patterns. However, to actually estimate
the field of interest u we need to know the phase of r, not
only its magnitude. To get from |r| to r, we essentially need
to solve the original problem of this paper: phase retrieval.
However, if the mask M corresponds to a sparse subset
of holes which are carefully selected to satisfy a certain
collision-free arrangement that we define below, the phase
estimation simplifies to singular value decomposition.

Recalling that the auto-correlation and power spectral
density of a signal are Fourier pairs, we can recover the
auto-correlation of Fr by computing the Fourier transform
on |r|2. From Eq. (3), we observe that Fr is a sparse signal
since it is constructed by choosing a sparse set of phase SLM
pixels; further, the support of this signal, i.e., the location of
its non-zero entries, is known. We now show that, if the
mask is designed carefully, Fr can be estimated from the
SVD of a matrix extracted from its auto-correlation.

The auto-correlation of Fr can be expressed as a sum of
products of pairwise elements

F−1|r|2(ω) = (Fr ? Fr) (ω) =
∑

(ωp,ωq)|ωp−ωq=ω

Fr(ωp)Fr(ωq)
∗ (9)

where the sum is taken over all pairs of positions such that
ωp−ωq = ω. Given Eq. (9), if we design a mask such that the
set {(ωp, ωq) | ωp−ωq = ω} consists at most of one member,
for any non-zero value of ω, we can associate the value of
F−1|r|2(ω) to the product Fr(ωp)Fr(ωq)

∗ for the appropriate
ωp and ωq .

Definition 1. A mask M is collision free if, for every ω 6= 0,
there is at most one pair (ωp, ωq) with p 6= q, satisfying
ωp − ωq = ω.

For a collision-free mask, we can extract Fr(ω) from
Fr(ωp)Fr(ωq)

∗ using a simple SVD. Let the support of Fr

be {ω̃p, 1 ≤ p ≤ P}; since we choose the SLM pixels on the
reference, this support set is known. We now create a P ×P
matrix Z = [zp,q], whose (p, q)-th entry is Fr(ω̃p)Fr(ω̃q)

∗.
Using Eq. (9), we can extract this value from the auto-
correlation function F−1|r|2(ω) at ω = ω̃p − ω̃q . The diagonal
elements of Z corresponding to p = q are not included
in the auto-correlation, but since in our setup we have a
Fourier plane sensor observing the Fourier plane of the field
we get all measurements of the form |Fr(ω)|2 directly. With

Algorithm 1: ReWave pipeline

1. Capture |Fu|2 using the Fourier plane sensor.
2. Design a collison-free mask M using Algorithm 2.
3. Place K ≥ 3 phase masks of the form
1−M + ejφkM in the Fourier plane and use the
image plane sensor to capture
Ik = |u(x)− r(x) + ejφkr(x)|2.

4. Evaluate α(x), β(x) using Eqs. (5) and (6).
5. Set

|r(x)|2 = min

{
1

2

(
α(x)±

√
α(x)2 − 4|β(x)|2

)}
6. Compute F−1|r|2 and estimate Fr using SVD.
7. Use the estimated reference wave to extract u
from the interference signal

û(x) =
β(x) + |r(x)|2

r(x)∗

Algorithm 2: Collision-free mask design

Input: Brightness map y = |Fu|2
Output: Support set Sp
S0 = ∅;
for p = 1 to N do

ωp = arg maxω y(ω)
forall ωm, ωn ∈ Sp do

y((ωp + ωn)/2) = 0
y(ωp + ωm − ωn) = 0

end
Sp = Sp−1 ∪ {ωp};

end

this, we have a rank-1 matrix Z, whose left/right singular
vectors provide Fr, the Fourier transform of the reference
wave, up to an unknown scalar. We can now estimate the
reference wave r simply by computing the inverse Fourier
transform of Fr.

Once we solved for the reference wave, we can extract
the target field u using

û(x) =
β(x) + |r(x)|2

r(x)
∗ (10)

with β(x) defined in Eq. (6). The resulting algorithm is
summarized in Algorithm 1.

Connection to Ranieri et al. [12]. The construction of
the collision-free mask is based on [12]. However, our im-
plementation here offers three main simplifications. First,
in [12], the sparse support is unknown and needs to be
estimated, while in our approach we control the mask M
and its precise support as in an endoscopy application [24].
Second, in [12], the diagonal components of the product
matrix, |Fr(ωp)|2, are unknown and they calculate them
using matrix inversion step; we however directly measure
|Fr(ωp)|2 . Finally, [12] only assumes the support is sparse
and collision free, while we design our mask and guarantee
that this condition holds.
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Fig. 3: Visualizing the reference wave. We show the am-
plitude of the waves in the Fourier (top row) and image
(lower row) planes, demonstrating the brightness increase
achieved by our ReWave approach. (a) Incident wave. (b)
The single hole mask of the PDI setup leads to a very dim
planar reference wave. (c-d) The reference waves formed by
using different collision-free masks.

4.5 Collision-free mask design
To design the mask M, we want to let as much light
through the pinholes, while still respecting the collision free
conditions. As our setup includes a Fourier plane sensor
capturing Fu, we can adapt the mask holes to the content
of the signal, and position them at points where the Fourier
intensity of the target wave Fu is high. We use a greedy
selection strategy summarized in Algorithm 2. Specifically,
we sequentially add the brightest point to the mask such
that it does not create a collision with any of the previously
selected points. Given an N × N image, the mask M can
include O(N) holes thereby providing significant improve-
ments on the brightness of the reference wave which, as
we demonstrate later, is quite effective in producing high
quality results. With this greedy approach, we can also
easily create multiple possible masks by picking randomly
among top choices; this provides additional diversity in our
measurements, which is desirable when we have the luxury
of capturing more than three images. We illustrate these
benefits in Fig. 3(a), where we observe the intensity of an
incident wave both in the sensor and the Fourier plane. If
we implement PDI by selecting only one point in the Fourier
plane, the reference wave would still be very dim even if we
already pick the brightest point, as illustrated in Fig. 3(b).
On the other hand, the ReWave technique selects several
points to create a much brighter reference.

4.6 Range and resolution
We now discuss the factors that limit the spatial and angular
range and resolution of the wavefront sensor.

4.6.1 Spatial range and angular resolution
The spatial range of the wavefront sensor Ωx cannot be
larger than the width of the image sensor. However, to
use the entire sensor area, we need to ensure that the
wavefront is accurately propagated from the input aperture
to the image sensor by the 4f system without any significant
aberations. This, in turn, requires that the lens diameter is

larger than the sensor width and the pupil plane aperture,
which in turn is determined by the SLM area.

In our implementation, a second limiting factor emerges
from the need to separate between the signal of interest and
its ghosting copy due to the unmodulated DC term reflect-
ing off the SLM. As we discuss later in Sec. 6, we reduce this
ghosting by placing an aperture in the input plane and using
a phase ramp on the SLM to isolate the wave of interest
from the DC component. The size of the aperture is smaller
than the sensor area and hence, determines the spatial range
Ωx of the wavefront sensor. This restriction can be avoided
by placing a lithographic made phase ramp in the Fourier
plane rather than implementing it with an SLM whose pitch
is limited. In that case, we can set Ωx to be equivalent to the
support of the imaging sensor.

The spatial range is also a key determining factor in
the angular resolution ∆ω of the wavefront sensor, since it
determines the spread of the airy disk in the Fourier plane.

∆ω =
λf

2Ωx
(11)

This airy disk is invariably larger than the SLM pitch, which
would be the natural limiting factor for larger spatial ranges.

Note that, given the sensor’s limited spatial range, we
will provides discussion in Sec. 4.7.2 on how to choose the
size of pinhole features in the Fourier plane mask.

4.6.2 Spatial resolution and angular range
The spatial resolution ∆x of the wavefront sensor is deter-
mined by the smaller of the sensor pixel pitch, as well as
size of the pupil plane aperture, which in our case is the
SLM width. In practice, a signal at spatial resolution ∆x

will span in the Fourier plane a range [−Ωω,Ωω] with

Ωω =
λf

2∆x
, (12)

and in our implementation in Sec. 6, the SLM width is
roughly equivalent to this range. The angular range of the
sensor is determined by the pupil plane aperture, which, as
mentioned earlier, is the SLM width.

4.7 Additional improvements
The discussion in the previous subsections outlines the
basic ReWave approach. Below, we describe two additional
components which can further improve its performance.

4.7.1 Multiple reference waves
One drawback of the above approach is that our reference
wave r(x) will have spatially-varying intensity. In pixels
where the reference has a very low magnitude, our estimate
of the incident wave will be poor, as the estimate of u(x)
in Eq. (10) involves a division by the reference wave. To
overcome this, we can capture phase-shifted interference
measurements with multiple collision free masks Mt. These
masks can produce different reference waves rt, varying
the location of low intensity |rt(x)| values. The incident
waves ût obtained from the masks Mt (or equivalently, the
reference waves rt) can be robustly fused using:

ū(x) =

∑
t ût(x)|rt(x)|2∑

t|rt(x)|2
=

∑
t(βt(x) + |rt(x)|2)rt(x)∑

t|rt(x)|2
(13)



We provide a detailed justification for this weighted aver-
aging of the individual estimate in our App. A. It is also
worth noting that all masks Mt share one phase pattern,
corresponding to a phase shift φ1 = 0. As a result, we
only need to capture two images per each additional mask
Mt, and hence, we need K = 1 + 2L measurements when
seeking to sense with L reference waves, plus one more
measurement by the Fourier plane sensor.

4.7.2 Overcoming sensor range limits

An important parameter for our system is the size of the
individual pinholes composing our masks. Ideally, we want
to make them as wide as possible to allow more light, but
increasing their size beyond the Nyquist limit introduces
dependencies in the mask which violate the collision free
requirement. Hence, we set the size of the pinholes forming
the reference wave to be equal to ∆ω , as given in (11).

However, the reference wave r(x) emerging from such
pinholes can exceed the sensor range. For example, given a
piecewise constant pinhole of size ∆ω in the Fourier plane,
one gets in the image plane a sinc whose main lobe matches
the spatial range of the sensor Ωx. The secondary lobes of
this sinc lie outside the range Ωx, and are not captured by
the sensor.

This affects the reference wave estimation technique
described in Section 4.4; specifically, when we compute the
auto-correlation of Fr by taking the Fourier transform of
|r(x)|2, an implicit assumption is that r(x) = 0 outside
the image sensor. As a consequence, the estimate of the
reference wave can be off by a small amount (see Fig. 4.)

ReWave-GS. One way to fix this is to use an iterative
approach to fine tune the estimate of the reference wave,
relaxing the assumption that the reference wave is zero
outside of the sensor range. This approach is motivated by
the popular Gerchberg–Saxton phase retrieval algorithm [3].
In this approach, we start with the estimate of |r|2 using
Eq. (8) and subsequently, we obtain an initial expression
for Fr using SVD as described in Sec. 4.4. This field is
transformed back into the image plane to get r, but crucially
over a spatial range that is wider than the actual sensor
size. For the part of r that falls inside the sensor range,
we set the magnitude to match the measurements, while
the values outside the sensor range are left unchanged. We
then recompute Fr as before with this new estimate of |r|2,
and enforce the sparsity and amplitude constraint on the
Fourier plane, and iterate between the Fourier and image
planes until convergence. In our evaluation below, we refer
to this scheme as ReWave-GS. Being careful about these out
of boundary values improves the estimate of the reference
wave, and consequently, the incidence wavefront.

Fig. 4 illustrates this issue. Here, Fr is selected to include
a few pinholes whose width is set as the Fourier resolution
in Eq. (11). Transforming Fr back to the image plane, we see
its support somewhat exceeds the binary support of u. In the
lower part of the figure we see the ground truth phase of r,
compared with a reconstruction from the original ReWave
approach (which assumes that the reference is zero-valued
outside of the sensor’s spatial range) and the iterative
ReWave-GS. This fine tuning improves the accuracy of the
reconstructed phase.

Fr r

(a) Reference wave example
GT phase ReWave ReWave-GS

of reference NMSE = 0.656 NMSE = 0.067

(b) Reconstructed phase of reference wave

Fig. 4: Reconstructing the reference wave with a limited
sensor. (a) Visualize the reference mask Fr in the Fourier
plane and the resulting reference wave r in the image plane.
The support in the image plane is wider than the sensor
support (marked with a yellow frame). (b) Ignoring this
wider support and assuming the reference wave is zero
outside the sensor leads to erroneous result. Applying a
simple optimization on the ReWave output, ReWave-GS can
significantly improve the results.

5 SYNTHETIC EVALUATION

We start with a synthetic comparison of our approach
against prior work in wavefront sensing. This allows us
to study the convergence and noise sensitivity of the ap-
proaches, independently of optics and implementation chal-
lenges. We used the 14 wavefronts in Fig. 5(a), all involving
a uniform amplitude and a spatially-varying phase. This set
includes eight linear combinations of Zernike wavefronts
up to third orders and six random wavefronts at different
resolutions. Each wavefront has a resolution of 150 × 150
pixels, zero padded inside a 450 × 450 pixels image. Prop-
agation of wavefronts, when needed, is simulated by the
angular spectrum method as described in [36]. Similarly,
we account for the limitations induced by SLM pixelation
for techniques that require phase modulation.

We use normalized mean squared error (NMSE) as the
evaluation metric, following [23]; given an estimate, û, for
ground truth wavefront, u, NMSE is defined as

‖u− û‖2
‖u‖2

.

Evaluation results are provided in Fig. 5(b). In all our
simulations, we added noise to the measurements, leading
to two different SNR values of 20 dB and 60 dB. We
performed the evaluation as a function of the number of
image intensity measurements provided to each algorithm.
We compared the following approaches:



(a) Input phase patterns

(b) Reconstruction error comparison

Fig. 5: Synthetic evaluation: We compare several phase
acquisition approaches using the phase masks in (a) as
ground truth. The results of this evaluation, demonstrated
in (b) consider low (left graph, SNR = 60dB) and high (right,
SNR = 20dB) noise scenarios, as a function of the number of
images provided to the algorithm. Each line represents one
method, and each point is an averaged reconstruction error
for the 14 different phase patterns in (a). Our ReWave-GS
steadily outperforms all alternatives.

1) Gerchberg–Saxton (GS). This approach captures the inten-
sity of the target field in the Fourier and image planes
|Fu|2, |u|2 and uses alternate optimization to solve for
the phase [3]. The optimization is usually noise sensitive
and often converges to local minima. As this approach
only requires two input images, in the simulation of
Fig. 5(b), we only use additional measurements to reduce
noise.

2) Multi-plane propagation (MP) [4]. In this approach, one
places the target at multiple planes away from the imag-
ing system, which is equivalent to adding a quadratic
phase in the Fourier plane. Multiple intensity images
are captured at different defocus settings. A GS-style
iterative technique is used to solve for the phase.

3) WISH [5]. This approach places different random phase
masks a finite distance before the image plane sen-
sor, capturing multiple intensity images that have been
scrambled at different ways at the image plane. It solves
for the phase as before, using iterative techniques [3].

4) PS-PDI, as described in Sec. 3, requires three input im-
ages; we use additional measurements to reduce noise
by repeating the measurements and averaging.

5) ReWave. When more than three input images are al-
lowed, we use different collision-free masks Mt and
average their wavefront estimates obtained from each
using Eq. (13).

6) ReWave-GS, as described in Sec. 4.7.2.

From the comparison in Fig. 5, the best results are achieved
by the ReWave-GS approach. The WISH approach is the
strongest competitor among all these algorithms, and the
basic (unoptimized) ReWave approach overcomes it only

Fig. 6: Hardware prototype: Image of our prototype, anal-
ogous to the schematic in Fig. 2(b). The incident wave (not
shown in this figure) enters via the aperture.

(a) (b)

Fig. 7: Setup for phase acquisition experiments: (a) Setup
used for Fig. 8, where a diverging spherical wave is mea-
sured at the input plane of the system. (b) Setup used for
Fig. 9, where a resolution chart is placed 80mm before the
input plane. The phase measured at the input plane is back-
propagated to produce a sharp image at the chart plane.

when a low number of shots is provided. PS-PDI achieves
good results in low noise scenarios but fails drastically in
higher noise levels.

6 HARDWARE PROTOTYPE AND RESULTS

Fig. 6 illustrates our hardware prototype, which follows
the schematic in Fig. 2(b). We illuminate the setup using a
520nm laser source. We use a phase SLM (Holoeye GAEA-
2, 4160 × 2464 pixels, 3.74µm pitch). Both relay lens and
camera lens in the 4f relay have focal length f = 75mm,
where the relay lens is calibrated to be at distance f from
the SLM, and the camera lens is focus at infinity. The
image plane sensor has 1920× 1440 resolution with a pixel
pitch of 4.54µm. A typical challenge with LCoS-based phase
modulation is that some DC component is added to every
pattern displayed. This DC component adds ghosting to the
pattern we observe on the sensor plane (see supplementary
Fig. 14), which degrades the result. To avoid this ghosting,
we add on the SLM a phase ramp which shifts the inter-
ference image on the sensor plane. The shifted image only
occupied an area of 900 × 900 pixels on the sensor plane.
Finally, we align the Fourier plane camera (1440 × 1080
resolution with 3.45µm pitch) with the SLM and calculate
the exact transformation between them. Details about the
system calibration are provided in App. B.
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Fig. 8: Diverging wave reconstruction: We reconstruct the phase of a diverging wave with the different methods using 8
(top) and 32 (bottom) input images. From left to right, GS and MP fail to converge. Given 8 images PDI recovers the wave
subject to some high frequency noise fluctuations, which improve given 32 images. Our ReWave approach achieves a clear
phase pattern with only 8 images, and further improves given 32 images.
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Fig. 9: Resolution chart reconstruction: We capture a resolution chart 80mm away from the input plane of the system (see
setup in Fig. 7) and use the phase of the captured wave to refocus the camera at the chart plane.

6.1 Comparison on real data

We compare our algorithm against the competing alterna-
tives mentioned in Sec. 5, excluding WISH [5] that cannot be
realized with our setup. We will address more alternatives
in App. D. In Fig. 8, we show reconstruction from data
acquired in our setup, measuring the phase of a wave
diverging from a point light source 300mm before the input
plane of the system, as illustrated in Fig. 7(a). When only
8 input images are provided, GS and MP fail to converge
to the global optimum, and PS-PDI suffers from high fre-
quency noise which reduces its contrast. On the other hand,
the proposed methods (ReWave and ReWave-GS) can both
reconstruct a reasonably clear image despite small artifacts.
Given 32 images, PDI and ReWave converge to accurate
results.

Now we put a resolution chart a distance 80mm from
the input plane, as illustrated in Fig. 7(b). Assuming we
recover the phase at the input plane correctly, we can back-

propagate it and simulate an image focused at the plane
of the resolution chart. The result is illustrated in Fig. 9.
Our ReWave and ReWave-GS approaches lead to the best
results. PDI is also successful, though from only 4 images
our approach leads to a better contrast. In this case, the MP
converged to the desired result from 32 images.

In the following subsections, we demonstrate additional
applications of our method. All the images are reconstructed
by ReWave-GS using 32 images. Please see animations in the
supplementary video.

6.2 Application 1: Imaging phase masks
In Fig. 10, we accurately capture the phase of a few target
phase masks at the input plane of our ReWave setup.
In the first example of Fig. 10, we display a phase-only
text on another transmissive SLM (Holoeye LC2012) with
increasing phase contrast from left to right. In the second
example, we measure the phase of an holographic diffuser
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Fig. 10: Phase masks imaging: Left: text displayed on a
phase SLM. Center: random phase patterns on a holographic
diffuser. Right: quadratic phase pattern of a lenslet array.
The patterns are often invisible from the corresponding
intensity images.

(Edmund Optics 47-988) as in [5]. Unlike the capture in [5],
we did not use a lens to shrink the pattern, so we observe a
smaller region of the diffuser with a finer pixel pitch. In the
last example of Fig. 10, we reconstruct the phase of a lens
array. Since each lenslet has a very small diameter of around
20um, we magnified it by a factor×23, adding a microscope
to the system. This included a camera lens with a 100mm
focal length as a tube lens and a ×40 objective lens with a
4.33mm focal length. We can clearly observe the hexagonal
structure array as well as the quadratic pattern within each
lenslet.

6.3 Application 2: Refocusing
As we capture both the phase and amplitude of the incident
wave, we can synthesize images focused at different planes,
using basic wave propagation. This synthetic refocusing is
particularly useful in microscopy, where the depth of field
is extremely shallow. In the top two rows of Fig. 11, we
captured two microscope slides at two different distances
(d1 = 23mm, d2 = 51mm). By refocusing at these two
planes, we see the upper left and bottom right parts of the
image coming in and out of focus. In the bottom two rows,
we used the microscope system mentioned in Sec. 6.2 to
image a honey bee leg. The depth of field now is less then
0.1mm. When we computationally propagate the wave to
d1 = −40µm and d2 = 118µm, we can refocus the wave
and observe spots on the front or the hair at the back. Please
see the supplementary video for a continuous refocusing sequence
of this scene.

6.4 Application 3: Correcting Fresnel lens artifacts
We re-implement the Fresnel lens correction experiment
of WISH [5]. A Fresnel lens is a thin mask with a lens-
like quadratic phase pattern. However, the warping of the
lens phase profile as well as imperfections in fabrication
prevent it from creating a high-quality image as an ideal
lens. In the setup of Fig. 12(b), we place a Fresnel lens
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Fig. 11: Refocusing: Upper panel: patterns on two adja-
cent microscope slides, we can back-propagate the captured
wave to focus on the front and rear slides. Lower panel:
A bee leg tissue observed under a shallow depth of field
microscope. While we cannot see an all-focus image, we can
refocus the wave on the dust particles in the front or on the
hair in the back. Complete refocusing results can be found
in the supplementary video.

at plane p2 107mm before the plane p1 imaged by our
system. We place a resolution chart at plane p3 at a distance
100mm beyond p2. The focal length of the fresnel lens is
1/(1/107 + 1/100) ∼ 51.7mm, so that ideally we should
get a sharp image of the chart. However, the poor lens
quality leads to ghosting artifacts visualized in Fig. 12(d).
To overcome this, we first used the setup of Fig. 12(a) to
capture the phase of a Fresnel lens alone, illuminated by
a simple plane wave. The recovered phase is illustrated in
Fig. 12(c). We back-propagate the wave to get the phase of
the Fresnel lens at plane p2. In Fig. 12(e), we use this phase
to correct the aberrations and display a sharp image of the
calibration chart. For that, we first back-propagate the wave
in p1 to p2, divide by the phase of Fresnel lens, and back-
propagate it further to plane p3.

Fig. 1 demonstrates a similar experiment using only 4
input images when reconstructing the Fresnel lens and com-
pare the ReWave result with simple PS-PDI. The amount of
noise involved significantly scrambles the result.

6.5 Application 4: Seeing through a diffuser
In Fig. 12(f-h), we use the same procedure as with the Fres-
nel lens to image through a diffuser. In the setup, a diffuser



is placed at plane p2, 235mm before the input plane p1,
and a resolution chart is placed at plane p3, 75mm beyond
it. In Fig. 12(f), we capture the phase of the diffuser alone
illuminated by a pure plane wave. This diffuser scrambles
the light significantly. In Fig. 12(g), we attempt to back-
propagate the wave captured on p1 (the input plane of
the setup) to plane p3 where the chart is located, ignoring
the presence of the diffuser, the chart is completely un-
recognizable. However, using the calibrated phase from
Fig. 12(f), we can correct some of the aberrations and obtain
an image of the chart in Fig. 12(h). For that, we follow
the same procedure as before: we propagate from p1 to p2,
cancel the phase of the diffuser and continue to propagate
to p3. Here, we use a rather coarse diffuser (Thorlab DG-
120) with a spread angle of up to ±30◦. What makes the
reconstruction quite challenging is the fact that the changes
in the diffuser phase pattern is of a higher frequency than
that of our imaging system, so we can not reconstruct the
complete phase pattern. However, we can still reconstruct a
smoothed version of the pattern by capturing the diffracting
wave in a finite aperture, and thus back-propagate a band-
limited wave.

7 CONCLUSION

This paper presents a phase acquisition approach that builds
on the self-interference idea of point diffraction interfer-
ometry (PDI). While PDI is highly noise sensitive due to
the narrow pinhole used to create the reference wave, we
introduce a reference mask that can admit much more
energy. To recover the reference wave, the mask is de-
signed to respect collision-free conditions which allow us
to use simple techniques from sparse phase retrieval. We
demonstrate the robustness of this new approach through
a careful comparison against previous algorithms using
both synthetic and real camera data. We also validate our
approach with numerous applications for phase imaging
including refocusing and imaging through diffusers.

APPENDICES

In this appendix, we detail supplementary material on three
topics: the multi-reference fusion technique, details of cali-
bration, and finally, some additional comparisons. Equation
references here point at corresponding equations in the main
manuscript.

APPENDIX A
FUSION OF MULTIPLE PHASE ESTIMATES

To derive the fusion scheme in Eq. (13) of the main paper,
we first need derive the statistical properties of the estimates
derived from each reference wave. This involves starting
with a realistic noise model of the measurements, including
photon and read noise, and propagating the distributions,
and, in particular, the means and covariances, through the
relevant expressions.

Noise model. The complete probabilistic model for a camera
signal is:

b̃(x) ∼ G

F
Pois

(
F

G
b(x)

)
+N (0, F 210−

R
10 ),
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Fig. 12: Correcting phase mask aberrations: Both Fresnel
lens and diffusers can be modeled as phase masks. (a)
A setup for calibrating a phase mask (Fresnel lens or a
diffuser): a mask placed at plane p2 is illuminated by a plane
wave. The resulting wave is captured at plane p1, the input
plane of our setup. (b) A setup imaging through the phase
mask, where a resolution chart target is placed at plane p3
behind the mask. The captured wave at p1 is aberrated. Yet,
applying the inverse of the calibrated mask, we can correct
the aberrations and see through the mask. (c-e) Correcting
the aberrations of a cheap Fresnel lens to get a sharp image
of the target. (f-h) Seeing through a wide-angle diffuser.
More details can be found in the supplementary video.

where G is the gain, F is the full well capacity, and R is the
dynamic range. Multiply both sides by F

G , we have:

F

G
b̃(x) ∼ Pois

(
F

G
b(x)

)
+N (0, G210−

R
10 )



Defining the image is on the scale that I(x) = F
Gb(x), and

σ = G10−
R
20 ,

Ĩ(x) ∼ Pois(I(x)) +N (0, σ2).

Lets consider the variable β(x) = (u(x) − r(x))r(x)∗ as
defined in Eq. (6) of the main paper. Suppose we reconstruct
β(x) from K = 3 phase shifted measurements. The expres-
sion for the imaginary component of β(x) is given as

Im(β̃(x)) =
1

3

3∑
k=1

Ĩk(x)

(
−1 +

√
3i

2

)k−1
=

1

2
√

3
(Ĩ2(x)− Ĩ3(x)).

Lets first assume that read noise is minimal, and that the
measurements Ĩk are corrupted by Poisson noise. With this,
Im(β̃(x)) is a scaling of Z̃ ∼ Pois(I2(x)) − Pois(I3(x)),
which follows a Skellam distribution. While Skellam has a
complicated probability density function, it can be approx-
imated by a normal distribution [37] when its variance is
much larger than it mean.

We can now derive the mean and variance of Z̃.

E[Z̃] = E[(Ĩ2(x)− Ĩ3(x)]

= I2(x)− I3(x) = 2
√

3 Im(β(x))

Since variance of a Poisson random variable is just its mean,
we have

var[Z̃] = I2(x) + I3(x) ≈ 2|u(x)|2

The approximation made above assumes that the intensity
measured at a pixel, which is the interference between
the wave and reference, is approximately equal to |u(x)|2.
Since Im(β(x)) = Im(u(x)r(x)∗), we operate under the
assumption that |r| � |u|, and it immediately follows that
E[Z̃] � var[Z̃]. Therefore, we can invoke the Skellam -
Gaussian approximation and obtain

Z̃ ∼ N
(

2
√

3 Im(β(x)), 2|u(x)|2
)

Now taking the read noise into consideration,

2
√

3Im(β̃(x)) ∼ N
(

2
√

3 Im(β(x)), 2|u(x)|2 + 2σ2
)

Finally,

Im(β̃(x)) ∼ N
(

Im(β(x)),
(|u(x)|2 + σ2)

6

)
The real part can be derived in the same way.

Re(β̃(x)) ∼ N
(
Re(β(x)),

(|u(x)|2 + σ2)

6

)
An important conclusion is that the variance of the

estimates of β̃(x) is not dependent on the actual reference
wave; this motivates the fusion scheme when we measure
with multiple reference waves. Note that the above result
does not imply that the phase estimates are independent of
the reference wave; this is easily seen when we try to recover
u(x) from β̃(x) which requires dividing by |r(x)|2.

Fusing measurements from multiple reference waves.
Now we want to merge several measurements under dif-

(a) align sensor with SLM (b) align two sensors

Fig. 13: Calibration setup: To calibrate the transformation
between the Fourier plane sensor and the SLM, we use a two
step process, solving for a transformation between the SLM
and the image plane sensor and the transformation between
the image plane and Fourier plane sensors. For each step, we
use the two setups in (a) and (b), where the purple arrow
and the bold text highlight the key parts for each step. (a)
Given lens 2 is already f-away from the sensor, we align lens
3 so the sensor can observe the focused intensity pattern
on the SLM. P1 and P2 are rotated polarizers to operate
the SLM in amplitude modes. We use this to compute the
transformation between the SLM and the sensor. (b) We use
lens 1 and 4 to form a relay between the SLM and the target.
We align the Fourier plane sensor to be f away from lens 1
by adjusting it to see a focused image of the target. Using
the SLM as a mirror both sensors observe the same target
and the transformation can be calculated.

ferent rt. As we have shown above, the estimates β̃(x)
follow a normal distributions, and each distribution has
the same variance, regardless of rt. To proceed further, we
need a statistical model on r(x) which we assume has very
low variance, since it is estimated from an overdetermined
problem; specifically, the sparse Fourier transform of length
K is measured from K2 measurements of its autocorrela-
tion. Hence, we can assume u(x)rt(x)∗ = β(x) + |rt(x)|2
would still be a normal distribution with the same variance.
Therefore, we can solve for u by solving the linear system
below: 

r1(x)∗

...
rT (x)∗

 ū(x) =


β1(x) + |r1(x)|2

...
βT (x) + |rT (x)|2


The solution reduces to ū(x) =

∑
t(βt(x)+|rt(x)|2)rt(x)∑

t|rt(x)|2
, as

stated in Eq. (13).

APPENDIX B
CALIBRATION DETAILS

Here we provide more details on the calibration of our
setup. The first challenge is to align the Fourier plane sensor
with the SLM and calculate the exact transformation be-
tween them. To do that, we introduce an additional lens that
make the image plane sensor observe the Fourier plane as
well, and use it to align the actual Fourier plane sensor with
the SLM. For that, we use Fig. 13(a), where we added lens
3 to the actual setup. This creates a relay system between



Fig. 14: SLM ghosting: Due to SLM imperfections, the phase
pattern we display involves a DC component. In the image
plane, this creates a constant part of the field (lower left
disc) which is added to the measurement. To overcome this,
we added a phase ramp to the SLM pattern, which shifts
the desired part of the wave on the image sensor (central
disc). This has the disadvantage of limiting the sensor area
we can use, but allows the measurement of a clean signal at
the usable pixels.

the lower sensor, switching it to the the Fourier plane rather
than the image plane. In this configuration the sensor can
directly image the SLM. We operate the SLM in amplitude
mode rather than phase mode by introducing 2 orthogonal
polarizers. We also add a speckle reducer to make laser light
source incoherent. Given the distance between lens 2 and
the camera have been calibrated to be f , we only need to
adjust the position of lens 3 to observe a clear image on the
SLM. We display a known pattern on the SLM and use it
to compute an affine 2D transformation between the sensor
and the SLM (we solve for scale and translation).

In the next step, we build another relay system between
the target and the SLM. For that, we add to the setup lens
4, as illustrated in Fig. 13(b). We adjust the position of
the Fourier plane sensor to observe a sharp image of the
target. If we now use the SLM as a planar mirror, both
sensors observe the same target, and we can calculate the
transformation between both sensors.

Combining the two affine transformation estimated
above, we now have the alignment between the SLM and
the Fourier plane sensor. We can now remove lens 3 and
4 to get our final setup. Note that to avoid the ghosting
problem as in Sec. 6 and in Fig. 14, we display a phase ramp
on the SLM to shift the image, and adjust the sensor location
accordingly to observe the image.

APPENDIX C
ADDITIONAL PHASE IMAGING RECONSTRUCTION

In Fig. 15, we show reconstruction results for the diverging
wavefront as in Fig. 8 but given only 4 images. While the
diverging wavefront needs 8 input images for a clear recon-
struction, our ReWave method can still give a reasonably
good result given 4 images.

APPENDIX D
ADDITIONAL PHASE IMAGING ALTERNATIVES

Here we address two additional competing alternatives for
Fig. 8 and Fig. 9. First, we implement another version of
the multi-plane (MP) approach where the quadratic func-
tion on the SLM corresponds to a different propagation
range. In the implementation in the main paper, we use
quadratic patterns corresponding to a [20, 50]mm propa-
gation range. Here, the propagation range corresponding
to [240, 270]mm, which we denote as MP(far) below. This
experiment demonstrates that the performance of the MP
algorithm highly depends on the propagation range where
it is used. The far MP range better matches the phase of
the diverging point source, which was placed at distance
300mm. Unsurprisingly, the reconstruction of the quadratic
wave in Fig. 16 is now significantly better. The original MP
in Fig. 8 failed in this experiment. However, for the resolu-
tion chart experiment in Fig. 17, MP(far) fails completely on
4 images and give degraded ones on 32 images, while the
original MP range in Fig. 9 gave much better results.

We also attempt to place some equivalence of WISH [5],
where we placed a random mask at the Fourier plane
where our SLM is positioned, rather than a finite distance
before the sensor as in the original design. We refer to
this as Fourier-WISH. In Fig. 16, this Fourier-WISH fails
to reconstruct the diverging wave, but succeeds using 32
images. In Fig. 17, Fourier-WISH fail to converges given 4
images, and still has artifacts with 32 images.
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phy and Wavefront Sensing. Springer, 2016.

[11] R. Smartt and W. Steel, “Theory and application of point-
diffraction interferometers,” Japanese Journal of Applied Physics,
vol. 14, no. S1, p. 351, 1975.

[12] J. Ranieri, A. Chebira, Y. M. Lu, and M. Vetterli, “Phase retrieval for
sparse signals: Uniqueness conditions,” submitted to IEEE Transac-
tions on Information Theory, 2013.

[13] R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating
prism,” Journal of Modern Optics, vol. 43, no. 2, pp. 289–293, 1996.

[14] A. Burvall, E. Daly, S. R. Chamot, and C. Dainty, “Linearity of
the pyramid wavefront sensor,” Optics Express, vol. 14, no. 25, pp.
11 925–11 934, 2006.

[15] F. Roddier, “Curvature sensing and compensation: a new concept
in adaptive optics,” Applied Optics, vol. 27, no. 7, pp. 1223–1225,
1988.

[16] M. R. Teague, “Deterministic phase retrieval: a green’s function
solution,” JOSA, vol. 73, no. 11, pp. 1434–1441, 1983.

[17] C. Wang, X. Dun, Q. Fu, and W. Heidrich, “Ultra-high resolution
coded wavefront sensor,” Optics Express, vol. 25, no. 12, pp. 13 736–
13 746, 2017.

[18] D. Noll and A. Rondepierre, “On local convergence of the method
of alternating projections,” Foundations of Computational Mathemat-
ics, vol. 16, no. 2, pp. 425–455, 2016.

[19] B.-Y. Wang, L. Han, Y. Yang, Q.-Y. Yue, and C.-S. Guo, “Wavefront
sensing based on a spatial light modulator and incremental binary
random sampling,” Optics Letters, vol. 42, no. 3, pp. 603–606, 2017.

[20] E. J. Candes, T. Strohmer, and V. Voroninski, “Phaselift: Exact and
stable signal recovery from magnitude measurements via convex

MP(far) [4] Fourier-WISH [5]

4
im

ag
es

32
im

ag
es

Fig. 17: Additional resolution chart reconstructions: We
follow on Fig. 9 reconstructing a resolution chart 80mm
away from the input plane of the system, and use the
phase of the captured wave to refocus the camera at the
chart plane. We demonstrate results with the MP(far) phase
patterns and the Fourier-WISH masks.

programming,” Communications on Pure and Applied Mathematics,
vol. 66, no. 8, pp. 1241–1274, 2013.

[21] I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery,
maxcut and complex semidefinite programming,” Mathematical
Programming, vol. 149, no. 1-2, pp. 47–81, 2015.

[22] K. Jaganathan, Y. Eldar, and B. Hassibi, “Phase retrieval with
masks using convex optimization,” in IEEE International Sympo-
sium on Information Theory (ISIT), 2015.

[23] Y. Shechtman, A. Beck, and Y. C. Eldar, “Gespar: Efficient phase
retrieval of sparse signals,” IEEE Transactions on Signal Processing,
vol. 62, no. 4, pp. 928–938, 2014.

[24] D. Kogan, S. Sivankutty, V. Tsvirkun, G. Bouwmans, E. R. An-
dresen, H. Rigneault, and D. Oron, “Phase retrieval in multicore
fiber bundles,” Optics Letters, vol. 42, no. 3, pp. 647–650, 2017.

[25] S. Sivankutty, V. Tsvirkun, O. Vanvincq, G. Bouwmans, E. R. An-
dresen, and H. Rigneault, “Nonlinear imaging through a fermat’s
golden spiral multicore fiber,” Optics Letters, vol. 43, no. 15, pp.
3638–3641, 2018.

[26] J. M. Beckers, “Adaptive optics for astronomy: principles, per-
formance, and applications,” Annual Review of Astronomy and
Astrophysics, vol. 31, no. 1, pp. 13–62, 1993.
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