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Abstract

Understanding light and its interactions with materials in a scene forms the bedrock of modern computer

vision. In this context, the spectral properties of light play a very important role, especially when we seek

to study the material composition of a scene. As a consequence, spectral measurements �nd applications

across a wide range of scienti�c �elds such as medical diagnostics, microscopy, geospace intelligence,

remote sensing, and computer vision.

Several vision tasks bene�t immensely from capturing spectra at all spatial locations in a scene.

This requires an optical system called hyperspectral camera, which captures images across �nely spaced

wavelengths. Despite its wide applicability, measuring a high resolution hyperspectral image is inher-

ently a hard task. Sampling a scene over million of spatial locations, and across hundreds of spectral

bands results in diminishing photon count at each spatio-spectral voxel, leading to extremely low signal

to noise ratios (SNR). This is often compensated with long exposure times, which precludes imaging of

dynamic scenes. Further, the giga-pixels of data associated with each scan places immense burden on

capture and processing hardware.

The work in this thesis seeks to simplify the process of capturing spectral information of a scene

with design of novel imaging systems. This thesis relies on two key observations. First, despite the high

dimensional nature of hyperspectral images, the number of distinct materials in any given scene is very

small; this leads to a concise low-dimensional representation of the hyperspectral image. Second, owing

to this low diversity, capturing a small set of spectrally-�ltered images of the scene su�ces for most

sensing and inference tasks. Exploiting these two observations, this thesis builds novel and e�cient

optical systems for imaging and inference.

Central to the contributions of this thesis is an optical system that can provide programmable spec-

tral �ltering, by attenuating intensity of light at each wavelength arbitrarily and capturing the resultant

image. The �rst contribution of this thesis shows that capturing sharp images with arbitrarily high res-

olution spectral �ltering is not possible – a property that arises due to the shape of the pupil function of

the camera. This fundamental limit is provided in the form of the space-spectrum uncertainty principle,

which sets a lower bound on product of spectral and spatial spreads. We then show that the resolutions

can be enhanced computationally, if the pupil function is carefully engineered to introduce invertible

spatial and spectral blurs.

Armed with the insights of a spectrally-programmable setup, we show that such cameras can be used

to e�ciently sense hyperspectral images. Since the true complexity of sensing hyperspectral images lies

not in high resolution space or spectrum, but only the diversity of materials, the hyperspectral image can
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be represented using a low-rank matrix model. This thesis provides a novel adaptive sensing strategy to

optically compute this low-rank model. We note that the dominant spatial and spectral singular vectors

can be sensed by building two optical operators, namely a spatially-coded spectrometer, and a spectrally-

programmable camera. By alternating between the two operators, and using output of one operator as

input to the second, we can measure a low-rank approximation with as few as ten measurements –

contrasted with several hundreds of measurements for fully scanning the hyperspectral image.

Finally, the thesis builds on spectral-programmability and optical computing to enable per-pixel

material classi�cation. This is achieved by capturing images of the scene with learned, discriminative

spectral �lters and then using the images to classify materials. This enables a per-pixel classi�cation

strategy with a small set of high SNR measurements – thereby leading to real-time vision capabilities.

At its culmination, this thesis lays groundwork for making hyperspectral cameras more practical by

introducing computing into the sensing pipeline, and moving most of computational burden into the

optical domain. This successfully decouples the number of measurements and SNR, thereby allowing

future optical systems to achieve very high resolution along spatial and spectral axes.
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1Introduction
We perceive the world around us by observing its interaction with light – and a fundamental and im-

portant part of this interaction is how the intensity of light varies with di�erent wavelengths of light,

called spectrum. The primary way humans observe spectrum is via colors – a three dimensional slice of

the spectrum. However, going beyond colors and capturing the complete spectrum with a device called

spectrometer o�ers unique insights about the composition of various objects in the scene and hence is

critical to scienti�c discovery. Spectroscopy as a scienti�c tool was �rst identi�ed by Joseph Von Fraun-

ho�er in 1814, when he identi�ed the dark bands in the Sun’s spectrum, which lead to the discovery of

its material composition. Since then, the applications of spectral measurements has pervaded several

�elds of scienti�c discovery. It is used for accurately tracking microscopic cells and molecules by rely-

ing on �uorescence, where objects absorb light at one wavelength and emit at a di�erent one. Raman

spectroscopy seeks to estimate molecular composition by shining light on the specimen and studying

the spectrum of scattered light. In medicinal sciences, it �nds use in pulse oximetry, where lights of two

di�erent wavelengths are illuminated to estimate composition of oxygenated and deoxygenated blood.

At macro scales, it is used for identifying and locating minerals and vegetation cover over large swathes

of land e�ciently, and the presence of oil slicks in oceans.

When we are interested in sampling spatial and spectral pro�les, we consider the hyperspectral

images (HSI). Hyperspectral cameras measure spectrum at each spatial pixel in a scene resulting in a

stack of images sampled over narrowband wavelengths. The measured HSI is high dimensional with

several millions of samples of spatial pixels across hundreds of spectral bands. Such a dense sampling

enables the inference of material composition at each pixel, and is hence an indispensable tool in many

scienti�c applications. The applications of HSIs are far-reaching and hence the research in this �eld is

focused on building faster and more sensitive cameras that can capture signal at very �ne spatial and

spectral resolutions. There are several commercially available cameras that achieve some parts of this,

either high spatial resolution, or spectral resolution, or low resolution along both axes but high frame
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Figure 1.1: Hyperspectral imaging applications. Hyperspectral images �nd application in a wide

range of �elds such as geosciences1, microscopy2, target detection[89], medical diagnosis3and material

classi�cation [11].

rate. Capturing very high resolution data comes with several key challenges, which will be explained

over the course of this chapter. This thesis seeks to advance hyperspectral imaging and inference with core

focus on e�cient optical systems and algorithms. To understand the need for such e�cient cameras, we

�rst need to look at the drawbacks of existing imaging systems. This will then motivate the contributions

of this thesis.

1.1 Conventional Hyperspectral Camera Architecture

Commercial hyperspectral cameras come in one of the three forms (see Fig. 1.2), each with their own

merits and demerits. Tunable-�lter based cameras capture each narrowband image at a time, thereby

scanning along the wavelength axis. Such cameras o�er very high spatial resolution and are easy to

build, as they require attaching the tunable �lter to any existing grayscale camera. Pushbroom cameras

capture spectral pro�les of each row of the scene, thereby scanning along the vertical spatial axis. Push-

1Image credits: https://resonon.com/applications
2Image credits: https://thorlabs.com
3Image credits: https://sciencenorway.no/forskningno-hyperspectral-camera-innovation/

charting-sores-and-bruises-in-multiple-colours/1411937

https://resonon.com/applications
https://thorlabs.com
https://sciencenorway.no/forskningno-hyperspectral-camera-innovation/charting-sores-and-bruises-in-multiple-colours/1411937
https://sciencenorway.no/forskningno-hyperspectral-camera-innovation/charting-sores-and-bruises-in-multiple-colours/1411937
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Figure 1.2: Architecture of existing hyperspectral cameras. Hyperspectral cameras scan image at

each wavelength (tunable �lter), or capture all spectral pro�les of each row (pushbroom), or rely on

a color �eld array (CFA) to capture measurements at lower resolution. In all cases, high resolution

scanning requires long exposure times and fast electronic subsystems.

broom cameras come with very high spatial and spectral resolution, and are ideal for scenarios where

scanning the scene involves imaging a single spatial line, such as in case of aerial imaging, or scanning

objects on a conveyor belt. Both tunable-�lter and pushbroom cameras are categorized as non-snapshot

cameras, as they require multiple measurements of the scene to scan the complete HSI. In contrast,

snapshot cameras that utilize a color �eld array (CFA) implement a Bayer-like pattern and require one

single image. As is to be expected, such cameras trade o� spatial resolution for spectral resolution and

hence is not a popular choice for hyperspectral imaging.

Challenges with hyperspectral imaging. Existing hyperspectral cameras face two key challenges,

and both are associated with the high dimensionality of HSIs. First, due to the �ne spatio-spectral

sampling, Nyquist sampling of HSIs face a severe loss in signal to noise ratio (SNR). To get an intuition,

consider an HSI of 100 spectral bands, and 1000×1000 spatial pixels. Then each spatio-spectral voxel gets

a billionth of the total photons entering the camera; except when imaging in extremely bright settings

such as sunlight [21], such low photon count requires very long exposure times to maintain high SNR.

Second, transferring such large amounts of data requires high bandwidth electronics. As an example, if

each image is quantized to 8 bits, then the above mentioned camera requires 30GB/s to achieve 30 frames

per second, a rate that is impractical with existing technology, and most importantly, does not scale to

higher resolutions. This debilitating e�ect of reduced SNR and need for high data rates implies that

hyperspectral cameras are not practical for dynamic scenes. Indeed, most commercially available high

resolution hyperspectral cameras achieve no more than 1 frame per second4. However, vast number of

4https://www.specim.fi/afx/

https://www.specim.fi/afx/
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scenes are inherently dynamic, such as in vivo imaging, life sciences imaging, and vehicular tracking.

In order to tackle these challenges, we need to build systems that sense less, and are not a�ected by loss

in SNR.

1.2 Compressive Sensing

Fortunately, HSIs are not arbitrary signals – indeed, they have concise representations – such as spar-

sity in wavelet domain, and low-rank structure. Compressive Sensing (CS) [9] exploits this property of

visual signals to reconstruct signal that are undersampled with random linear projections. The prior

information about the signal, or a signal model was used to regularize the linear inverse problem. Some

common signal models for HSIs include image-wise sparsity in wavelet domain, group sparsity, and a

core focus of this thesis – the low-rank approximation. This lead to a decade long research in build-

ing CS imagers for HSIs that sample compressed measurements and subsequently use signal priors to

reconstruct the signal.

There are several imaging architectures for CS imaging of HSIs, and we discuss some of them here. Li

et al. [54] achieve this via spatially-multiplexed spectral measurements, where a spatial light modulator

(SLM) is used to modulate intensity of each spatial pixel, and a spectrometer is used to measure the aver-

age spectrum of the modulated scene.. Signal is then recovered with joint sparsity of all spectral bands,

or by a non-negative matrix factorization method. This approach requires far fewer measurements than

a full scan of the HSI, but often requires computationally complex algorithms for recovery. Spatial and

spectrally-multiplexed imagers [7, 57, 58] improve upon these designs by combining both space and

spectrum, which lead to better conditioning of the system. This resulted in fewer measurements, and

lead to higher accuracy of results. As before, signal is recovered by exploiting sparse representations of

the HSI patches in an overcomplete dictionary, which is often a time taking process.

A separate class of acquisition devices, called coded aperture snapshot spectral imagers (CASSI) [98]

capture one or more [49] spectrally-smeared images. This is achieved by using a 2D mask to modulate

the spatial image at all wavelengths, and then using a dispersive element such as prism or di�raction

grating to spatially shift each individual spectral band.

Compressive sensing faces two main problems. First, though the sampling time is reduced, the

reconstruction is often computationally complex, requiring several minutes to hours of computer time.

Such systems are incapable of producing real-time results. Second, CS reconstruction faces noise-folding

[5, 23], where even an oracle recovery algorithm (one that knows the exact subspace of the signal)

results in a 3dB loss in reconstruction SNR for every 2× fewer measurements. This is practically an



1.3. LOW RANK MODEL FOR HYPERSPECTRAL IMAGES 5

Method Approach
Number of 

measurements

Estimation accuracy 

under noise
Advantages Disadvantages

Sampling

Tunable spectral filter

𝑁𝑥𝑁𝑦𝑁𝜆 𝜎 𝑁𝑥𝑁𝑦𝑁𝜆

Easy calibration
Low spectral resolution; 

high acquisition time

Pushbroom
High spectral 

resolution

Optical complexity; 

high acquisition time

Multiplexed

Spatial multiplexing

𝑁𝑥𝑁𝑦𝑁𝜆

𝜎 𝑁𝜆
Hadamard

multiplexing gain
High acquisition time

Spectral multiplexing 𝜎 𝑁𝑥𝑁𝑦

Compressive 

sensing

CASSI depends on signal model
Fewer 

measurements

Loss in spatial/spectral 

resolution

Row/column projection ∝ 𝑘2 𝑁𝑥𝑁𝑦 + 𝑁𝜆 [Fazel et al. 2008] Complex optics

Table 1.1: Comparison of hyperspectral sensing strategies.

antithesis to CS – as a successful CS imager would capture data at high compression ratio – and yet this

leads to reduction in SNR. Further, most real world signals are at best approximated by low-dimensional

models, which adversely a�ects CS recovery under model mismatch. CS techniques have since been

augmented with stronger signal models [10] and sampling strategies with optimized sensing matrices

[79–81] which have attempted to increase SNR of reconstruction. Table 1.1 gives a broad overview of

existing hyperspectral imaging technologies.

A hallmark of CS techniques is that the measurement process is non adaptive, i.e., the sensing and

recovery stages are decoupled. Such non-adaptive techniques generally serve to reduce the complexity

of the imaging system since there is no need for a feedback from the recovery procedure back to the

camera. But, as a consequence, a signi�cant avenue for simplifying the end-to-end system is missed. In

practice, this reduces to two speci�c problems. One, the recovery technique is often computationally

complex. As an example, recovery from CASSI measurements takes anywhere between tens of minutes

with parallel processing units such as GPUs [18] to several hours [57]. Second, most priors used are

domain speci�c and not signal speci�c, and hence there is a gap in the applicability of the prior to the

speci�c instance of the signal that is being sensed. This often leads to overly smooth spectral pro�les for

hyperspectral imaging. We will next see how the low-dimensionality of HSIs can be exploited during

the sensing phase itself.

1.3 Low Rank Model for Hyperspectral Images

Since the diversity of spectral pro�les in any given scene is low, HSIs often tend to be low rank volumes,

as illustrated in Fig. 1.2. If the basis spectral pro�les are known, then the low-rank approximation can be
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1

2

3

4

𝛼1𝑣1 𝜆 + 𝛼2𝑣2 𝜆 + 𝛼3𝑣3 𝜆

=

Hyperspectral image Spectrum at selected points

Decomposition using low-rank model

(small but unknown set of spectra)

Table 1.2: Low rank decomposition of hyperspectral images. Most HSIs can be concisely repre-

sented with a low rank model, implying that spectrum at each pixel is a combination of a small set of

unknown basis spectra.

measured by capturing spectrally-�ltered images of the scene, which requires far fewer measurements

than either spatial or spectral resolution. Surprisingly, the same technique extends to cases when the

spectral pro�les are not known, and will be explained in the upcoming sections. Similarly, classi�cation

using hyper spectral images requires projection of spectrum at each pixel to a bank of spectral, thereby

requiring a small number of images. Can we then design systems to directly capture these images?

1.3.1 Optical Computing of HSIs

One e�cient way of sensing HSIs e�ciently is to optically project its columns or rows to a low-dimensional

subspace. This was explored by Park et al. [73], where they captured HSIs with an active illumination

setup. By relying on the idea that naturally occurring materials are accurately represented using nine

or fewer known spectral pro�les [74], Park et al. showed that one can achieve video-rate results.

While Park et al. [73] relied on an active illumination setup, most real-world scenarios only admit

passive illumination settings, where there is no control on spectral pro�le of the illumination. This

motivates us to build a camera that allows one to modify the spectral response of the camera instead.

One can utilize the low dimensional basis proposed by Parkkinen et al. [74] in conjunction with such a

camera to potentially scan the HSI with very few measurements. The next section discusses the merits

of such a programmable camera approach, and how we can generalize sensing by following an adaptive

sensing approach, where the basis for spectral pro�les is not �xed but estimated during sensing phase.
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1.3.2 Spectrally-programmable cameras

The common technique between scanning a low rank volume and spectral classi�cation is a spectrally-

programmable camera that captures images with arbitrary spectral �lters. Capturing HSIs with spectrally-

programmable camera provides three important bene�ts. First, the number of measurements are far

fewer; in case of low rank sensing, the number of measurements are commensurate to the rank of the

scene’s HSI, which tend to be very few [74]. Second, the spectral pro�les used for either low rank sens-

ing, or classi�cation tend to be broadband. A direct implication of such �lters is that the light levels are

remarkably higher than narrowband �lters used for scanning the complete HSI, leading to much higher

measurement SNR. Third, the amount of post processing is minimal, as the measurements directly lead

to the required data. While spectrally-programmable cameras have been proposed in the past for sensing

[7, 58], they rely on random spectral projections, and then computationally expensive recovery algo-

rithms. We will see that carefully tailoring the spectral projections in a scene-speci�c manner overcomes

this computational burden.

1.3.3 Challenges with spectrally-programmable cameras

Cameras with spectral programming have been proposed in the past for various applications. Mohan

et al. [66] proposed an “agile spectrum imager" that relied on the so-called rainbow plane to modulate

spectrum of the whole scene. This was further developed by Love and Gra� [63] who utilized a spatial

light modulator to program the spectrum at high speeds. Such setups can be utilized for fast modulation,

but are woefully inadequate when it comes to capturing or modulating at high resolutions; however,

they are the de-facto way of modulating spectrum, and hence requires some attention. In the upcoming

section, we describe the speci�c setup that is central to this thesis and give a broad overview of the

challenge faced by spectral programming.

There are multiple ways of achieving spectral programming, but the most e�cient approach involves

using a di�raction grating to split light into constituent wavelengths and create the so-called rainbow

plane, and then use a spatial light modulator (SLM) to achieve spectral modulation. The setup, and some

brief details are provided in Fig. 1.3. The optical system consists of a series of lenses of focal length f ,

each subsequent pair separated by 2f . The setup relays the image plane from plane P1 to P3 with a pupil

code in P2. A di�raction grating placed on P3 provides a spectral dispersion of the light. The dispersed

light is focused on plane P4 to form the so-called rainbow plane, where each point corresponds to the

average intensity of light of the whole scene for a single wavelength. The image on P3 is simply relayed

on to plane P5. Arbitrary spectral �ltering can then be performed by placing an (SLM) on the rainbow
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pupil code
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grating rainbow plane
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Pupil code, slitPupil code, open Spectrum (P4) Image (P5)Spectrum (P4) Image (P5)
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Figure 1.3: Optical setup for capturing images with spectral modulation. P1 is the image plane of the objec-

tive lens, P2 contains spatial frequencies of the image, where we place a pupil code, a(x ,y). P3 contains the image

plane blurred by the aperture function. We place a di�raction grating at this plane to disperse light into di�erent

wavelengths. P4 contains the resultant spectrum and P5 is a �ipped copy of P3. In a camera con�guration, the pupil

code consists of an open aperture and leads to sharp image but blurred spectrum. In spectrometer con�guration,

the pupil code is a slit and leads to sharp spectrum but blurred image. This tradeo�, methods to overcome it, and

the applications is the key focus of this thesis.

plane (P4) and measuring image on plane P5.

This setup will be discussed repeatedly throughout the thesis, and hence it is important to get an

intuition for the role played by the pupil function right away. The optical subsystem from planes P1 to

P3 is a simple camera with an aperture in its Fourier plane, and planes P2 to P4 is a spectrometer with

the aperture replacing a slit. The setup provides an insight into the tradeo� between spatial and spectral

resolutions. While a camera requires a large and open aperture for a compact spatial blur, this would

lead to severe loss in spectral resolvability, as a spectrometer requires a narrow opening. This inherent

uncertainty between spatial and spectral spread will form the background for the thesis.

1.4 Thesis Contributions

This thesis aims to solve the problem of sensing and inference of HSIs using a spectrally-programmable

camera as the core technology. An overview of the thesis results is shown in Fig. 1.4. To this end, the

thesis makes the following contributions:
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Figure 1.4: Layout of the thesis. We �rst explore (a) the space-spectrum uncertainty product in chapter 2, which

states the fundamental limits of spatial and spectral resolution with a spectrally-programmable camera. Chapter 3

combines such a camera with a spatially-coded spectrometer and presents a (b) novel imaging technique for optically

computing the dominant spatial and spectral singular vectors of a scene’s HSI. Chapter 5 shows an important

application of (c) per-pixel material classi�cation with the programmable camera and learned spectral �lters.

• Space-spectrum uncertainty. Spectrally-programmable cameras face a space-spectrum uncertainty, im-

plying that it is not possible to simultaneously capture high-resolution spatial images while program-
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ming the spectrum at high resolution. This phenomenon arises due to a Fourier relationship between

the aperture used for obtaining spectrum and its corresponding di�raction blur in the (spatial) im-

age. This thesis shows that the product of spatial and spectral standard deviations is lower bounded

by λ
4πν0 femto square-meters, where ν0 is the density of groves in the di�raction grating and λ is the

wavelength of light. Figure 1.4 (a) show the important result of the chapter, that the images get blurred

by a larger amount as spectral resolution increases.

• Adaptive sensing of HSIs. This thesis presents an adaptive imaging technique that optically computes

a low-rank approximation of a scene’s hyperspectral image, conceptualized as a matrix. Central to the

proposed technique is the optical implementation of two measurement operators: a spectrally-coded

imager and a spatially-coded spectrometer. By iterating between the two operators, we show that the

top singular vectors of a hyperspectral image can be adaptively and optically computed with only a

few iterations. This chapter also presents a pupil-code design for the spectrally-programmable camera

to computationally enhance the spatial and spectral resolutions. The end product is a high resolution

hyperspectral camera that requires very few measurements to capture the full HSI. A key result of this

chapter is shown in Fig. 1.4 (b), where we show a captured HSI of the scene illuminated by a peaky

spectrum of compact �uorescent lamp (CFL) with as few as ten measurements.

• Optical computing for per-pixel spectral classi�cation. This thesis shows an important application of

the spectrally-programmable camera to optically implement the spectral �ltering of the scene’s hyper-

spectral image with a set of spectral pro�les to perform per-pixel material classi�cation. This provides

gains both in terms of acquisition speed — since only the relevant measurements are acquired — and

in signal-to-noise ratio — since we invariably avoid narrowband �lters that are light ine�cient. Given

training data, we use a range of classical and modern techniques including SVMs and neural networks

to identify the bank of spectral pro�les that facilitate material classi�cation. Figure 1.4 (c) shows a per-

pixel classi�cation result of an outdoor scene obtained with only six spectrally �ltered images. This

takes hyperspectral cameras one step closer to real-time material classi�cation which will prove to be

an indispensable tool in computer vision.

1.5 Thesis Roadmap

This thesis is designed to introduce the reader to various optical systems and algorithms associated with

hyperspectral cameras.
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• Chapter 2 introduces the space-spectrum uncertainty analysis for spectrally programmable cameras.

The result of this chapter will be the space-spectrum bandwidth product. This chapter revisits the well

known time-bandwidth product in Fourier analysis of signals and applies it to hyperspectral imaging.

Along the way, the thesis will show that Gaussian-shaped pupil codes achieve theoretically minimal

spectral and spatial spreads, which will also provide a clear set of guidelines for building cameras with

a target spatial and/or spectral resolution.

• Chapter 3 will focus on directly sensing a low-rank approximation of the scene’s HSI with the help

of a spectrally-programmable camera and a spatially-coded spectrometer. The reader will learn about

Krylov iterative techniques for computing top singular vectors of a matrix, and how they can be imple-

mented optically. This part will also provide guidelines on breaking the space-spectrum bandwidth

product with computational postprocessing with engineered pupil codes for invertible spatial and

spectral blurs.

• Chapter 4 will utilize tools and ideas from chapter 2 and 3 to build a per-pixel material classi�cation

camera. There will be thorough discussion about how classi�cation can be translated to optical domain

with emphasis on choice of classi�er, learning discriminating �lters and a wide gamut of applications.

• Chapter 5 will conclude the thesis with discussions about future work related to this thesis and the

impact it will have on several �elds in imaging and computer vision.

Each chapter is largely self-su�cient, and hence can either be read sequentially or by themselves.

1.6 Impact of the proposed research

Future technologies in imaging will be aimed at capturing very �nely resolved data, across several di-

mensions. The thesis makes fundamental contributions to spectral programming, with emphasis on

small number of high SNR, high spatial and spectral resolution measurements, with reliance on adap-

tive sensing, as well as optical computing. This paves way to practical and computationally inexpensive

cameras for hyperspectral imaging, and will �nd way into more vision tasks. While the focus of this

thesis was on spatial and spectral imaging, the ideas presented have far reaching impact across imaging

applications, such as sampling angular variations, capturing polarization of light, and imaging at very

high frame rates.
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Aperture Systems

Capturing spectrally-�ltered images requires an optical setup that is fast, and can operate at high spatial

and spectral resolutions. In this chapter, we will see that the two resolutions are tightly coupled, leading to

a space-spectrum uncertainty. At the end of this chapter, we will get a good theoretical understanding of

limits of spectral programming, the optimality of a Gaussian-shaped pupil, and get a brief introduction to

optical systems for capturing images with arbitrary spectral �lters.

2.1 Introduction

Spectrum is often a unique feature of materials and is used for identi�cation and classi�cation across

diverse �elds such as geology [19], bio-imaging [20, 56] and material identi�cation [88, 106]. Tools such

as the hyperspectral camera capture the spectrum of a scene which is subsequently used for identi�ca-

tion and classi�cation purposes. Capturing the full spectrum, while useful, is also wasteful especially if

we are only interested in measuring similarity of the spectral pro�le at each pixel to a small collection

of reference spectra. It is hence useful to have cameras that can optically perform this comparison. Such

cameras, called spectrally-programmable cameras, have been demonstrated [63, 66] with compelling ap-

plications in computer vision. This chapter analyzes a popular design for enabling spectral programma-

bility, and derives a fundamental relationship between its achievable spatial and spectral resolutions.

2.1.1 Problem setting

The analysis in this chapter is for the optical setup shown in Fig. 2.1, commonly used in prior art for

spectral programming [58, 63, 87, 88]. The optical system consists of a series of lenses of focal length

f , each subsequent pair separated by 2f . The setup relays the image plane from plane P1 to P3 with

a pupil code in P2. A di�raction grating placed on P3 provides a spectral dispersion of the light. The

dispersed light is focused on plane P4 to form the so-called rainbow plane, where each point corresponds
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pupil code
diffraction 

grating rainbow plane

spatial plane

f f f f

image plane

f f f f

spectrometer
camera

P1 P2 P3 P4 P5

Pupil code, slitPupil code, open Spectrum (P4) Image (P5)Spectrum (P4) Image (P5)

camera configuration spectrometer configuration

Figure 2.1: Optical setup for capturing images with spectral programming. P1 is the image plane of the ob-

jective lens, P2 contains spatial frequencies of the image, where we place a pupil code, a(x ,y). P3 contains the image

plane blurred by the aperture function. We place a di�raction grating at this plane to disperse light into di�erent

wavelengths. P4 contains the resultant spectrum and P5 is a �ipped copy of P3. In a camera con�guration, the pupil

code consists of an open aperture and leads to sharp image but blurred spectrum. In spectrometer con�guration,

the pupil code is a slit and leads to sharp spectrum but blurred image. This chapter formalizes the role played by

pupil code for spatial and spectral resolutions.

to the average intensity of light of the whole scene for a single wavelength. The image on P3 is simply

relayed on to plane P5. Arbitrary spectral programming can then be performed by placing an (SLM) on

the rainbow plane (P4) and measuring image on plane P5. Intuitively, planes P1 to P3 is a simple camera

with an aperture in its Fourier plane, and planes P2 to P4 is a spectrometer with the aperture replacing

a slit. The setup provides an insight into the tradeo� between spatial and spectral resolutions. While

a camera requires a large and open aperture for a compact spatial blur, this would lead to severe loss

in spectral resolvability, as a spectrometer requires a narrow opening. Our goal is to formalize the role

played by the shape of the pupil code in deciding spatial and spectral resolution.

2.1.2 Main result

We show that the pupil code a(x ,y) introduces a spectral and spatial blur, hλ(λ) and hx (x) respectively

with standard deviations σλ and σx (detailed expression in eq. (2.20) and (2.21)). Our main contribution is

in the form of a lower bound on the space-spectrum bandwidth product that relates the spectral resolution
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at which light can be programmed and the spatial resolution of captured image. This is encapsulated in

the following theorem.

Theorem 1 For the spectrally-coded imaging architecture shown in Fig. 2.1, the product of spatial and

spectral standard deviations σx and σλ , respectively, is bounded as

σxσλ ≥
λ

4πν0
, (2.1)

where ν0 is the density of slits in the di�raction grating.

This result was �rst explored in [63] and [87] where the authors demonstrated that the spatial and

spectral resolutions were related to the choice of pupil code. This chapter builds on their results by

providing a concise expression for the tradeo�. We prove that a Gaussian-shaped pupil code achieves

the lower bound and leads to most compact spatial blur for a targeted spectral blur.

2.1.3 Implications

The space-spectrum bandwidth product introduces an uncertainty in spectrally-programmable cameras,

stating that one cannot arbitrarily program spectrum at high resolution without loss in spatial resolution.

We demonstrate the impact of uncertainty by building a spectrally-programmable camera and showing

that blocking one of two closely-spaced narrowband sources cannot be done without severe loss in spec-

tral resolution. We also show that for narrowband �ltering, the spatial blur is a�ected by the pupil code

as well as the shape of the narrowband �lter, and that a slit, a commonly used narrowband �lter shape

leads to a spectrally-varying spatial blur. Instead, using a Gaussian-shaped narrowband �lter achieves

spectrally-independent spatial blur, thereby being the optimal candidate for spectral programming.

Hyperspectral imagers. Apart from spectral programming, several hyperspectral imaging architec-

tures [7, 58, 87] rely on obtaining spectrally-programmed images. Our �ndings impact such setups, as a

key requirement of such setups is to capture high resolution images without sacri�cing spectral resolu-

tion. Hence, the space-spectrum bandwidth product can serve as a design guide to carefully choose the

pupil code to obtain desired spatial and spectral resolutions.

Spatially-coded cameras. We note that the analysis in this chapter is targeted speci�cally at spectrally-

programmable cameras and does not apply to many hyperspectral cameras where there is no pupil

plane coding. Cameras such as the pushbroom camera and the coded aperture snapshot spectral imager

(CASSI) [49, 98] which scan the full HSI only perform spatial coding and, and as such, are not a�ected
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by this result. Since such systems code space and then measure its spectrally-sheared image, the spatial

code only a�ects the spectral resolution and not the spatial resolution.

2.2 Prior Work

We start our discussion by talking about capturing images with arbitrary spectral �lters and then brie�y

state its applications. We then state the fundamental tradeo�s based on system parameters.

Measurement model. Consider a scene’s hyperspectral image (HSI) represented by H (x ,y, λ), where

(x ,y) represent spatial coordinates and λ represents wavelength. Our goal is to optically obtain a

spectrally-programmed image. Speci�cally, given a spectral �lter f (λ), our aim is to implement a camera

that captures the following grayscale image,

I (x ,y) =

∫
λ
H (x ,y, λ)f (λ)dλ. (2.2)

Applications of spectral programming. The ability to arbitrarily program spectrum enables a wide

gamut of applications. This includes adaptive color displays [66], programmatically blocking illuminants

[63], and detecting materials [88, 106]. The key advantage in all these applications is to not measure the

complete HSI, but only the desired spectrally-programmed images; this leads to fewer measurements at

higher signal to noise ratio (SNR). Such a system can also be used for compressively sensing the complete

HSI [58, 87] which relies on capturing projection of a scene’s HSI on random or designed spectral �lters.

Spectrally-programmable camera architecture. Spectral programming is a technique that is often

used in imaging applications, such as Bayer �lters for RGB cameras or narrowband spectral �lters for

�uorescence microscopy [56]. Static �lters o�er arbitrarily high spectral resolution, but are not tailored

for applications that require changing �lters rapidly; while this can be achieved with �lter wheels, the

speed of such devices is constrained by the speed at which the �lters can be changed. Electronically

tunable �lters, in part can be achieved by using a tunable �lter [100] where liquid crystal (LC) cells are

used to obtain a combination of narrowband spectral �lters. LC �lters however are typically slow as

they require large settling times.

The most practical way of implementing programmable spectral �lters that can be changed elec-

tronically and at high speeds is to rely on the setup shown in Fig 2.1. Here, a dispersion element such

as a grating or prism is used to create the so-called rainbow plane [66] where each point corresponds

to intensity of a single wavelength of the whole scene. By placing a spatial modulator (SLM) on this
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plane, one can achieve arbitrary spectral programming. This approach is similar to replacing a sensor

in a spectrometer with an SLM, and has been the defacto way of spectral programming in some of the

past works [58, 63].

The SLM-based approach for spectral programming has certain advantages. Since SLMs are fast, one

can achieve high frame rates (often in excess of 60fps), which is crucial for imaging dynamic scenes, and

in applications that require rapidly switching spectral �lters. Two, the system is potentially capable of

high spectral resolution without sacri�cing capture time. However, as we will see next, a high spectral

resolution leads to a severe loss in spatial resolution. The focus of this paper is on the fundamental

trade-o� of spectral and spatial resolutions.

Time-frequency bandwidth product. Our main result is based on the time-frequency bandwidth

product [22, 36, 77], which we state here for completeness. Let x(t) be a centered time-domain signal,

and let X (ν ) be its (centered) continuous-time Fourier transform. We de�ne the spread of time-domain

and frequency-domain signals as,

σt =

√∫
t t

2 |x(t)|2dt√∫
t |x(t)|

2dt
and σν =

√∫
ν ν

2 |X (ν )|2dν√∫
ν |X (ν )|

2dν
. (2.3)

Then the uncertainty theorem states that,

σtσν ≥
1
4π
. (2.4)

As a consequence, one cannot achieve simultaneous arbitrarily precise localization of time and fre-

quency. The time-frequency bandwidth product �nds application in various �elds of signal processing,

including optical systems [62, 104]. Our result is its translation to spatial and spectral signals which

arises Fourier transform property of a thin lens[35].

Space-spectrum resolution tradeo�. In order understand the impact of the pupil code shape on

spatial and spectral resolutions, let us consider the design of a spectrometer, which consists of a narrow

opening, a dispersive element, and a sensing element. The spectral resolution of the measurements is a

function of width of the opening slit; a narrower opening leads to high resolution, while a broad slit leads

to blurred spectrum. Similarly, a programmable camera would also necessitate a narrow slit to ensure

that spectrum can be modulated at high resolution. However, such a narrow slit leads to a severe loss in

spatial resolution, since imaging at high resolution requires a large and open aperture. In [66], it is noted

that a large slit leads to loss of spectral resolution, but they do not mention what happens to the spatial
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resolution. The authors in [63] identi�ed this tradeo� and stated an approximate relationship between

spectral and spatial tradeo� for fully open aperture and demonstrated that high spectral resolution lead

to blurry images. We formalize the result and show that such a tradeo� applies to any pupil code shape

and can be concisely stated as a space-spectrum bandwidth product. In the upcoming sections, we will

formalize the spatial and spectral resolutions that result from the choice of a pupil code.

2.3 Fundamental Limits of Spatial/Spectral Resolution

We now derive a concise lower bound on product of spatial and spectral spreads due to a spectrally-

programmable camera.

Spectral and spatial blurs. Let us revisit the optical setup in Fig. 2.1, where we placed a pupil code

a(x) in plane P2 and obtained the rainbow plan on P4 and image on P5. We wish to study the e�ect

of a(x) on the blur it introduces in spectral and spatial measurements. For brevity, we show the blur

along x-axis alone, as there is no spectral dispersion along y-axis. Let a(x) be the shape of the aperture

function and let A(u) be its Fourier transform. Without loss of generality, we assume that a(x) and A(u)

are both centered such that ∫
x |a(x)|2dx = 0 =

∫
u |A(u)|2du . (2.5)

We note that all our analysis is for spatially-incoherent light; any phase component is hence irrelevant.

We rely on Fourier transform property of a thin lens [35] as well as the derivation in [87]. Assume that

the complex �eld distribution on plane P1 is i1(x ,y, λ). Then the �eld distribution on P2 that is 2f away

is given by the scaled Fourier transform relationship, i2(x2,y2, λ) = 1
jλf I1

(
x2
λf ,

y2
λf , λ

)
, where I1(u,v) is

the Fourier transform of i1(x ,y). Propagating the signal through the optical setup simply requires us to

perform such operations iteratively.

Consider a single spatial point on P1 of the form i1(x1,y1, λ) = s(x0,y0, λ)δ (x1 − x0,y1 − y0), where

s(x0,y0, λ) is the complex amplitude of the point as a function of wavelength. Any arbitrary image can

then be treated as in�nite such point sources. The amplitude distribution on plane P2 is the scaled

Fourier transform of amplitude on plane P1 and is given by,

i2(x2,y2, λ) =
1
jλ f

s(x0,y0, λ)exp
{
−
2π j
λ f
(x0x2 + y0y2)

}
(2.6)

Let a(x ,y) be the complex amplitude of the pupil code placed on P2. Then the intensity just after the

aperture is given by,

î2(x2,y2, λ) =
1
jλ f

s(x0,y0, λ)exp
{
−
2π j
λ f
(x0x2 + y0y2)

}
× a(x2,y2) (2.7)
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With a similar derivation, we can show that the �eld distribution on P3 just before the di�raction grating

is,

i3(x3,y3, λ) =
1
jλ f

Î2

(
x3
λ f
,
y3
λ f

)
=

1
(jλ f )2

s(x0,y0, λ)A

(
x3 + x0
λ f

,
y3 + y0
λ f

)
, (2.8)

where A(u,v) is the Fourier transform of a(x ,y). For simplicity of analysis, we consider the di�raction

grating to be a series of narrow band slits, modeled as an impulse train along x-axis as,

d(x ,y) =
∞∑

k=−∞

δ

(
x −

k

ν0

)
, (2.9)

where ν0 is the groove density. Then the propagated �eld just after the grating is given by,

î3(x3,y3, λ) = i3(x3,y3, λ)d(x3,y3)

=
1

(jλ f )2
s(x0,y0, λ)A

(
x3 + x0
λ f

,
y3 + y0
λ f

)
×

∞∑
k=−∞

δ

(
x3 −

k

ν0

)
(2.10)

Using Fourier transform property of lens again, the �eld on P4 is,

i4(x4,y4, λ) =
1
jλ f

Î3

(
x4
λ f
,
y4
λ f

)
=

1
jλ f

(
1
jλ f

)2
I3

(
x4
λ f
,
y4
λ f

)
∗ D

(
x4
λ f
,
y4
λ f

)
=

1
jλ f

(
1
jλ f

)2
I3

(
x4
λ f
,
y4
λ f

)
∗

(
δ

(
y4
λ f

) ∞∑
k=−∞

δ

(
x4
λ f
− kν0

))
= −

1
jλ f

s(x0,y0, λ)
∞∑

k=−∞

a(−(x4 − kν0λ f ),−y4)exp
{
j
2π
λ f
(x0(x4 − kλ f ν0) + y0y4)

}
, (2.11)

leading to an equation which shows multiple, spectrally-dispersed copies of the aperture a(x ,y) along

the x-axis. Our optical setup is designed to propagate only the �rst order and hence we retain the k = 1

copy, giving us,

i4(x4,y4, λ) = −
1
jλ f

s(x0,y0, λ)a(−(x4 − ν0λ f ),−y4)︸                    ︷︷                    ︸
spectrally-shifted a(x, y)

exp
{
j
2π
λ f
(x0(x4 − λ f ν0) + y0y4)

}
. (2.12)

Finally, propagating the signal one more lens away, we get,

i5(x ,y, λ) =
1

(jλ f )2
exp {−j2πx5ν0} s(x0,y0, λ)A

(
−
x5 + x0
λ f

,−
y5 + y0
λ f

)
. (2.13)

Intensity measurements. Consider cameras placed on planes P4 and P5 with a spectral response of

c(λ). The intensity measurement on P4,

M4(x4,y4) =

∫
λ
|i4(x4,y4, λ)|

2c(λ)dλ

=

∫
λ

1
λ2 f 2

|s(x0,y0, λ)|
2 |a(−(x4 − ν0λ f ),−y4)|

2c(λ)dλ

= Ŝ

(
x0,y0,

x4
f ν0

)
∗ |a(−x4,−y4)|

2, (2.14)
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where Ŝ (x0,y0, λ) = 1
λ2f 2 |s(x0,y0, λ)|

2c(λ) is the measured intensity of the scene point. Extending to all

points (x0,y0), we get,

M4(x4,y4) =

∫
x0

∫
y0
Ŝ

(
x0,y0,

x4
f ν0

)
∗ |a(−x4,−y4)|

2 = S

(
x4
λ f

)
∗ |a(−x4,−y4)|

2. (2.15)

Here, S(λ) is an integral of spectrum of all spatial points. Equation (2.15) shows that the aperture function

a(x ,y) results in spectral blur at every scene point. Similarly, the spatial image on P5,

M5(x ,y) =

∫
λ
|i5(x5,y5, λ)|

2c(λ)dλ

=
1

λ4 f 4

∫
λ
|s(x0,y0, λ)|

2
����A (
−
x5 + x0
λ f

,−
x5 + x0
λ f

)����2 c(λ)dλ. (2.16)

Computing intensity for all (x0,y0) gives us,

M5(x ,y) =

∫
x0

∫
y0

1
λ4 f 4

∫
λ
|s(x0,y0, λ)|

2
����A (
−
x5 + x0
λ f

,−
x5 + x0
λ f

)����2 c(λ)dλ
=

1
λ4 f 4

∫
λ
|s(x5,y5, λ)|

2 ∗

����A (
−
x5
λ f
,−

y5
λ f

)����2︸                                     ︷︷                                     ︸
Spatial blur

c(λ)dλ. (2.17)

Equation (2.17) shows that the pupil code a(x ,y) introduces a spatial blur equal to a scaled version of its

power spectral density (PSD), |A(u,v)|2. For monochromatic light source, (2.17) is simply a convolution

of scene’s image with a scaled PSD of a(x ,y); for polychromatic sources, this expression has a spectrally-

dependent PSF, which does not follow a convolution model. To make analysis simple, we assume that

the shape of the PSF is approximately the same over a small range of wavelengths. Then the resultant

expression for the spatial image is,

M5(x5,y5) =

(
1

λ4 f 4
|s(x5,y5, λ)|

2
)
∗

����A (
−

x5
λc f
,−

y5
λc f

)����2
= I (x0,y0) ∗

����A (
−

x5
λc f
,−

y5
λc f

)����2 , (2.18)

where I (x0,y0) is a scaled grayscale image of the scene, and λc is a chosen, central wavelength of the

spectral range.

Spectral and spatial blurs. For brevity and ease of understanding, we drop the y axis as it does not

a�ect the spectral blur. From (2.15) and (2.18), we get the following expressions for spectral and spatial

blurs,

hλ(λ) = |a(−λ f ν0)|
2, hx (x) =

����A (
−

x

λ f

)����2 . (2.19)
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We observe that the blur in space and spectrum are not independent; speci�cally, they form a Fourier-

transform pair, with appropriate scaling. Our goal is to show that this interdependence between spatial

and spectral blur has a very speci�c structure and their product can be lower bounded – implying that

we cannot arbitrarily resolve in both domains.

2.3.1 The space-spectrum uncertainty principle

Our main result, stated in Theorem 1, suggests that the spatial and standard deviations are related by

the inequality, σxσλ ≥ λ
4πν0 . We now outline the proof of our theorem.

Proof. The spectral and spatial standard deviations are,

σλ =

√√√∫
λ λ

2hλ(λ)dλ∫
λ hλ(λ)dλ

=

√√√∫
λ λ

2 |a(−λ f ν0)|2dλ∫
λ |a(−λ f ν0)|

2dλ
(2.20)

σx =

√√√∫
x x

2hx (x)dx∫
x hx (x)dx

=

√√√√√√√∫
x x

2
���A (
− x
λf

)���2 dx∫
x

���A (
− x
λf

)���2 dx , (2.21)

which are similar to time and frequency spreads de�ned in eq. (2.3) with appropriate scaling. Given

that σt is the spread of x(t), the spread of a scaled function x̂(t) = x(st) is σ̂t = sσt . From eq. (2.4) and

substituting t = λ f ν0 and ν = x
f λ ,(
1

f 2λ2

)
σ 2
x (f

2ν20 )σ
2
λ ≥

1
16π 2 =⇒ σ 2

xσ
2
λ ≥

λ2

16π 2ν20

σxσλ ≥
λ

4πν0
(2.22)

Implication. We make some observations about the uncertainty principle here.

• Invariance to scaling. The bandwidth product does not change even if the aperture is stretched or

squeezed. If the aperture a(x) is replaced by a(sx), then spectral blur changes to hλ(λ) = |a(−sλ f ν0)|
2

and the spatial blur changes to
���A (
− x
sλf

)���2. This changes the spectral and spatial variances to s2σ 2
λ

and σ 2
x/s

2, thereby keeping the product a constant.

• Invariance to power of lenses. The bandwidth product is independent of focal length of the system,

implying that one cannot expect any increase in product of standard deviations by changing the lenses.

• Dependence on groove density. The bandwidth product inversely depends on the groove density ν0. In

theory, one can achieve arbitrarily low space-bandwidth product by having high groove density, but

the limiting factor becomes the aperture size of lenses.
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Figure 2.2: Simulated x − λ blur for Gaussian window. The four �gures illustrate the spatio-spectral blur for

various window sizes. The blur kernel was computed for λ = 500 nm, f = 100 mm and a groove density of 300

grooves/mm. There is a visible trade o� between the two resolutions. The appropriate window size depends on

the application; a camera with low spectral resolution requirement can use a σ = 500µm window, while one with

stringent spatial resolution requirements may use a σ = 1000µm window.

• Dependence on wavelength. The bandwidth product is directly proportional to wavelength. This is

expected, as the limiting case of our statement, where σλ is several hundreds of nanometers is just a

normal grayscale imager, and in that case, the expression looks very similar to Abbe’s di�raction limit

[59]. However, one may make the expression independent of wavelength by using lower bound of the

spectral range,

σxσλ ≥
λmin

4πν0
(2.23)

Achievability of lower bound. As in the case of time-frequency uncertainty, there exists a pupil

code function that has its space-spectrum bandwidth product equal to λ
4πν0 . This is achieved by the

family of Gaussian windows:

a(x ,y) = exp
{
−
x2

2σ 2

}
. (2.24)

The spectral and spatial blur are then given by,

f̃ (λ) = exp
{
−
λ2 f 2ν20
σ 2

}
, д̃(x) = exp

{
−
4π 2σ 2x2

λ2 f 2

}
. (2.25)

Figure 2.2 shows the simulated “uncertainty" box at 500 nm of Gaussian windows of various widths.

We simulated a system comprising of 100 mm lenses and a di�raction grating with a groove density of

300 grooves/mm. Evidently, as we squeeze along one axis, the other axis stretches with the product of

widths being a constant at 145.9 nm·µm.
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Figure 2.3: Simulations on common aperture shapes. (a) compares spectral and spatial standard deviations

whereas (b) shows spectral and spatial MTF at 30% contrast. Gaussian codes achieve theoretical limit when resolu-

tion metric is standard deviation of window.

2.3.2 Veri�cation using simulations

We provide a validation of our theory with simulations. We speci�cally compared a box aperture that

simulates a slit or fully open aperture, and a Gaussian aperture. For the purpose of exposition, we

used f = 75 mm and a di�raction grating of 300 groves/mm. Figure 2.3(a) shows a plot of spatial and

spectral standard deviations and (b) shows a plot of spatial and spectral modulation transfer function

(MTF) at 30% contrast ratio. The plots show a clear trade o� between the two resolutions, independent

of resolution metric. We also observe that Gaussian codes achieve the theoretical limit for standard

deviation. Hence we conclude that the space-spectrum bandwidth product is a tight bound. Next, we

validate our �ndings with an optical setup that implements the schematic in Fig. 2.1 and capture scenes

with various aperture shapes.

2.4 Experiments

Armed with our theoretical insights, we next verify the results with some real experiments.

Optical setup. We built an optical setup shown in Fig. 2.4 with relevant components marked. The

setup is a minor modi�cation of the schematic shown in Fig. 2.1. We placed a spatial light modulator

(SLM) on plane P2 which enabled display of various coded apertures, and a di�raction grating in plane

P3. The spectral measurement camera is on plane P4. Instead of placing spatial camera on P5, we place

it on P3 (using beamsplitter BS1). Since we do not code the rainbow plane P4, image on P3 and P5 are

equivalent. Focal length of all our lenses was 75 mm and the di�raction grating had 300 grooves/mm.

List of components can be found in appendix B.
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Figure 2.4: Schematic and image of our lab prototype. We displayed various patterns on SLM to form coded

apertures to evaluate spatial and spectral resolutions. The spectral camera was tilted to capture the �rst order of

di�raction from the grating.

Visualization of spectral and spatial resolutions. To illustrate our hypothesis, we placed a USAF

resolution chart on the image plane P1. The scene was illuminated with a cool white compact �uores-

cent lamp (CFL) which is comprised of several narrow peaks. This setup enabled us to simultaneously

visualize sharp spectrum as well as sharp spatial features. Figure 2.5 shows images and spectra for some

representative cases. Each row shows results for a speci�c coded aperture, whereas each column shows

results for a �xed spectral resolution. The trend of decreasing spectral resolution with increasing spatial

resolution is clearly visible. Further, a Gaussian aperture is superior to slit in terms of greater spatial

resolution for the same spectral resolution, which agrees with our theoretical �ndings.

Quantitative veri�cation. We illuminated a pinhole with a spectrally-narrowband light source with

a central wavelength of 670 nm and an FWHM of 3 nm. We then captured both spectrum of the light

source and image of the pinhole, which we then used for computing the corresponding standard devi-

ations. Figure 2.6 compares reciprocal of spatial resolution against spectral resolution. The two plots

show a straight line, thereby verifying that the product of spatial and spectral resolutions is a constant.

We also observe that the line for Gaussian aperture is very close to the theoretically optimal line, thereby

con�rming that the lower bound is tight, even in practice.
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Figure 2.5: Visualization of spectral and spatial resolutions. We illuminated a USAF resolution target with a

CFL lamp. We varied aperture types and widths to get spatial and spectral measurements. Each row shows image

and spectrum for a speci�c aperture, and each column shows image and spectrum for a �xed spectral standard

deviation. The results clearly illustrate the tradeo� between spatial and spectral resolution.

x

y

(a) Gaussian aperture

x

y

(b) Slit aperture

12 14 16 18 20
Spectral std. dev. (nm)

0.02

0.04

0.06

0.08

0.1

0.12

1/
Sp

at
ia

l s
td

. d
ev

. (
(

m
)-1

)

Gauss
Slit
Theoretical

Figure 2.6: Quantitative measurement of resolutions. We captured spatial and spectral measurements using

the setup in Fig. 2.4. We illuminated a pinhole with a narrowband light source at 670 nm and swept across various

sizes of (a) Gaussian and (b) slit apertures. We plot the reciprocal of spatial standard deviation plotted against

spectral standard deviation, clearly showing a straight line.

2.4.1 Spectral programming

Next, we discuss the impact of our �ndings for various scenarios of spectral programming.

E�ect of edge-pass �lter. The tradeo� between spectral and spatial resolution a�ects how well the

spectrum can be coded. To test this, we illuminate two closely spaced spatial points in a scene with two

narrowband light sources (520 nm and 532 nm). We then attempt to block the 520 nm laser with various
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Figure 2.7: Schematic and image of our prototype for spectral programming. We illuminated a USAF target

with 520 nm and 532 nm lasers. We then blocked 532 nm with a spatial mask on the rainbow plane. Images were

captured with various slit widths to show the e�ect of space-spectrum uncertainty.

coded apertures and observe the spatial image. Figure 2.7 shows the schematic and our lab prototype

for spectral programming, which is similar to the schematic shown in Fig. 2.1 with a spatial mask placed

in plane P4. The results are shown in Fig. 2.8. With a broad aperture, it is not possible to e�ectively

block one of the two lasers, shown in fourth column. A narrow aperture can lead to e�ective blocking

(compare �rst and last columns) but with loss in resolution.

E�ect of the shape of a narrowband �lter. We now show that a slit has unintended implication,

when used as a narrow band �lter. In order to perform narrowband spectral programming, an intuitive

choice is to place a narrow slit on the rainbow plane P4 and a camera on plane P5. This results in a spectra

that looks similar to the example in Fig. 2.9(a). While such a mask works well for the target wavelength,

the spatial images corresponding to adjacent wavelengths have severe loss in spatial resolution.

To understand the e�ect of a narrowband �lter, consider a scene illuminated by a monochromatic

light source of wavelength λ1. The resulting �eld on rainbow plane,

i4(x) = a (x − λ1 f ν0) . (2.26)

Now let a spatial mask â(x) centered around λ2 be placed on the rainbow plane. Then the output just
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Figure 2.8: Spectral programming with narrowband sources. A consequence of space-spectrum bandwidth

product is the incapability of spectral programming at high resolution. In this example, we show how blocking one

of the two closely spaced narrowband lasers and only be done with severe loss in resolution.

after the mask,

ĩ4(x) = a (x − λ1 f ν0) â (x − λ2 f ν0) . (2.27)

If both a(x) and â(x) are slits of widthW , then the e�ective width isW − |λ1 −λ2 |, which decreases with

increasing gap between the two wavelengths. This is illustrated by the plots of PSFs in Fig. 2.9(c). We

utilized the setup in Fig. 2.7, where we illuminated a pinhole with a 520 nm laser. We placed a spatial

mask on a horizontal translation stage to block various adjacent wavelengths. We then measured the

image of a pinhole and �t an appropriate curve to the measured PSF. Evidently, the PSF has a larger

spread as the gap between target wavelength and central wavelength of �lter increases. This is true

even if the pupil code were Gaussian mask and the �lter were a slit, as shown in Fig. 2.9(d). Ideally we

require the e�ective width to be independent of λ1 and λ2. This is achieved if both pupil plane and the
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Figure 2.9: E�ect of narrowband spectral programming on spatial resolution. Spatial resolution is a�ected

by the pupil code as well as the spatial mask used for creating a narrowband spectral �lter. We illuminated a pinhole

with a 520 nm laser and then swept various spatial masks to �lter wavelengths around 520 nm. For con�gurations

where either the pupil code or the spatial mask was a slit, the spatial resolution got worse with increasing gap

between desired and laser wavelength. In contrast, a con�guration with both masks being Gaussian resulted in a

wavelength-independent spatial blur.

�lter have a Gaussian shape. In such a case the �eld,

ĩ4(x) = exp
{
−(x − λ1 f ν0)

2/σ 2} exp
{
−(x − λ2 f ν0)

2/σ 2}
= exp

{
−(λ1 − λ2)

2 f 2ν20/σ
2}︸                            ︷︷                            ︸

amplitude

exp
{
−2(x − (λ1 + λ2)f ν0/2)2/σ 2}︸                                       ︷︷                                       ︸

aperture shape

. (2.28)

The output �eld has a spread that is independent of λ1, λ2 which results in a wavelength-independent

PSF. This is illustrated by the plot of PSFs in 2.9(e) with a gaussian aperture as well as �lter shape. Figure

2.9(f) compares PSF spread in terms of spatial standard deviation for various positions of �lter, clearly
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illustrating the wavelength-indepedent blur arising due to Gaussian-shaped pupil-code and �lter.

2.5 Conclusion

We formalized the tradeo� between spectral and spatial resolution associated with a spectrally-

-programmable camera of the type shown in Fig. 2.1 and stated the space-spectrum uncertainty princi-

ple. We showed through theory, simulations and real experiments that one can �nely resolve space or

spectrum, but not both. Our analysis then showed that a Gaussian-shaped aperture achieves the theoret-

ical lower bound, and that a Gaussian-shaped narrowband �lter introduces a wavelength-independent

spatial blur. We believe our �ndings impacts scienti�c imaging at large by providing insights and design

guidelines for settings which rely on spectral programming.

Application to fundamental limits of hyperspectral imaging. We note that our analysis does

not limit the spatial and spectral resolution of hyperspectral cameras. In case of cameras which utilize

tunable �lters, the spatial resolution is a function of the grayscale camera, while the spectral resolution is

independently dictated by the tunable �lter. For spatially-coded cameras such as pushbroom and CASSI,

the sensing process does not rely on pupil coding, which does not produce di�ractive blur. To understand

this, consider a spatially coded camera that has only one opening in the spatial plane, δ (x − x0,y − y0).

The measurement on the camera sensor after propagating through a dispersive element is,

Icam(x ,y) =

∫
λ
δ (x − x0 − ∆(λ),y0), (2.29)

where ∆(λ) is a wavelength-dependent shift. We observe that the image is simply a spectrally-smeared

version of the spatial point, with no extra blur (other than the one caused by aberrations due to optics). In

a sense, if the desired application requires a full scan of the scene’s HSI, then it is possible to achieve high

spatial and spectral resolution. However, the analysis in this chapter targets spectrally-programmable

cameras. As we saw in the prior work section, such cameras are indispensable to e�ciently sense [87]

and infer [63, 88] HSIs. A practical and fast implementation of spectrally-programmable cameras re-

quires pupil coding, which limits the simultaneously achievable spatial and spectral resolutions.





3KRISM – Krylov Subspace-based Optical Computing

of Hyperspectral Images

With a good insight into building spectrally-programmable cameras, we now turn our attention to an ef-

�cient way of capturing HSI of a scene. We will see that the dominant singular vectors of a scene’s HSI

can be sensed by alternating between spectrally-programmable imaging and spatially-coded spectrometry,

by feeding the output of one stage to another. Toward the end of this chapter, we will learn about using

computational tools to overcome the space-spectrum uncertainty product, methods to optically compute the

singular value decomposition of a scene’s HSI, and build a compact and e�cient optical system to achieve

this decomposition.

3.1 Introduction

Hyperspectral images (HSIs) capture light intensity of a scene as a function of space and wavelength

and have been used in numerous vision [48, 72, 95], geo-science and remote sensing applications [19,

39]. Traditional approaches for hyperspectral imaging, including tunable spectral �lters and pushbroom

cameras, rely on sampling the HSI, i.e., measuring the photon counts in each spatio-spectral voxel. When

imaging at high-spatial and spectral resolutions, the amount of light in a voxel can be quite small, thus

requiring long exposures to mitigate the e�ect of noise.

HSIs are often endowed with rich structures that can be used to alleviate the challenges faced by tra-

ditional imagers. For example, natural scenes are often comprised of a few materials of distinct spectra

and further, illumination of limited spectral complexity [52, 74]. This implies that the collection of spec-

tral signatures observed at various locations in a scene lies close to a low-dimensional subspace. Instead

of sampling the HSI of the scene one spatio-spectral voxel at a time, we can dramatically speed-up acqui-

sition and increase light throughput by measuring only projections on this low-dimensional subspace.

However, such a measurement scheme requires a priori knowledge of the scene since this subspace is

entirely scene dependent. This chapter introduces an optical computing technique that identi�es this



32 CHAPTER 3. KRISM

0.0

0.2

0.4

0.6

0.8

1.0

450.0 479.9 509.9 539.8 569.7 599.7 629.6

Re
la

tiv
e 

in
te

ns
ity

Wavelength (nm)

KRISM
Spectrometer

spatial 
code

measured 
spectrum

S-polarized 
light

polarizing 
beam splitter

LCoS SLM

diffraction 
grating

P-polarization
S-polarization

operator #1. spatially-coded 
spectrum measurement

spectral 
code

measured 
spatial image

P-polarized 
light

operator #2. spectrally-coded 
spatial measurement

1
1

Figure 3.1: Optical Computing of HSIs. Hyperspectral imagers resolve scenes at high spatial and spectral res-

olutions. We propose a novel architecture called KRISM that provides the ability to implement two operators: a

spatially-coded spectrometer and a spectrally-coded spatial imager. By iterating between the two, we can acquire

a low rank approximation of the hyperspectral image in a light e�cient manner with very few measurements. The

left image shows optical schematics for implementing the two operators. On the right, we show a hyperspectral

image of a scene illuminated with a compact �uorescent lamp (CFL) acquired using our lab prototype. The proposed

method enables high spatial and spectral resolution as observed in the zoomed-in image patches and CFL peaks,

respectively.

subspace using an iterative and adaptive sensing strategy and constructs a low-rank approximation

to the scene’s HSI. The proposed imager senses a low-rank approximation of a HSI by optically im-

plementing the so-called Krylov subspace method [34]. We show that this requires two operators: a

spatially-coded spectrometer and a spectrally-coded spatial imager; when we interpret the HSI as a 2D

matrix, these two operators correspond to left and right multiplication of the matrix with a vector. The

two operators are subsequently used in an iterative and adaptive imaging procedure whose eventual

output is a low-rank approximation to the HSI. The proposed imager is adaptive, i.e., the measurement

operator used to probe the scene’s HSI at a given iteration depends on previously made measurements.

This is a marked departure from current hyperspectral imaging strategies where the signal model is

merely used as a prior for recovery from non-adaptive measurements [3].

Contributions. We propose an optical architecture that we refer to as KRylov subspace-based Imag-

ing and SpectroMetry (KRISM) and make the following three contributions:

• Optical computation of HSIs. We show that optical computing of HSIs to estimate its dominant singular

vectors provides signi�cant advantages in terms of increased light throughput and reduced measure-

ment time.

• Coded apertures for resolving space and spectrum. Sensing architectures typically used in spectrometry

and imaging are mutually incompatible due to use the of slits in spectral imaging and open apertures

in conventional imaging. To mitigate this, we study the e�ect of pupil plane coding on the HSI and
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Figure 3.2: Concise representation of HSIs with a low-rank model. HSIs, interpreted as a matrix, are often

low rank. We validate this observation by plotting accuracy in terms of peak SNR (PSNR) as a function of the rank

of the approximation. We do this for many commonly used HSI datasets and observe that the PSNR is higher than

40dB for a rank 10 approximation across all datasets.

propose a coded aperture design that is capable of simultaneously achieving high spatial and spectral

resolutions.

• Optical setup. We design and validate a novel and versatile optical implementation for KRISM that

uses a single camera and a single spatial light modulator (SLM) to e�ciently implement spatially-

coded spectral and spectrally-coded spatial measurements.

The contributions above are supported via an extensive set of simulations as well as real experiments

performed using the lab prototype.

Limitation. The bene�ts and contributions described above come with a key limitation. Our method

is only advantageous if there are a su�cient number of spectral bands and the hyperspectral image

is su�ciently low rank. If we only seek to image with very few spectral bands or if the scene is not

well approximated by a low-rank model, then the proposed method performs poorly against traditional

sensing methods.

3.2 Prior work

Nyquist sampling of HSIs. Classical designs for hyperspectral imaging based on Nyquist sampling

include the tunable �lter — which scans one narrow spectral band at a time, measuring the image as-

sociated with spectral bands at each instant — or using a pushbroom camera — which scans one spatial

row at a time, measuring the entire spectrum associated with each pixel on the row. Both approaches
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Method Approach Number of 
measurements

Estimation accuracy 
under noise Advantages Disadvantages

Sampling
Tunable spectral filter

𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦𝑁𝑁𝜆𝜆 𝜎𝜎 𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦𝑁𝑁𝜆𝜆

Easy calibration Low spectral resolution; high
acquisition time

Pushbroom High spectral resolution Optical complexity; high 
acquisition time

Multiplexed
Spatial multiplexing

𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦𝑁𝑁𝜆𝜆
𝜎𝜎 𝑁𝑁𝜆𝜆

Hadamard multiplexing gain High acquisition time
Spectral multiplexing 𝜎𝜎 𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦

Compressive sensing
CASSI depends on signal model

Fewer measurements

Loss in spatial/spectral 
resolution

Row/column projection ∝ 𝑘𝑘2 𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦 + 𝑁𝑁𝜆𝜆 [Fazel et al. 2008] Complex optics

KRISM (proposed method) Optical Krylov subspace ∝ 𝑘𝑘 𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦 + 𝑁𝑁𝜆𝜆
prop. to model misfit + 

noise
Fewest number of measurements; 

very high light efficiency Complex optics

Table 3.1: Comparison of HSI sensing strategies. Various sensing strategies for hyperspectral imaging of

Nx ×Ny spatial dimension and Nλ spectral bands. Noise in measurement is assumed to be AWGN with σ 2 variance.

The expressions in third column represent the number of measurements required, while those in fourth column

represent the error in reconstruction.

are time-consuming as well as light ine�cient since each captured image wastes a large percentage of

light incident on the camera.

Multiplexed sensing. The problem of reduced light throughput can be mitigated by the use of mul-

tiplexing. One of the seminal results in computational imaging is that the use of multiplexing codes

including the Hadamard transform can often lead to signi�cant e�ciencies either in terms of increased

SNR or faster acquisition [40]. This can either be spectral multiplexing [66] or spatial multiplexing [93].

While multiplexing mitigates light throughput issues, it does not reduce the number of measurements

required. Sensing at high spatial and/or spectral resolution still requires long acquisition times to main-

tain a high SNR. Fortunately, HSIs have concise signal models that can be exploited to reduce the number

of measurements.

Low-rankmodels forHSIs. There are many approaches to approximate HSIs using low-dimensional

models; this includes group sparsity in transform domain [83], low rank model [33, 54], as well as low-

rank and sparse model [89, 99]. Of particular interest to us is the low-rank modeling of HSIs when

they are represented as a 2D matrix (See Figure 3.2). These models have found numerous uses in vision

and graphics including color constancy [28], color displays [47], endmember detection [101], source

separation [45], anomaly detection [89], compressive imaging [33] and denoising [105]. Chakrabarti

and Zickler [15] also provide empirical justi�cation that HSIs of natural scenes are well represented by

low dimensional models.
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Compressive hyperspectral imaging. The low-rank model has also been used for compressive

sensing (CS) of HSIs. CS aims to recover a signal from a set of linear measurements that are fewer

than its dimensionality [9]. This is achieved by modeling the sensed signal using lower dimensional

representations — low-rank matrices being one such example. The technique most relevant to this

chapter is that of row/column projection [27] where the measurement model is restricted to obtain-

ing row and column projections of a matrix. Given a matrix X ∈ Rm×n , and measurement operators

Srow ∈ R
p×m , Scolumn ∈ R

n×p , the measurements acquired are of the following form,

Yrow = SrowX , Ycolumn = XScolumn.

When the matrix X has a rank k , it can be shown that it is su�cient to acquire p images and p spectral

pro�les with p ∝ k2. In contrast, the proposed method requires only a number of measurements propor-

tional to the rank of the matrix; however, these measurements are adaptive to the scene. At an increased

cost of optical complexity, adaptive sensing promises accurate results with fewer measurements than

non-adaptive measurement strategies.

Hyperspectral imaging architectures. Several architectures have been proposed for CS acquisi-

tion of HSIs. The Dual-Disperser Coded Aperture Snapshot Spectral Imager (DD-CASSI) [31] obtains

a single image multiplexed in both spatial and spectral domains by dispersing the image with a prism,

passing it through a coded aperture, and then recombining with a second prism. In contrast, the Single

Disperser CASSI (SD-CASSI) [98] relies on a single prism that performs spatial coding using a binary

mask followed by spectral dispersion with a prism. Baek et al. [8] disperse the image by placing a prism

right before an SLR camera. The HSI is then reconstructed by studying the dispersion of color at the

edges in the obtained RGB image. Takatani et al. [94] instead propose a snapshot imager that uses

a faced re�ectors overlaid with color �lters. Various other snapshot techniques have been proposed

which rely on space-spectrum multiplexing [13, 46, 57]. While snapshot imagers require only a single

image, they often produce HSIs with reduced spatial or spectral resolutions. Data-driven approaches

such as overcomplete dictionaries [57] and convolutional neural networks [18] partially alleviate the

loss in resolution by building priors for the HSI. However, they require complex optimization that can

often be time consuming.

Resolution and accuracy of the HSI can be improved by acquiring multiple measurements instead

of a single snapshot image. Examples include multiple spatio-spectrally encoded images [49], spatially-

multiplexed spectral measurements [54, 93] or separate spatial and spectral coding [58]. While multi-
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measurement techniques overcome spatial and spectral resolution limits, the price is paid in the form of

increased number of measurements and hence, reduced time resolution.

Performance of snapshot techniques can be improved by tailoring the spatial masks to a given HSI

dataset [84, 85] or by optimizing spatial masks for sensing a selected subset of spectral bands [4]. Op-

timizing the spatial masks results in increased accuracy, but still requires long reconstruction times. A

key insight into the existing methods is that the measurements are either non-adaptive and random, or

adapted to a �xed signal class. In contrast, the proposed method is adapted to the speci�c instance of the

signal, requires fewer measurements, and has practically no post-processing for reconstruction. Table

3.1 compares and contrasts various HS imaging strategies and their relative merits in terms of number

of measurements and error in reconstruction. We next discuss the concept of Krylov subspaces for low-

rank approximation of matrices, which motivates iterative and adaptive techniques and paves the way

to the proposed method.

Krylov subspaces. Central to the proposed method is a class of techniques, collectively referred to

as Krylov subpaces, for estimating singular vectors of matrices. Recall that the singular value decompo-

sition (SVD) of a matrix X ∈ Rm×n ,m ≤ n is given as X = U ΣV>, where U ∈ Rm×m and V ∈ Rn×n are

orthonormal matrices, referred to as the singular vectors, and Σ ∈ Rm×n is a diagonal matrix of singular

values. Krylov subspace methods allow for e�cient estimation of the singular values and vectors of a

matrix and enjoy two key properties. First, we only need access to the matrix X via left and right multi-

plications with vectors, i.e., we do not need explicit access to the elements of the matrix X . Second, the

top singular values and vectors of a low-rank matrix can be estimated using a small set of matrix-vector

multiplications. These two properties are invaluable when the matrix is very large or when it is implic-

itly represented using operators or, as is the case in this chapter, the matrix is the scene’s HSI and we

only have access to optical implementations of the underlying matrix-vector multiplications.

There are many variants of Krylov subspace techniques which di�er mainly on their robustness to

noise and model mismatch. The techniques in this chapter are based on the so-called Lanczos bidiag-

onalization with full orthogonalization [34, 43]. Such iterative operations to reduce the complexity of

matrix-vector multiplications have found use in communication theory in the form of reduced-rank �l-

tering [30, 96] and adaptive beam forming [29]. Our goal is to leverage the bene�ts of iterative operations

for low-rank approximation of high dimensional optical signals, in particular HSIs.

Optical computing of low-rank signals. Matrix-vector and matrix-matrix multiplications can often

be implemented as optical systems. Such systems have been used for matrix-matrix multiplication [6],
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matrix inversion [78], as well as computing eigenvectors [50]. Of particular interest to our method is

the optical computing of the light transport operator using Krylov subspace methods [70]. The light

transport matrix T represents the linear mapping between scene illumination and a camera observing

the scene. Each column of the matrix T is the image of the scene when only a single illuminant is

turned on. Hence, given a vector ` that encodes the scene illumination, the image captured by the

camera is given as r = T `. By Helmholtz reciprocity, if we replaced every pixel of the camera by a light

source and every illuminant with a camera pixel, then the light transport associated with the reversed

illumination/sensing setup is given as T>. Hence, by co-locating a projector with the camera and a

camera with the scene’s illuminants, we have access to both left- and right-multiplication of the light

transport matrix with vectors; we can now apply Krylov subspace techniques for optically estimating a

low-rank approximation to the light transport matrix. This delightful insight is one of the key results in

[70].

We propose a translation of the ideas in [70] to hyperspectral imaging. However, as we will see next,

this translation is not straightforward and requires the construction of novel imaging architectures.

3.3 Optical Krylov Subspaces for Hyperspectral Imaging

In this section, we provide a high-level description of optical computing of HSIs using Krylov subspace

methods.

Notation. We represent HSIs in two di�erent ways:

• H (x ,y, λ) — a real-valued function over 2D space (x ,y) and 1D spectrum λ,

• X ∈ RNxNy×Nλ — a matrix with NxNy rows and Nλ columns, such that each column corresponds to

the vectorized image at a speci�c spectrum.

The goal is to optically build the following two operators:

• Spectrally-coded imager I — Given a spectral code x ∈ RNλ , we seek to measure the image y ∈ RNxNy

given as

y = I(x) = Xx. (3.1)

The image y corresponds to a grayscale image of the scene with a camera whose spectral response is

x.
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Figure 3.3: Schematic for simultnenous spatio-spectral measurements with a coded aperture. The di�rac-

tion grating disperses light along x-axis. The image of the scene is formed on plane P1. The coded aperture is placed

in P2, which introduces a di�raction blur in spatial plane P3, and dictates the spectral pro�le formed on the plane

P4. A slit or an open aperture on P2 is not a good choice for simultaneously high spatial and spectral resolution.

Instead, we rely on design of a novel pupil aperture that enables simultaneous high spatial and spectral resolution.

• Spatially-coded spectrometer S — Given a spatial code x̃ ∈ RNxNy , we seek to measure a spectral

measurement ỹ ∈ RNλ given as

ỹ = S(̃x) = X>x̃. (3.2)

The measurement ỹ corresponds to the spectral measurement of the scene, where-in the spectral

pro�le of each pixel is weighted by the corresponding entry in the spatial code x̃.

Since the two operators correspond to left and right multiplication of a vector to the HSI matrix X , we

can implement any Krylov subspace technique to estimate the top singular vectors and values.

Number of measurements required. To obtain a rank-k approximation of the matrix X , we would

require at least k spatially-coded spectral measurements — each of dimensionality Nλ , and k spectrally-

coded images — each of dimensionality NxNy . Hence, the number of measurements required by the

approach is proportional to k(NxNy +Nλ) and, over traditional Nyquist sampling, it represents a reduc-

tion in measurements by a factor of

k(NxNy + Nλ)

NxNyNλ
= k

(
1
Nλ
+

1
NxNy

)
. (3.3)

For low-rank HSIs, we can envision dramatic reductions in measurements required over Nyquist sam-

pling especially when sensing at high spatial and spectral resolutions (see Table 3.1).

Challenges in implementing operators I and S. Spatially-coded spectral measurements have

been implemented in the context of compressive hyperspectral imaging [93]. Here, light from a scene



3.4. CODED APERTURES FOR SIMULTANEOUS SENSING OF SPACE AND SPECTRUM 39

is �rst focused onto an SLM that performs spatial coding, and then directed into a spectrometer. For

spectral coding at a high-resolution, we could replace the sensor in a spectrometer with an SLM; subse-

quently, we can form and measure an image of the coded light using a lens. However, high-resolution

spectrometers invariably use a slit aperture that produces a large one-dimensional blur in the spatial

image due to di�raction. We show in Section 3.4 that simultaneous spatio-spectral localization is not

possible with either a slit or an open aperture. This leads to the design of optimal binary coded apertures

which enable high spectral and spatial resolutions. Subsequently, in Section 3.6, we present the design

of KRISM and validate its performance in Section 3.7.

3.4 Coded apertures for simultaneous sensing of space and spectrum

In this section, we introduce an optical system capable of simultaneously resolving space and spectrum

at high resolutions.

3.4.1 Optical setup

The ideas proposed in this chapter rely on the optical setup shown in Figure 3.3 which is a slight mod-

i�cation of a traditional spectrometer. An objective lens focuses a scene onto its image plane, that we

denote as P1. This is followed by two 4f relays with a coded aperture placed on the �rst pupil plane,

P2, and a di�raction grating placed at the plane marked as P3. We are interested in the intensity images

formed at the planes marked at the “rainbow plane” P4 and the “spatial plane” P5, and their relationship

to the image formed on P1, the coded aperture, and the grating parameters.

We assume that the �eld formed on the plane P1 is incoherent and, hence, we only need to consider

its intensity and how it propagates, and largely ignore its phase. Let H (x ,y, λ) be the intensity of the

�eld as a function of spatial coordinates (x ,y) and wavelength λ. Let a(x ,y) be the aperture code placed

at the plane P2, v0 be the density (measured in grooves per unit length) of the di�raction grating in P3,

and f be the focal length of the lenses that form the 4f relays. The hyperspectral �eld intensity at the

plane P4 is given as

F4(x ,y, λ) =
1

λ2 f 2
a2(−x + f λv0,−y) S(λ), (3.4)

where S(λ) is the scene’s overall spectral content de�ned as

S(λ) =

∫
x

∫
y
H (x ,y, λ)dxdy.
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The intensity �eld at the spatial plane P5 is given as

F5(x ,y, λ) = H (x ,y, λ) ∗

���� 1
λ2 f 2

A

(
−

x

λ f
,−

y

λ f

)����2 , (3.5)

where A(u,v) is the 2D spatial Fourier transform of the aperture code a(x ,y), and ∗ denotes two-

dimensional spatial convolution along x and y axes. These expressions arise from Fourier optics [35]

and their derivation is provided in the supplemental material.

Image formed at the rainbow plane P4. A camera with spectral response c(λ) placed at the rainbow

plane would measure

IR (x ,y) =

∫
λ
a2(−x + f λv0,−y)

1
λ2 f 2

S(λ)c(λ)dλ

∝ a2(−x ,−y) ∗

(
S

(
x

f v0

)
c̃

(
x

f v0

))
, (3.6)

where c̃(λ) = c(λ)/λ2 f 2. Here, the dimensionless term f v0, that scales of the spectrum S(·), indicates

the resolving power of the di�raction grating. For example, we used a focal length f = 100 mm and

a grating with groove density v0 = 300 grooves/mm for the prototype discussed in Section 3.6; here,

f v0 = 30, 000. This implies that the spectrum is stretched by a factor of 30, 000. Therefore, a 1 nm of the

spectrum maps to 30 µm, which is about 6-7 pixel-widths on the camera that we used. The key insight

this expression provides is that the image IR is the convolution of the scene’s spectrum — denoted as a

1D image — with the aperture code a(·, ·) (see Figure 3.4). This implies that we can measure the spectrum

of the scene, albeit convolved with the aperture code on this plane; this motivates our naming of this

plane as the rainbow plane.

Image at the spatial plane P5. A camera with the spectral response c(λ) placed at the spatial plane

P5 would measure

IS (x ,y) =

∫
λ

(
H (x ,y, λ) ∗

���� 1
λ2 f 2

A

(
−

x

λ f
,−

y

λ f

)����2) c(λ)dλ (3.7)

IS is a “spatial image” in that spectral components of the HSI have been integrated out. Hence, we refer

to P5 as the spatial plane. Figure 3.4 shows the image formed at P5 for di�erent choices of the coded

apertures, including slits and open apertures.

Implementing KRISM operations. The derivation above suggests that we get a spatial image of the

scene formed at the spatial plane P5 and a spectral pro�le at the rainbow plane P4. We can therefore

build the two operators central to KRISM by coding light on one of the planes while measuring it at
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rainbow plane image for different illuminant spectra

LED LED + 532nm laser 514 nm filter + 532nm laser

spatial plane image 

30 μm slit

open

illumination 
     spectrum
          (illustration)

apertures

Invertible code

Figure 3.4: E�ect of pupil code on spatial and spectral resolutions. We implemented the setup shown in

Figure 3.3 to verify the e�ect of di�erent pupil codes. The scene consists of a resolution chart illuminated by two

distinct narrowband light sources. An open aperture leads to sharp spatial images, but the spectrum is blurred.

On the other hand, a slit o�ers high spectral resolution, but the spatial image is blurred. Optimized codes o�er

invertible spectral blur, and at the same time, invertible spatial blur.

the other. For the spectrally-coded imager I, we will place an SLM on the rainbow plane P4 while

measuring the image, with a camera, at P5. For the spatially-coded spectrometer S, we place an SLM

on P3 — which is optically identical to P5 — while measuring the image formed at P4.

E�ect of the aperture code on the scene’s HSI Introducing an aperture code a(x ,y) on the plane P2

can be interpreted as distorting the scene’s HSI in two distinct ways. First, a spectral blur is introduced

whose point spread function (PSF) is a scaled copy of the aperture code a(x ,y). Second, a spatial blur is

introduced for each spectral band whose PSF is the power spectral density (PSD) of the aperture code,

suitably scaled. With this interpretation, the images formed on planes P4 and P5 are a spectral and

spatial projection, respectively, of this new blurred HSI. Our proposed technique measures a low-rank

approximation to this blurred HSI and we can, in principle, deblur it to obtain the true HSI of the scene.

However, the spatial and spectral blur kernels may not always be invertible. As we show next, the

choice of the aperture is critical and that traditional apertures such as a slit in spectrometry and an open

aperture in imaging will not lead to invertible blur kernels.
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Figure 3.5: Optimized codes for high spatial and spectral resolution. Optimized codes ensure that the spectral

as well as spatial blur can be deconvolved stably. We simulate the performance of optimal code on a spatial and

spectral target similar to Figure 3.4. Spectrum was deconvolved using Wiener deconvolution, and spatial images

were deconvolved using TV prior. Optimized codes o�er high spatial as well as spectral resolution.

3.4.2 Failure of slits and open apertures

We now consider the e�ect of the traditional apertures used in imaging and spectrometry — namely,

an open aperture and a slit, respectively — on the images formed at the rainbow and the spatial planes.

Suppose that the aperture code a(x ,y) is a box function of widthW mm and height H mm, i.e.,

a(x ,y) = rectW (x) rectH (y).

Its Fourier transform A(u,v) is the product of two sincs

A(u,v) = sinc(Wu) sinc(Hv).

The spatial image IS is convolved with the PSD |A(u,v)|2 scaled by f λ, so the blur observed on it has a

spatial extent of f λ/W × f λ/H units. Suppose that f = 100 mm and λ = 0.5µm, the observed blur is

50/W × 50/H (µm)2. The rainbow plane image IR , on the other hand, simply observes a box blur whose

spatial extent isW × H mm2. Armed with these expressions, we can study the e�ect of an open and a

slit apertures on the spatial and rainbow images.

Scenario #1 — An open aperture. Suppose thatW = H = 10 mm, then we can calculate the spatial

blur to be 5µm in both height and width and hence, we can expect a very sharp spatial image of the scene.

The blur on the rainbow image has a spread of 10 mm; for relay lenses with focal length f = 100mm

and grating with groove density v0 = 300 grooves/mm, this would be equivalent of a spectral blur of

10, 000/30 ≈ 333 nm. Hence, we cannot hope to achieve high spectral resolution with an open aperture.
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Scenario #2 — A slit. A slit is commonly used in spectrometers; suppose that we use a slit of width

W = 100µm and height H = 10mm. Then, we expect to see a spectral blur of 100/30 ≈ 3.3 nm. The

spatial image is blurred along the y-axis by a 5µm blur and along the x-axis by a 50/0.1 = 500µm blur;

e�ectively, with a 5µm pixel pitch, this would correspond to a 1D blur of 100 pixels. In essence, the use

of a slit leads to severe loss in spatial resolution.

Figure 3.4 shows images formed at the rainbow and spatial planes for various aperture codes. This

validates our claim that conventional imagers are unable to simultaneously achieve high spatial and

spectral resolutions due to the nature of the apertures used. We next design apertures with carefully

engineered spectral and spatial blurs, which can be deblurred in post-processing.

3.4.3 Design of aperture codes

We now design an aperture code that is capable of resolving both space and spectrum at high-resolutions.

Our use of coded apertures is inspired by seminal works in coded photography for motion and defocus

deblurring [53, 82, 97].

Observation. Recall that the rainbow plane image IR is a convolution between a 1D spectral pro�le

s(·) and a 2D aperture code a(x ,y). This convolution is one dimensional, i.e., along the x-axis; hence, we

can signi�cantly simplify the code design problem by choosing an aperture of the form

a(x ,y) = a(x) rectH (y), (3.8)

with H being as large as possible. The choice of the rect function along the y-axis leads to a high light

throughput as well as a compact spatial blur along the y-axis. For ease of fabrication, we further restrict

the aperture code to be binary and of the form

a(x) =
N−1∑
k=0

ak I[k∆,(k+1)∆](x), (3.9)

where I[p,q](x) = 1 when x ∈ [p,q] and zero otherwise. Hence, the mask design reduces to �nding an

N -bit codeword a = {a0, . . . ,aN−1}. The term ∆, with units in length, speci�es the physical dimension

of each bit in the code. We �x its value based on the desired spectral resolution. For example, for

f = 100mm and v0 = 300 grooves/mm, a desired spectral resolution of 1nm would require ∆ ≤ 30µm.

Our goal is to design masks that enable the following:

• High light throughput. For a given code length N , we seek codes with large light throughput which is

equal to the number of ones in the code word a.



44 CHAPTER 3. KRISM

• Invertibility of the spatial and spectral blur. The code is designed such that the resulting spatial and

spectral blur are both invertible.

An invertible blur can be achieved by engineering its PSD to be �at. Given that the spectrum is

linearly convolved with a(x), a (N + Nλ − 1)-point DFT of the code word a captures all the relevant

components of the PSD of a(x). Denoting this (N +Nλ − 1)-point DFT of a as A[k], we aim to maximize

its minimum value in magnitude. Recall from (3.7) that the spatial PSF is the power spectral density

(PSD) of a(x), with suitable scaling. Speci�cally, the Fourier transform of spatial blur is given by c(λ f u),

where c(x) = a(x)∗a(−x) is the linear autocorrelation of a(x) andu represents spatial frequencies. From

(3.9), we get,

c(x) = a(x) ∗ a(−x)

=

N−1∑
k=−N

ck
(
I[k∆,(k+1)∆](x) ∗ I[k∆,(k+1)∆](x)

)
, (3.10)

where ck is the discrete linear autocorrelation of ak . Thus, it is su�cient to maximize ck to obtain an

invertible spatial blur.

We select an aperture code that leads to invertible blurs for both space and spectrum by solving the

following optimization problem:

max
a0, ...,aN−1

α min
k
(|A[k]|) + (1 − α)min

k
ck , (3.11)

under the constraint that the elements of a are binary-valued, and α ∈ (0, 1) is a constant. For code

length N su�ciently small, we can simply solve for the optimal code via exhaustive search of all 2N − 1

code words. We used N = 32 and an exhaustive search for the optimal code took over a day. The

resulting code and its performance is shown in Figure 3.5 and 3.6; we used ∆ = 100µm and H = 6.4mm

for this result. A brute force optimization is not scalable for larger codes. Instead of searching for optimal

codes, we can search for approximately optimal codes by iterating over a few candidate solutions. This

strategy has previously been explored in [82], where 6 million candidate solutions are searched for a

52-dimensional code.

Figure 3.6 shows the frequency response of both spectral and spatial blurs for the 32-dimensional

optimized code. The advantages of optimized codes are immediately evident — an open aperture has

several nulls in spectral domain, while a slit attenuates all high spatial frequencies. The optimized code

retains all frequencies in both domains, while increasing light throughput.

We now discuss alternate designs for the coded aperture and the speci�c algorithm we used for

deconvolving the spatial and spectral measurements.
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Figure 3.6: Frequency response of spatial and spectral blur for various pupil codes. Width of the slit was

100µm, while that of open aperture was 3.2mm. The length of optimized code is 32-bits, with each bit being 100µm

wide, giving a 3.2mm wide aperture. We assume that a slit can resolve up to 1nm. In the graph, 0.5 cycles/nm cor-

responds to a spectral resolution of 1nm, and hence the frequency response of the slit falls o� after 0.5 cycles/nm.

Similarly, the maximum spatial resolution is 15µm and hence fx is shown till 32 cycles/mm. For spectral measure-

ments, a slit has a �at frequency response, while an open aperture has several nulls. In contrast, an open aperture

has no nulls for spatial measurements, whereas a slit attenuates high frequencies. Optimized codes have a fairly �at

frequency response for spectral blur, and no nulls for spatial blur.

3.4.4 Other code designs

We now show other choices for coded apertures and compare their performance.

Spatially compact codes

Instead of pursuing spatially invertible codes, we can optimize for codes which introduce compact spatial

blur. In such a case, the goal would be to suppress side lobes of the PSF of spatial PSF. Let Pa(x) be

the spatial PSF created by a(x). If η1,η2 be the �rst and second maximum peak heights of Pa(x), then

maximizing the ratio η2/η1 leads to spatially imperceptible blur. Combined with an invertible spectral

blur, we formulate the overall objective function as:

max
a1, ...,aN

α min
k
(|A[k]|) + (1 − α)

(
η2
η1

)
, (3.12)

where α ∈ (0, 1) is a constant. As with optimized codes, we brute forced the optimal solution.
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Figure 3.7: Comparison of performance of various codes. We compare optimized codes, spatially compact

codes and M-sequences. Simulations were performed with added readout and poisson noise. Spectral deconvolution

was done with Wiener deconvolution, while spatial deconvolution was done with TV-prior. While spatially-compact

codes (row 2) o�er better performance in spatial images, spectral deconvolution accuracy is very low. M-sequences

(row 3) perform moderately well for both spectral and spatial deconvolution. However, optimized codes perform

the best overall (row 1).

M-sequences

Maximal length sequences, or M-sequences for short, are optimal codes when using circular convolution.

Their PSD is �at and hence is desirable as blur functions. However, since our convolution is linear, M-
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580 583.6 10 8.2
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(b) Central wavelength and FWHM of the �lters

Figure 3.8: Calibration results with narrowband spectral �lters. Spectra of some narrowband �lters with

datasheet central wavelength and FWHM (in parenthesis) provided in legend. We used Weiner deconvolution to

obtain the true spectra. (b) tabulates the estimated central wavelength and FWHM, along with datasheet values.

The accuracy of central wavelength and FWHM establishes the accuracy as well as high-resolution capabilities of

our optical setup.
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Figure 3.9: Spectra of commonly found light sources: (a) Tungsten-halogen, (b) Light Emitting Diode (LED),

and (c) Compact Fluorescent Lamp (CFL). Results are shown for Wiener deconvolution, `2 penalized deconvolution

and positive-constrained deconvolution. CFL shows some error in blue wavelengths, as the machine vision camera

we used was not reliable for deep blue wavelengths. The deconvolved results are robust to choice of algorithm, as

the aperture code was designed to be invertible.

sequences are not necessarily the optimal choice.
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Figure 3.10: Deconvolution results of a Siemen star with various deconvolution algorithms. Due to in-

vertible nature of PSF, deconvolution is robust to choice of method. However, TV-prior gave best results in terms

of higher contrast ratio.

3.4.5 Performance comparison

We compare optimized codes, spatially compact codes and M-sequences for their performance in spatial

deconvolution and spectral deconvolution. To test spectral deconvolution, we created a spectrum with

two closely spaced narrowband peaks and a broadband peak, and blurred them with various codes.

Readout noise and shot noise were added to adhere to real world measurements. Finally, deconvolution

was done with wiener �lter. To test spatial deconvolution, we used Airforce target and blurred with the

scaled PSD of the pupil codes, and added noise. Deconvolution was done with a TV prior in all cases.

Figure 3.7 shows a comparison of performance for spectral and spatial deconvolution. As expected,

optimized codes perform the best for spectral deconvolution, while spatially compact codes perform

worse. Spatially compact codes perform the best in this case, while optimized codes come close. Since

hyperspectral imaging requires good spatial as well as spectral resolution, we chose optimized codes.

3.4.6 Spectral deconvolution

Recall that our optical setup measures a blurred version of the true spectrum. Speci�cally, if the aperture

code is a(x) and the spectrum to be measured is s(λ), our optical setup measuresy(λ) = a(λ)∗s(λ)+n(λ),

where n(λ) is additive white gaussian noise. The addition of noise prevents us from simply dividing in

Fourier domain. Fortunately, since the aperture code was designed to be invertible, it is fairly robust

to noise. A naive solution, such as Wiener deconvolution, hence, works very well. If the noise is too

high, or the spectra is known to be smooth, we can impose an `2 penalty on the di�erence and solve the
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following optimization problem:

min
s

1
2
‖y − α ∗ s‖2 + η‖∇s‖2, (3.13)

where y is the measured spectrum, α is the aperture code, s is the spectrum to be recovered, and ∇s is

the �rst di�erence of s. Further priors, such as positivity constrains give better results as well. Figure

3.9 shows a comparison of spectra of various commonly available light sources, as well as a comparison

with spectrometric measurements. We showed results for three forms of deconvolution, namely, Wiener

deconvolution, `2 regularized deconvolution, and positivity constrained deconvolution. Figure 3.8 shows

results for some narrowband �lters. We computed the central wavelength and Full Width Half Max

(FWHM) for each �lter and compared it against the numbers provided by the company. As expected,

the FWHM of 1nm �lters is between 2nm and 3nm, as the FWHM of our optical setup is 3nm. FWHM

for 10nm �lters and 40nm �lters is close to the ground truth values.

3.4.7 Spatial deconvolution

The presence of a coded aperture introduces a blur in spatial domain, which is the scaled power spectral

density of the coded aperture. Our optimization procedure accounts for invertible spectral blur as well

as invertible spatial blur. Hence, deconvolution is stable even in the presence of noise. While naive

deconvolution procedures such as Wiener deconvolution or Richardson-Lucy work well, we imposed

total variance (TV) penalty on the edges to get more accurate results. Figure 3.10 shows blurred image

of Siemen star, and deconvolution with TV-prior, Wiener and Richardson-Lucy algorithms. As with

spectral deconvolution, spatial deconvolution is fairly robust to choice of algorithm. We chose TV-prior,

as it returned the sharpest results. Figure 3.11 shows MTF before and after deconvolution, with TV-prior.

Deconvolution sign�cantly improves the MTF30 value, which jumps from 20 line pairs/mm to 90 line

pairs/mm.

3.5 Synthetic experiments

We tested KRISM via simulations on three di�erent datasets, listed in Table 3.2, and compared against

existing approaches. For all methods, we simulated both photon and readout noise respectively as Pois-

son and Gaussian random variables. All KRISM simulations were done with di�raction e�ects due to

coded aperture.

We quantify performance through compression in measurements N /M which is ratio of number

of unknowns to measurements and peak signal to noise ratio (PSNR). Given a HSI matrix x and its
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Figure 3.11: MTF plot before and after deconvolution. PSF was estimated by capturing image of a 10µm

pinhole. Deconvolution was then done using a TV prior on the image gradients. There is a marked improvement

in contrast ratio after deconvolution. The MTF30 value for both sectors jumps from 20 line pairs/mm to 90 line

pairs/mm.

reconstruction x̂, we de�ne peak SNR as

PNSR = 20 log10

(
‖x‖∞

RMSE(x, x̂)

)
,

where RMSE is the root mean squared error de�ned as

RMSE(x, x̂) =

√√√
1
N

N∑
n=1
(xn − x̂n)2. (3.14)

Dataset Spatial 
resolution

#Spectral 
bands

Waveband 
(nm)

KAIST  [Choi et al. 2017] 512 x 384 31 400-700

Harvard [Charkabarti et al. 2011] 696 x 520 31 400-700

ICVL [Arad and Ben-Shahar 2016] 256 x 256 260 390-1043

Table 3.2: Datasets used for simulations. The spatial resolution for KAIST and Hardvard datasets, and spectral

resolution for ICVL dataset was reduced to keep computation tractable with competing methods.

Comparison with snapshot techniques. Snapshot techniques such as CASSI [98] and spatial-

spectral encoded CS [57] recover HSI from a single image and hence are appropriate for video-rate

hyperspectral imaging. In contrast, KRISM is not a snapshot technique since, at the very least it requires

the measurement of an image and a spectral pro�le. Nevertheless, we compare KRISM against snapshot

techniques by varying the number of KRISM iterations. Figure 3.12 shows performance of these methods

with varying number of measurements on KAIST and Harvard datasets. We observe that in the setting

closest to snapshot mode, Choi et al. [18] and Lin et al. [57] do outperform KRISM; this is to be expected
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Figure 3.12: Evaluation against snapshot techniques. We compare KRISM with varying rank against results

from [57] and [18] in terms of compression as well as accuracy. We show zoomed in image patches for each method

and spectrum at pixel marked by a cross. At similar compression rates (K = 1), KRISM has lower accuracy than

snapshot techniques. However, snapshot techniques require solving a complex optimization problem that can be

time consuming. In contrast, KRISM requires practically no reconstruction time as the dominant singular vectors

are captured directly.

since after a single iteration, KRISM provides only a rank-1 approximation. As the number of KRISM

iterations are increased (which allows approximations of higher ranks), KRISM performance improves.

KRISM enjoys advantages when we look at computational cost for reconstruction. The reconstruction

time for Choi et al. [18] is more than 10 minutes1 even with multiple GPUs, while it runs to several

1We used code, dataset and model from https://github.com/KAIST-VCLAB/deepcassi

https://github.com/KAIST-VCLAB/deepcassi
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Figure 3.13: Evaluation against multi-frame techniques. We compare KRISM against spatially-multiplexed

HSI [93], multi-frame version of CASSI [49], and row/column CS [27]. We show zoomed in image patches for

each method and spectrum at pixel marked by a cross. Across the board, KRISM has highest accuracy with fewest

measurements.

hours for Lin et al. [57]2. In contrast, KRISM requires practically no reconstruction time for recovering

the HSI as we directly measure the singular vectors.

Comparison with multi-frame techniques. Since KRISM is essentially a multi-frame technique,

we compare against multi-frame version of CASSI [49], and spatially-multiplexed hyperspectral imager

[93]. We simulate spatially-multiplexed HSI imager via randomly permuted Hadamard multiplexed spec-

tra and recover using sparsity of individual bands in wavelet domain. Note that the compression ratio

is lower for Kittle et al. [49] and Sun and Kelly [93] since the results were inaccurate for higher com-

pressions3. Figure 3.13 shows a comparison of recovered spatial and spectral images for ICVL dataset.

The poor performance of Kittle et al. [49] is due to usage of a translational mask to get multiple mea-

surements. On the other hand, Sun and Kelly [93] performs poorly as multiplexing is done only in the

spatial domain. Performance can be improved if we multiplex in the spectral domain as well; the re-

sulting method is the low-rank CS approach proposed by Fazel et al. [27]. This results in an increase

in accuracy with fewer measurements, as seen in Figure 3.13 (f). Note that CS-based techniques are

2We used code, dataset and overcomplete dictionary from the paper itself.
3Please see supplementary for further details.
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Figure 3.14: Schematic of KRISM optical setup. Proposed optical setup in spectral coding (a) and spatial coding

(b) mode. The optical method relies on polarization to switch between the two types of coding. When the input light

is S-polarized, the LC rotator is switched o�, enabling spectrally coded spatial measurements. When the input light

instead is P-polarized, the LC rotator is turned on, which enables spatially coded spectral measurements. The input

light polarization is controlled by a second LC rotator placed before the grating. With a novel use of LC rotators,

our optical setup enables dual coding of hyperspectral scenes with a single camera-SLM pair.
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Figure 3.15: Photograph of our lab prototype. The optical paths for spectral as well as spatial coding shown

in Fig. 3.14 have been overlaid for easy understanding. Components have been marked, grouped and labeled for

convenience. All other relevant information is available in supplementary material.

based on random projections and are not adapted to the scene. In contrast, KRISM adaptively computes

a low-rank approximation leading to an increase in accuracy with the same number of measurements

as Fazel et al. [27].

Based on these simulations, we conclude that KRISM is indeed a compelling methodology when

spatial and spectral resolution are high — a desirable operating point in many applications. When the

number of spectral bands are smaller, the gains are modest, but nevertheless present. In the next section,

we provide an optical schematic for implementing KRISM.

3.6 The KRISM Optical setup

We now present an optical design for implementing the two operators presented in Section 3.3 and

analyzed in Section 3.4. For e�ciencies in implementation, we propose a novel design that combines
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both operators into one compact setup. Figure 3.14 shows a schematic that uses polarization to achieve

both operators with a single SLM and a single camera. First, in Figure 3.14(a), an SLM is placed 2f

away from the grating, and an image sensor 2f away from the SLM, implementing spectrally coded

spatial measurement operator I. In Figure 3.14(b), light follows an alternate path where in the SLM is

4f away from the grating; the camera is still 2f away from the SLM. This light path allows us to achieve

the spatial-coded spectral measurement operator S. The two light pathways are combined using a

combination of polarizing beam splitters (PBS) and liquid crystal rotators (LC). The input light is pre-

polarized to be either S-polarized or P-polarized. When the light is P-polarized, the SLM is e�ectively

2f units away from the grating leading to implementation of I, the spectrally-coded imager. When the

light is S-polarized, the SLM is 4f units away, provided the polarizing beamsplitter, PBS 3 was absent.

To counter this, an LC rotator is placed before PBS 3 that rotates S-polarization to P-polarization when

switched on. Hence, when S-light is input in conjugation with the rotator being switched on, we achieve

the operator S, a spatially-coded spectrometer. By simultaneously controlling the polarization of input

light and the LC rotator, we can implement both I and S operators with a single camera and SLM pair.

Figure 3.15 shows our lab prototype with the entire light pathway including the coded aperture

placed in the relay system between the objective lens and di�raction grating. The input polarization is

controlled by using a second LC rotator with a polarizer, placed before the di�raction grating. Finally,

an auxiliary camera is used to image the pattern displayed on the SLM. This camera is used purely for

alignment of the pattern displayed on the SLM.

Figure 3.16 shows an annotated image of the optical setup we built along with a list of components

along with their company and item number. The system was optimized for a central wavelength of

580nm and hence the relay arm till the di�raction grating has been tilted at 10◦ with respect to the

di�raction grating to correct for schiemp�ug. Lenses in the relay arm are tilted by 5◦ with respect to the

di�raction grating so that the objective can be aligned with the relay arm without any further tilt. The

�rst beamsplitter (component 8) and the second turning mirror (component 10) have been placed on a

kinematic platform to correct for misalignments in the cage system. It is of importance that we chose

an LCoS instead of a DMD for spatial light modulation. The reasons:

• Since the output after modulation by DMD is not rectilinear to the DMD plane, it introduces further

scheimp�ug, which is hard to correct.

• DMD acts as a di�raction grating with Littrow con�guration, as it is formed of extremely small mirror

facets. This will introduce artifacts in measurements which are non-linear.

Some more design considerations are enumerated below:
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Index Item name Item Number Index Item name Item Number

1 75mm C-mount objective lens Thorlabs, MVL12M23 9 polarizing beam splitter on 
kinematic stage

Edmund Optics, 48-545; Thorlabs, 
C4W cage cube;

Thorlabs, B4C kinematic mount

2 100mm achromatic lenses Thorlabs, AC254-100-A 10 45 degree mirrors Thorlabs, CCM1-P01 

3 coded aperture Front Range Photomask, LLC, photomask 
printed with 10,000 DPI on polyster sheet

11 plate polarizing beam splitter in 
cage

Edmund Optics, 48-545; Thorlabs, 
CM1-DCH;

Thorlabs, FFM1

4 Z-translation stage Edmund Optics, 66-495 12 polarizing beam splitter cube in 
cage

Thorlabs, CCM1-4ER;
Thorlabs, WPBS254-VIS

5 XY-translation stage Thorlabs, DT12XY 13 LCoS microdisplay Holoeye, HES60016

6 visible filter (420-680nm) Edmund Optics, 89-794 14 auxiliary camera FLIR, Flea3 13E4M 

7 Liquid Crysltal (LC) rotator Liquid Crystal Technologies, 25mmx36mm 
LC shutter

15 measurement camera FLIR, Blackfly BFLY-U3-23S6M-C

8 diffraction grating Thorlabs, GT13-03 16 electronics for LC rotator control Arduino Uno; L293D

Figure 3.16: List of components for the KRISM optical setup. All the important components, their company

and item number have been listed for reference. Construction component names such as cage plates, rods, posts

and breadboards have been omitted for brevity.

1. Lenses. We used 100mm achromats for all lenses except the last lens before cameras. Achromats were

the most compact and economical choice for our optical setup, while o�ering low spatial and spectral

distortion.

2. Polarizing beam splitters. We used wire grid polarizing beamsplitters everywhere to ensure low de-

pendence of spectral distortion on angle of incidence, and increase the contrast ratio.

3. Using an objective lens for measurement camera. Note that a lens is placed between the LCoS and

measurement sensor which converts spatially-coded image to spectrum and coded spectrum to spatial

image. Instead of using another achromat, we used an objective lens set to focus at in�nity. Since

objective lenses are free of any distortions, and are optimized to focus at in�nity, this signi�cantly

improves resolution of measurements.

4. Di�raction grating. We used an o�-the-shelf transmissive di�raction grating with 300 groves/mm,

which o�ered most compact spectral dispersion without any overlap with higher orders. This ensured

that there would be no spectral vignetting at any point in the setup.
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5. Polarization rotators. We bought o�-the-shelf Liquid Crystal (LC) shutters and peeled o� the polariz-

ers on either sides to construct polarization rotators. This is the most economic option, while o�ering

contrast ratios as high as 400:1. The key drawback is that the settling time is 330ms, which prevents

their usage at very high rate. A natural workaround is to incorporate binary Ferroelectric shutters

which have a low latency rate of 1ms. However, since ours was only a lab prototype, we decided to

go with the cheaper option.

3.6.1 Choice of code size

The pupil code has two free parameters, the length of the code N and the pitch size ∆. The two pa-

rameters control the invertibility of spectrum and imperceptibility of spatial images. To understand our

design choices, we present constrains and physical dimensions of various measurements. Let each lens

in the optical setup have a focal length f and aperture diameter aL . Let pixel pitch of measurement

camera be p. This implies that the camera can capture all spatial frequencies up to fmax =
1
2pm

−1. Let

the size of grating be aд in each dimension and its grove density be ддroves/mm.

We capture wavelengths from λ1 = 420nm to λ2 = 680nm. The grating equation is given by,

a sin(θ ) = mλ, where a is the groves spacing and m is the order of di�raction, 1 in our case. Solv-

ing for angular spread of spectrum, we get, ∆θ = sin−1
(
λ2
a

)
− sin−1

(
λ1
a

)
The size of spectrum then is

f tan(∆θ ) + N∆. The minimum resolvable wavelength is ∆λ ≈ ∆
af . To avoid vignetting in a 4F system,

we require that the pupil plane be no larger than aL − aдmm, giving us f tan(∆θ ) + N∆ ≤ aL − aд .

Recall that the pupil code is a(x) = b(x) ∗
∑k=N−1

k=0 a[k]δ (x −k∆), where a[k] is the binary pupil code

and b(x) = 1 − ∆/2 ≤ x ≤ ∆/2. Using the formula for PSF of an incoherent system, we know that

the Fourier transform of the PSF is FPSF = Ca(λ f u), where Ca(x) is the linear autocorrelation of a(x)

and u is spatial frequency in 1/m. To capture all spatial frequencies, we need FPSF (u) to be non-zero for

u ≥ fmax , which gives us N∆ ≥ λ f 1
2p .

In our optical setup, we have aL = 25mm,aд = 12.5mm,p = 5µm, f = 100mm, λ = 500nm, and

∆ = 100µm, which leaves us N , and д as free variables. To prevent vignetting, we need N∆ to be

less than aL − aд − f tan(∆θ ), which means that N increases as д decreases. Increasing N increases

resolution of images, but the optimization problem for optimal binary code becomes lengthy. On the

other hand, increasing ∆ can increase spatial resolution, but the spectral resolution reduces. Keeping

practical considerations in mind, we set N = 32, which took close to a day to optimize. Further, д =

300дroves/mm was the smallest grove density we obtained as o�-the-shelf component.
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Figure 3.17: Capturing data with positive and negative parts. Since measurements are linear, we split the

image to be displayed (a) into positive part in (b), with a maximum value of 0.0026 and negative part in (c) part,

with a maximum value of 0.0029. By capturing positive (e) and negative data (f), yp and yn respectively, the required

measurement is evaluated as y = 0.0026yp − 0.0029yn .

3.6.2 Handling positive/negative data

When computing singular vectors, the data to be measured, as well as the data to be displayed on the

LCoS contains negative values. Since our optical devices cannot handle negative data, we make two

positive measurements and combine them. We split the data to be displayed on the LCoS into positive

and negative parts. Then, we capture positive data with positive part on the LCoS, and then repeat

the process for negative data. By taking the di�erence of the positive and negative data, we obtain the

required measurement. Figure 3.17 shows an example of capture of data with positive/negative data. The

data in (a) shows the positive/negative image to be displayed on the LCoS, which is split into positive (b)

and negative (c) halves, which are separately displayed on the LCoS, to capture positive (e) and negative

(f) data. The �nal required measurement is then obtained by appropriately weighing and subtracting

the two measurements.

3.6.3 Calibrating the optical setup

We now outline calibration steps for the proposed optical setup. Firstly, we need a mapping between

the captured image and the image displayed on the SLM. Secondly, we need calibration of wavelengths,

and �nally, we need spectral response calibration of the system for high-�delity measurements.

Camera-SLM calibration. Recall that the power method for estimating eigen vectors requires the

multiplication x2 = Hx1, where x1 = H>x0 is a spatial measurement, displayed on the SLM and x2 is

the measurement made by the camera. Hence, we need a one-to-one mapping between the measured
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image and the LCoS. To do this, we added a second, calibration camera, henceforth called the auxiliary

camera, which directly sees the image on the LCoS. The calibration steps are:

1. Find pixel to pixel correspondence between LCoS and auxiliary camera using gray or binary codes.

2. Place known target in front of the camera.

3. Capture the image of the target using the primary camera. Let this image be I1.

4. Capture the image of the target on the LCoS using second camera. Let this image be I2.

5. Register I1 and I2 using a similarity transform.

The steps are then repeated for the spectrum. Instead of placing a known target image, a narrow

band �lter is placed. This creates the coded aperture pattern on both the cameras. The image of the coded

aperture for the narrow band �lters can be used for registering the cameras for spectral measurements.

For robustness, we combined images of two narrow band �lters, namely 514.5nm with an FWHM of

1nm and 670nm with an FWHM of 3nm, which helped registration of the camera and LCoS over a larger

�eld of view.

Figure 3.18 shows spatial and spectral calibration results. (a) shows the images of target captured by

auxiliary camera and (b) shows capture by measurement camera. The calibration process was veri�ed by

displaying the captured target image back on the SLM and then capturing the image of LCoS by auxiliary

camera. The result is shown in (c). (d) shows the result if the registration were not successful, showing

ghosting of the two images. (e) and (f) show image of spectrum of a narrowband �lter. Since the pupil

code is vertically symmetric, we stuck a piece of tape at the bottom, creating a trapezoidal shape, which

was then easy to register. (g) shows the overlay image captured by the auxiliary camera, for veri�cation.

A good registration results in an image that looks like the aperture code itself. (h) shows the result of

an intentional shift, to show the e�ect of a bad registration. In both cases, we used Matlab’s built in

SURF based automatic image registration technique for estimating a similarity transform between the

two captured images.

Wavelength calibration. Wavelength calibration requires two steps – 1) Estimating the binary code

of the coded aperture and 2) Estimating locations of wavelengths. We found thresholding the measured

spectrum to be a robust way of estimating the binary code of the coded aperture. To calibrate wavelength

locations, we use three �lters of known spectral response. Speci�cally, we use 488nm, 514.5nm and

670nm spectral �lters with FWHM of 1nm, 1nm and 3nm respectively. Since spectral spread is linear,
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Figure 3.18: Camera-SLM calibration for lab prototype. Images showing spatial and spectral calibration accu-

racy obtained by placing a target image in front of the camera. Spatial registration is done by capturing image of

a known target placed in front of the optical setup by the measurement camera (a) and auxiliary camera (b). We

then register the two images to obtain a similarity transformation that maps images from the measurement camera

to the LCoS. To verify our registration, we keep the target in front of the setup and display the image captured by

the measurement camera on LCoS after mapping. (c) shows the image then captured by the auxiliary camera. The

images overlap well, implying that the registration process was successful. (d) shows an intentional shift induced in

the measured image and displayed back on the LCoS. There is a visible shift in the target image. A similar process

is followed for the spectral measurement registration as well. Instead of a target, we place a narrowband �lter in

front of the optical setup and illuminate it with a broadband light source. Since the pupil code image is vertically

symmetric, there will be a 180 degrees ambiguity. We get rid of that by sticking a tape at the bottom and capturing

images, shown in (e) and (f). A successful registration process results in (g), with image on LCoS very well over-

lapping with the mapped measurement image. (h) shows overlay with an intentional shift, resulting in an image

that does not look like the pupil code.

two known wavelengths are su�cient. However, for robustness, we use a third �lter and then linearly

interpolate to get the wavelength positions.

Figure 3.19 shows the image for wavelength calibration pipeline. We �rst obtain image of spectrum of

a narrow band �lter. After correcting for rotation, we obtain spectrum by summing the image vertically.

This helps estimate the binary code, which is then used to deconvolve the observed spectrum to get

spectrum of the narrow band �lter. The peak of the narrow band �lter is used as a known location. The
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(a) Captured image
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Figure 3.19: Calibrating of code and wavelengths location. We start with image of spectrum of a narrow

band �lter (a), 514.4nm in this case. Then the image is corrected for rotation and summed vertically to obtain the

spectrum (b). The spectrum is thresholded to get the binary code which is then used to deconvolve the observed

spectrum to obtain the spectrum of the narrow band �lter in (c). We used Wiener deconvolution for obtaining the

sharp spectrum.
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Figure 3.20: Calibration of spectral response. We used the tungsten-halogen light souce “SL1-CAL" from Stel-

larnet. The ground truth spectrum in (a) was provided as part of the light source. We then measured spectrum

of the light source by re�ecting it o� spectralon and deconvolving it with aperture code, shown in (b). Measured

spectrum was then divided by ground truth spectrum to obtain system response, shown in (c).

process is then repeated for 488nm and 670nm �lters to get wavelengths.
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Spectral response of camera / Radiometric calibration. The measured image and specturm on

the camera plane is given by

IS (x ,y) ∝

∫
λ

(
H (x ,y, λ) ∗

���� 1λ f A (
−

x

λ f
,−

x

λ f

)����2) c(λ)dλ
IR (x ,y) ∝ a(x ,y) ∗

(
s

(
x

λ f ν0

)
c

(
x

λ f ν0

))
,

where c(λ) is the spectral response of the camera. For true spectrometric readings, contribution of c(λ)

needs to be removed. This can be achieved by calibrating the spectrometric measurements with a known

light source. The tungsten-halogen light source, “SL1-CAL" from Stellarnet was used for this purpose. To

compute c(λ), we assumed that the true spectrum, ct (λ) of the light source is known. We then measured

spectrum of the light source, cm(λ)with our optical setup. The spectral response of the system was then

computed as c(λ) = cm (λ)
ct (λ)

. This procedure is illustrated in Figure 3.20.

Di�raction due to LCoS pattern. Since the SLM is placed 2f away from spectral or spatial measure-

ments, the displayed pattern introduces di�raction blur, creating a non-linear measurement system. To

counter this, we add a constant o�set to both positive and negative patterns, which makes the di�raction

blur compact enough that the non-linearities can be neglected.

Spectral deconvolution. Measurements by our optical system return spectra at each point, con-

volved by the aperture code. To get the true spectrum, we deconvolved the k th measured singular vector

using a smoothness prior. The speci�c objective function we used:

min
vk

1
2
‖yk − a ∗ vk ‖2 + η‖∇vk ‖2, (3.15)

where vk is the true spectrum, yk is the measured spectrum, a is the aperture code, ∇x is the �rst

order di�erence of x, and η is weight of penalty term. Solution to (3.15) was computed using conjugate

gradient descent. Higher η favors smoother spectra, and hence is preferred for illuminants with smooth

spectra, such as tungsten-halogen bulb or white LED. For peaky spectra such as CFL, a lower value of η is

preferred. In our experiments, we found η = 1 to be appropriate for peaky spectra, whereas, η = 103 was

appropriate for experiments with tungsten-halogen illumination. We compare performance of various

deconvolution algorithms in the supplementary section.

Spatial deconvolution. Equation (3.7) suggests that the spatial blur kernel varies across di�erent

spectral bands. More speci�cally, the blur kernels at two di�erent spectra are scaled versions of each
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Iteration 1: spectral and spatial Iteration 2: spectral and spatial Iteration 3: spectral and spatial

Iteration 4: spectral and spatial Iteration 5: spectral and spatial Iteration 6: spectral and spatial

Figure 3.21: Visulaization of Krylov iterations. Data captured during measurement process for a rank-4 ap-

proximation of the “Color checker" scene for six iterations. A picture of the scene is shown in Figure 3.24. Positive

part of data is shown in red and the negative part is shown in blue. KRISM alternates between acquiring spectral

and spatial measurements to compute both spatial and spectral singular vectors. The �rst four iterations involve

capturing the dominant wavelengths that includes yellow and green colors, since they have the highest magnitude.

The next set of iterations capture the blue and red wavelengths.

other. However, we observed that the variations in blur kernels were not signi�cant when we image

over a small waveband — for example, the visible waveband of 420−680nm. Given this, we approximate

the spatial blur as being spectrally independent, which leads to the following expression:

IS (x ,y) ∝

[∫
λ
H (x ,y, λ)c(λ)dλ

]
∗ p(x ,y), (3.16)

where p(x ,y) is the spatial blur. We estimated the spatial blur kernel by imaging a pinhole and subse-

quently deconvolved the spatial singular vectors. We used a TV prior based deconvolution using the

technique in [12] using the image of a pinhole as the PSF. Details of the deconvolution procedure are in

the supplementary section.

3.7 Real Experiments

We present several results from real experiments which show the e�ectiveness of KRISM. We evaluate

the ability to measure singular vectors with high accuracy, and high spatial and spectral resolution

capabilities. Unless speci�ed, experiments involved a capture of a rank-4 approximation of the HSI, with

6 spectral and 6 spatial measurements. Lanczos iterations were initialized with all-ones spatial image to

speed up convergence. HSIs were acquired with a spatial resolution of 560 × 550 pixels and a spectral

resolution of 256 bands between 400nm to 700nm, with 3 nm FWHM. For verifying spectroradiometric

capabilities, we obtained spectral measurements at a small set of spatial points using an Ocean Optics

FLAME spectrometer. We use spectral angular mapper (SAM) [103] similarity and PSNR between spectra
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Figure 3.22: Comparison of captured singular vectors. The left image singular vector is from Hadamard

multiplexed data and the right one is from KRISM. Blue represents negative values and red represents positive

values. KRISM required a total of 6 spectral and 6 spatial measurements to construct 4 singular vectors. While

spectral Hadamard sampling method took 49 minutes, KRISM took under 2 minutes. The SAM value between the

singular vectors was less than 20◦.

measured by our optical setup and that measured with a spectrometer. SAM between two vectors x and

x̂ is de�ned as SAM = cos−1
(

x>x̂
‖x‖ ‖x̂‖

)
.

Visualization of Lanczos iterations Figure 3.21 shows iterations for the “Color checker" scene in

Figure 3.24. The algorithm initially captures brightest parts of the image, corresponding to the spec-

tralon, and the white and yellow patches. Consequently, by iteration 5, the blue and red parts of the

image are isolated. The iterations are representative of the signal energy in various wavelengths. Max-

imum energy is concentrated in yellow wavelengths, due to tungsten-halogen illuminant and spectral

response of the camera. This is then followed by the red wavelengths, and �nally the blue wavelengths.

Comparison of measured singular vectors. We obtain the complete hyperspectral image through

a permuted Hadamard multiplexed sampling in the spectral domain for comparison with ground-truth

singular vectors. We chose a scene with four colored dice for this purpose, shown in Figure 3.22 (a). We

then computed 4 singular vectors of spectrally Hadamard-multiplexed data. Figure 3.22 shows a com-

parison of the spatial and spectral singular vectors. The singular vectors obtained via Krylov subspace

technique are close to the ones obtained through Hadamard sampling. On an average, the reconstruc-

tion accuracy between KRISM and Hadamard multiplexing was found to be greater than 30dB, while the

angle between the singular vectors was no worse than 20◦, with the top three singular vector having
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an error smaller than 8◦. Hadamard sampling took 49 minutes while KRISM took under 2 minutes for 6

spatial and 6 spectral measurements, thus o�ering a speedup of 20×.

Peaky spectrum illumination We imaged a small toy �gurine of “Chopper", placed under CFL,

which has a peaky spectrum, to test high spatio-spectral resolving capability. Figure 3.1 shows the

rendered RGB image and spectra at a representative location. Spectra at a selected spatial point, as

measured by KRISM, and a spectrometer are shown as well. The SAM between spectrum measured by

KRISM and that measured by spectrometer was found to be 14.7◦. Notice that the location of the peaks,

as well as the heights match accurately. Indeed, the chopper example establishes the high spatio-spectral

resolution capabilities of KRISM.

Diverse real experiments. Figure 3.23 shows several real world examples captured with our optical

setup, with a diverse set of objects. For veri�cation with ground truth, we captured spectral pro�les at

select spatial locations. The “Dice" and “Objects" scene captures several more colorful objects with high

texture. The zoomed-in pictures show the spatial resolution, while the comparison of spectra highlights

the �delity of our system as a spectral measurement tool. “Ace" scene was captured by placing the toy

�gurine under CFL illuminant, which is peaky. We could not obtain ground truth with a spectrometer,

as the toy was too small to reliably probe with a spectrometer. The peaks are located within 2nm of

ground truth peaks, and the relative heights of the peaks match the underlying color. “Crayons" scene

consists of numerous colorful wax crayons illuminated with a tungsten-halogen lamp. The closeness

of spectra with respect to spectrometer readings shows the spectral performance of our setup. Finally,

“Feathers" consists of several colorful feathers illuminated by tungsten-halogen lamp. The �ne structure

of feathers is well captured by our setup.

Color checker. Since our setup is optimized for viewing in 400nm-700nm, we evaluated our system

on the 24-color Macbeth color chart. The Macbeth color chart consists of a wide gamut of colors in visible

spectrum that are spectrally well separated, and forms a good test bench for visible spectrometry. We

placed the “Color passport" and spectralon plug in front of our camera and illuminated it with a tungsten-

halogen DC light source. The spectralon has a spectrally �at response, and hence helps estimate the

spectral response of the illuminant+spectrometer system. This enables measurement of true radiance of

the color swatches. Since the spectra is smooth, we used least squares recovery of the spectrum, with

`2 penalty on the �rst di�erence of spectral singular vectors. The captured data was then normalized

by dividing spectrum of all points with the spectrum of the spectralon. Figure 3.24 shows the captured
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Figure 3.23: Real data captured with our optical setup. We show the physical setup used for capturing the

data, rendered RGB image with some interesting patches zoomed in, and spectra at some points, compared with a

spectrometer. The results are promising, as the spectra is very close to spectrometer readings (PSNR > 20dB), and

the spatial images are captured in high resolution.
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(a) RGB image (b) Reference RGB image
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(c) Spectral pro�les

Figure 3.24: Macbeth color chart. Spectra is shown at four locations and compared with spectrometer readings.

The PSNR is 25dB or higher and the SAM between KRISM spectra and spectrometer readings is less than 6◦.

image against reference color chart along with spectra at select locations plotted along with ground

truth spectra. On an average, the PSNR between spectra measured by KRISM and that measured by

spectrometer is greater than 25dB, while the SAM is less than 6◦.

3.8 Discussion and conclusion

We presented a novel hyperspectral imaging methodology called KRSIM, and provided an associated

novel optical system for enabling optical computation of hyperspectral scenes to acquire the top few sin-

gular vectors in a fast and e�cient manner. Through several real experiments, we establish the strength

of KRISM in three important aspects: 1) the ability to capture singular vectors of the hyperspectral im-

age with high �delity, 2) the ability to capture an approximation of the hyperspectral image with 20×

or faster acquisition rate compared to Nyquist sampling, and 3) the ability to measure simultaneously

at high spatial and spectral resolution. We believe that our setup will trigger several new experiments

in adaptive imaging for fast and high resolution hyperspectral imaging.

Added advantages. There are two additional advantages to KRISM. One, since we capture the top few

singular vectors directly, there is a data compression from the acquisition itself. Two, the only recovery

time involves deconvolution of a few spatial and spectral singular vectors, which is signi�cantly less

than the time required for recovery of hyperspectral images from CS measurements.

Beyond low-rank volumes. Key to our method is the assumption that the underlying HSI is low-

rank. Sensing a high rank HSI will require several measurements which negates the bene�ts of KRISM.

However, there are several other matrix sampling techniques that rely on row or column sensing [41, 71]

to capture information about high rank matrices in an e�cient manner. Since the proposed setup is capa-
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Figure 3.25: Capturing higher singular vectors. Since KRISM computes higher singular vectors by progressively

blocking more light, photon noise dominates measurements after some iterations resulting in noisy estimates of sin-

gular vectors. The above example shows inaccurately estimated �fth singular vectors measured for “color checker"

scene with our lab prototype.

ble of computing arbitrary matrix-vector products, such matrix sampling techniques can be implemented

e�ciently.

E�ect of photon noise Although Krylov subspace based methods are very robust to noise [91], the

quality of the singular vectors degrade as the rank of acquisition is increased (see Figure 3.25). This is

primarily due to photon noise, as we progressively block most of the energy contained in initial singular

vectors. This can be mitigated by increasing the exposure time of measurements for higher singular

vectors. All said, the problem of noisy higher singular vectors exists with any kind of sampling scheme

and hence needs separate attention via a good noise model.





4Programmable Spectrometry – Per-pixel Material

Classi�cation using Learned Spectral Filters

We now tackle an important application of hyperrspectral imaging – per pixel material classi�cation. We

are now armed with a high-resolution spectrally-programmable camera from the previous chapter. We will

use this in conjunction with learned spectral �lters to perform per-pixel classi�cation with as few images

as possible. Towards the end of this chapter, we will see how to learn discriminating spectral �lters from a

pool of spectrometric measurements, a compact optical setup to implement spectral �ltering, and methods

to achieve highly accurate binary and multi-class classi�cation results.

4.1 Introduction

Material composition of a scene can often be identi�ed by analyzing variations of light intensity as a

function of spectrum or wavelengths. Since materials tend to have unique spectral pro�les, spectrum-

based material classi�cation has found widespread use in numerous scienti�c disciplines including

molecular identi�cation using Raman spectroscopy [20], tagging of key cellular components in �uores-

cence microscopy [56], land coverage and weather monitoring [19, 39], and even the study of chemical

composition of stars and astronomical objects using line spectroscopy. It would not be a stretch to sug-

gest that spectroscopy or its imaging variant, hyperspectral imaging (HSI), is an important scienti�c tool

for material identi�cation.

While hyperspectral imaging has also found application in computer vision tasks [48, 72, 95], its

widespread adoption has been hindered due to inherent challenges in their acquisition. Measuring a

HSI requires sampling of a very high dimensional signal; for example, mega-pixel images at hundreds

of spectral bands, a process that is daunting to do at video rate. This problem is further aggravated by

the fact that hyperspectral measurements have to combat low signal to noise ratios, as a �xed amount of

light is divided in to several spectral bands — leading to long exposure times that can even span several

minutes per HSI.



70 CHAPTER 4. PROGRAMMABLE SPECTROMETRY

plastic

paper

fabric Programmable 
spectral filter

learned spectral 
filters Filtered 

image 1
Filtered 
image Q

Per-pixel confidence map

fabric paper plastic Per-pixel material 
classification

Figure 4.1: Spectrum-based material classi�er. We propose an optical setup that is capable of classifying ma-

terial on a per-pixel basis. This is achieved by capturing a small number of spectrally �ltered images of the scene

and then performing classi�cation. This results in a system that requires far fewer measurements than fully scan-

ning the hyperspectral image and then classifying, and leads to a high light throughput system, as the discriminant

spectral �lters tend to be broadband.

(e) Skin(a) Fabric (d) Plastic (f) Wood(b) Paper (c) Plant

Figure 4.2: Spectrum of materials. Spectrum is often a unique identi�er of materials and can be used for per-

pixel classi�cation tasks. We collected spectral pro�les of several everyday materials and have shown images of

some of the objects we sampled as well as the spectral pro�les, with the black line indicating the average pro�le

for each class. We used the collected spectral pro�les to train spectral �lters that enable high accuracy, per-pixel

material classi�cation.

This chapter proposes a novel approach for enabling spectrometry-based per-pixel material classi�-

cation by overcoming the limitations posed by HSI acquisition. To understand our proposed approach,

we �rst need to delve deeper into the process of classi�cation itself. Classi�cation techniques involve

comparing the spectral pro�le at each pixel with known or learned spectra by taking a linear projection.

Intuitively, given K material classes, we would compute O(K) such linear projections. For example,
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a support vector machine (SVM) classi�es by �nding distance of features from the separating hyper-

plane; in the context of spectral classi�cation, this translates to spectrally �ltering the scene with the

hyperplane coe�cients. Hence, spectral classi�cation can be made practical if we can capture the lin-

ear projections directly without having to acquire the complete HSI. Such an operation translates to

optically �ltering the scene’s HSI using known spectral �lters, which can be achieved if the camera’s

spectral response can be arbitrarily programmed.

To enable per-pixel material classi�cation, we propose a new imaging architecture with a pro-

grammable spectral response that can be changed on-the-�y at video rate. Given a training dataset

of spectral pro�les, we use o�-the-shelf classi�cation techniques like SVMs and deep neural networks

to identify linear projections that facilitate material classi�cation. For a novel scene, the camera captures

multiple images, each with a di�erent spectral response; the captured measurements are used with the

classi�er to perform per-pixel material classi�cation.

We propose a per-pixel material classi�cation camera and make the following contributions:

1. Optical computing for classi�cation. By optically evaluating the linear projections, we circumvent

sampling the full HSI. This requires signi�cantly fewer measurements (less than 10 vs. several hun-

dreds), and has higher light e�ciency due to broadband spectral �lters.

2. Simple strategy for learning spectral �lters. Since material classi�cation only requires spectral pro�les,

we show that discriminant �lters can be learned on labeled spectral measurements. This simpli�es

the dataset problem, as collecting data with a spectrometer is much simpler than capturing a full HSI

and then labeling objects. As part of this thesis, we collected several spectral pro�les of everyday

objects and learned discriminant �lters (see Fig. 4.2). We aim to release our dataset to facilitate future

research in spectrum-based material classi�cation.

We demonstrate our proposed method with a lab-built spectrally-programmable camera that is capable

of imaging at high spatial resolution while �ltering at high spectral resolution. For binary classi�cation

problem, our lab prototype provides a classi�cation result every alternate frame, and achieves a pro-

cessing rate of 15 frames per second (half of maximum). We also show results on multi-class labeling

problems using a classi�er that can di�erentiate between six distinct material types.

4.2 Prior Work

We discuss prior work in the areas of material classi�cation using HSIs as well as optical computing and

design of programmable spectral �lters.
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4.2.1 Spectral Classi�cation

Given spectral pro�le measurement, s(λ), which is often obtained using a spectrometer, the goal of

spectral classi�cation is to estimate the material composition of the object. There are several classical

techniques such as support vector machines (SVM) that use s(λ) as a feature vector. In more recent

times, neural networks have been used to classify every day materials with spectra of objects measured

with a handheld spectrometer [25]. This process is often computationally light weight – as spectrum

is a unique identi�er of materials. Its extension to classi�cation of all pixels in the image of scene is

the next step, but a very challenging task. Classi�cation at image level requires capturing spectrum at

each pixel – thereby requiring a full scan of the hyperspectral cube which is often daunting. We will

next see how hyperspectral classi�cation is performed, which will then motivate the proposed optical

classi�cation architecture.

4.2.2 Hyperspectral classi�cation

Consider the HSI of a scene, H (x ,y, λ), where each pixel (x ,y) is assumed to belong to one of K material

classes. Speci�cally, the spectra at each pixel can be written as,

H (x ,y, λ) = α(x ,y)SL(x,y)(λ), (4.1)

where L(x ,y) is label of the material contributing to spectrum at (x ,y), and α(x ,y) is scaling parameter.

Note that the model above assumes all spatial pixels are pure, i.e., every pixel gets contribution from

only one material. We use this model for the sake of exposition and later discuss about how to relax it

later to handle mixed pixel.

The goal of classi�cation is to estimate the label at each pixel, L(x ,y), which forms a label map.

There are broadly two approaches to spectral classi�cation — generative and discriminative. Generative

techniques rely on decomposing the HSI as a linear combination of basic materials that are called end-

members [24]. Speci�cally, the HSI of the scene is decomposed as,

H (x ,y, λ) =
K∑
k=1

sk (λ)ak (x ,y), (4.2)

where sk (λ) is the spectra of k th material, and a(x ,y) is the relative contribution of material k at (x ,y).

The abundances at each pixel along with the end-member spectra provide a feature vector that can be

used to spatially cluster the materials and subsequently identify them.

Discriminative techniques rely on directly learning discerning features from the HSI without the

intermittent stage of low-dimensional decomposition. Here, we identify a set of spectral �lters,
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Figure 4.3: E�ect of resolution on classi�cation accuracy. In order to classify accurately, it is important to

sample the spectral pro�les at high resolution. The plot shows classi�cation as a function of spectral resolution

for a 6-class classi�cation task with a one-vs-rest SVM classi�er. High sampling rates ensure high accuracy; how-

ever, such high spectral resolutions invariably require long exposure durations, making them infeasible for dynamic

scenes. Our approach is to circumvent measuring the full HSI and perform the necessary computations for classi-

�cation in the optical domain.

{(dk (λ), βk )}
M
k=1 that generate per-pixel feature vector via spectral-domain �ltering:

Fk (x ,y) =

∫
λ
H (x ,y, λ)dk (λ)dλ + βk . (4.3)

Hence, each image Fk (x ,y) is a spectrally-�ltered version of the HSI with an added o�set. In case of

SVMs, the learned spectral �lters form separating hyperplanes; this has been a de facto way of HSI

classi�cation [26, 65]. More sophisticated learning techniques based on neural networks use spectral

features [44] or spatio-spectral features [17, 38, 42, 51, 55, 60, 64, 90] for classi�cation.

4.2.3 Need for high spectral resolution

A key requirement for highly accurate classi�cation is high spectral resolution. Sampling at as �ne as

1nm helps discriminate between materials very easily, while very low sampling resolution, such as an

RGB camera that samples across several 100 nm, is incapable of detecting materials accurately. To drive

home this message, we performed a 6-class classi�cation with spectrometric data measured at varying

resolutions. A glimpse of the data is presented in Fig. 4.2 and we will elaborate on it later. We built

a simple, one-vs-rest (SVM) classi�er, and estimated testing accuracy for varying spectral resolution,

starting from 3nm down to 100nm. Figure 4.3 shows the 6-class classi�cation accuracy. There is a clear

reduction in accuracy as resolution goes down – indicating the necessity for high spectral resolution.

However, completely scanning the spectral pro�le and then classifying is a wasteful process. Invariably,

the number of spectral features used, i.e, the dimensionality of the projection, tends to be smaller than

the number of spectral channels in the HSI. Hence, we seek to measure the features directly, by com-
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puting (4.3) optically. As is to expected, such a paradigm of optical classi�cation requires the design of

programmable cameras capable of implementing an arbitrary spectral �lter.

4.2.4 Sensing for classi�cation

There are several techniques that rely on capturing compressively sensed (CS) measurements with the

aim of classi�cation. Li et al. [54] perform this by capturing a small set of randomly spatially-multiplexed

measurements and then recovering labels via an unmixing framework. Ramirez et al. [79–81] imple-

mented a spatial-spectral multiplexed imager that captures a single snapshot with a spatial coded aper-

ture and then performs classi�cation. While such methods reduce the hardware complexity, much of

the burden is placed on the classi�er itself. Speci�cally, the measurement stage (linear, random) is de-

coupled from the classi�cation stage (unmixing). However, since most classi�cation strategies involve

a linear transformation of the spectral pro�le, we can move part of the classi�cation computations to

optical domain.

4.2.5 Optical computing

Instead of relying on both spatial and spectral information, we consider a simpler approach which relies

only on the spectral pro�les for classi�cation. Such a strategy is less accurate than spatial and spectral

versions [17, 38, 42, 51, 55, 60, 64, 90], but signi�cantly reduces the complexity of the imaging system.

This approach is similar, in spirit, to using BRDFs to perform per-pixel classi�cation by varying the

incident illumination [37, 61], or using �rst layer of a neural network to capture light �elds [16]. Such a

setup requires far fewer measurements, as the number of material classes is signi�cantly smaller than the

number of spectral bands. Further, since the linear projections are computed optically, the contribution

of readout noise is minimized. Optical computing has found use in various computer vision tasks such

as capturing light transport matrices [70], low-rank approximation of hyperspectral images [87], and

spectral classi�cation using programmable light sources [32, 73]. We adopt the paradigm of optical

computing to make discriminative �lter measurements by building a camera whose spectral response

can be arbitrarily programmed.

4.2.6 Dynamic spectral �lters

Spectral �ltering can be achieved by modi�ed the response of the camera; a canonical and static example

being the Bayer pattern or more interestingly, the case of �uorescence �lters in microscopy. It is however

more useful to have a camera whose response can be altered arbitrarily in a fast manner. Numerous
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Figure 4.4: Schematic for programmable spectral �lter. The optical architecture in (a) consists of a lens as-

sembly with coded aperture which introduces spatial and spectral blurs. By placing an SLM in P2, the HSI of the

scene can be spectrally �ltered and sensed by a camera sensor on P3. (b) shows a compact realization of the setup.

techniques to achieve spectral �ltering have been proposed in the past. Agile spectral imager [66] rely

on the coding the so-called “rainbow plane" to achieve arbitrary spectral �ltering. This was further

developed by [63] where they placed a digital micromirror device (DMD) on the rainbow plane to achieve

dynamic spectral �ltering.

However, such architectures come with a debilitating problem — usage of simple pupil codes such

as open aperture or a slit directly tradeo� spatial resolution for spectral resolution. This was identi�ed

in [87] in the context of hyperspectral imaging. They showed that a slit, a common choice for spec-

trometry, leads to large spatial blur. Similarly an open aperture, a common choice for high-resolution

imaging, leads to large spectral blur. Hence, such apertures are not conducive for high-resolution spec-

tral classi�cation.

We instead rely on the optical setup in [87] to overcome the spatial-spectral tradeo�. The key idea

is to use a coded aperture that introduces an invertible blur in both spatial and spectral domains. An

important di�erence is that the setup in the previous chapter is designed for HSI image acquisition; this

chapter adapts the underlying ideas for performing per-pixel material classi�cation in the scene.

4.3 Programmable Spectral Filter

Our optical setup is a modi�cation of the optical setup proposed in [87]. We explain the relevant parts

of the optical setup here.
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4.3.1 4f system for spectral programming

We borrow the optical schematic for spectral programming from [87], shown in Fig. 4.4(a). Given the

HSI, H (x ,y, λ), that is focused on the grating at P1, we seek to derive the intensity on planes P2 and P3.

The intensity on rainbow plane P2,

I4(x ,y) = a2(−x ,−y) ∗

(
S

(
x

f ν0

)
c̃

(
x

f ν0

))
, (4.4)

where S(λ) =
∫
(x,y)H (x ,y, λ) is spectrum of the scene, c̃(λ) is response of the optical system, and ν0 is

the density of groves inmm−1. The intensity on image plane P3,

I5(x ,y) =

∫
λ

(
H (x ,y, λ) ∗

���� 1
λ2 f 2

A

(
−

x

λ f
,−

y

λ f

)����2) dλ, (4.5)

where A(u,v) is the 2D Fourier transform of a(x ,y). The key observation from (4.4), (4.5) is that a

coded aperture placed on plane P2 causes a spectral blur given by a(x ,y) and a spatial blur given by���A (
− x
λf ,−

y
λf

)���2. As we saw in previoius chapters, a slit causes a severe spatial blur, whereas an open

aperture causes large spectral blur. The solution is to introduce an invertible blur in both domains, which

can be achieved using a coded aperture, shown in the last column. We use the same coded aperture that

was used in [87], as it is designed to promote invertibility in both domains.

4.3.2 Optical setup

Our optical setups is in principle similar to Fig. 4.4(a). We place a spatial light modulator on the rainbow

plane (P2) and sensor on spatial plane (P3) to achieve spectral �ltering. The optimized binary code [87]

is placed in the lens assembly Figure 4.4(b) shows a schematic of a practical implementation of the same

optical setup. We use a Liquid Crystal on Silicon (LCoS) display as a spatial light modulator for spectral

�ltering.

4.3.3 E�ect of coded aperture

Spectral �ltering can be achieved by loading spatial patterns on to the rainbow plane. We will now

understand what pattern to display in order to achieve a desired spectral pro�le sk (λ). For simplicity, we

drop the y coordinate on all planes and only look at x-coordinate. Let i(x1, λ) be the complex amplitude

of a point on plane P1. Let pk (x2) be the pattern displayed on the LCoS on plane P2. Then the resultant

�ltering operation on a spatial point on P3 is given by,

î(x3, λ) =

∫
x2
pk (x2)a(−x2 + λ f ν0)i(x1, λ)dx2. (4.6)
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(a) Target spectrum 
𝑠𝑠𝑘𝑘(𝜆𝜆)

(b) Coded aperture, 
𝑎𝑎(𝜆𝜆𝜆𝜆𝜈𝜈0)

(c) Display pattern, 
𝑝𝑝(𝜆𝜆𝜆𝜆𝜈𝜈0)

(d) Spectrometer 
measurement

Figure 4.5: E�ect of coded aperture. To display a desired spectral �lter (a) sk (λ), we need to project a pattern

such that the convolution of the (c) projected pattern with the �ipped coded aperture is equal to the target �lter. (d)

compares the output of our optical setup with a spectrometer and the target spectral �lter.

To achieve a spectral �lter with sk (λ), we require,∫
λ
i(x1, λ)sk (λ) =

∫
λ
î(x3, λ)dλ (4.7)

=

∫
λ

∫
x2
pk (x2)a(−x2 + λ f ν0)i(x1, λ)dx2 (4.8)

=⇒

∫
x2
pk (x2)a(−x2 + λ f ν0) = sk (λ), (4.9)

implying that we need to display a pro�le pk (x2) which when convolved with a �ipped version of the

coded aperture gives rise to sk (λ). Since a(x) was designed to be invertible, we can guarantee that there

always exists a solution to eq. (4.9), and is given by,

pk (x2) = deconv
(
sk

(
x2
f ν0

)
,a(−x2)

)
, (4.10)

where “deconv" is a simple 1D deconvolution function, such as Wiener deconvolution. Figure 4.5 shows

some example �lters we implemented on our optical setup. We directed broadband light into the optical

setup and measured the output with a spectrometer by replacing the measurement camera. We found

that our setup was able to accurately create Gaussian-shaped narrowband �lters of 5nm or more, thereby

setting the achievable spectral resolution of the system at 5nm.

4.4 Learning Discriminant Filters

Our camera is capable of implementing any classi�er that relies on a linear projection as a �rst step. For

the sake of exposition, we illustrate two classi�ers, namely support vector machine (SVM) and a deep

neural network (DNN) architecture.
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Figure 4.6: Proposed optical classi�er. The proposed optical classi�er broadly consists of two stages. In the

�rst stage, we learn the weights of a neural network with spectrum as input and class label as output. The training

process outputs the set of discerning �lters, marked "learned �lters" in the image. In testing stage, we �lter the HSI

of the scene with the learned �lters, thereby replacing the �rst layer of the classi�er with an optical implementation.

This results in a high accuracy, per-pixel classi�er while requiring far fewer measurements than the size of the HSI.

4.4.1 Support Vector Machine

SVMs provide a binary, linear classi�er by learning a separating hyperplane on the training dataset.

Given a set of data points {xk ,yk }Nk=1, where yk ∈ {0, 1} is the label of xk , SVM seeks to solve the

following optimization problem,

min
w,c

1
N

k∑
k=1

max(0, 1 − yk (w>xk + c)) + λ‖w‖2, (4.11)

where λ is a tuning parameter. The output of solving the optimization problem is the vector w and

intercept c . In the context of optical classi�cation, w is the �lter that maximizes accuracy for binary

decision.

4.4.2 Deep Neural Networks

Deep neural networks (DNNs) provide a richer alternative to SVMs. The architecture used in this chapter

is illustrated in Fig. 4.6. We model the �rst linear unit of the DNN to be the programmable spectral �lter.

We then train a model whose input is the spectral pro�le at each pixel and output is the material class

label as a one-hot vector. The weights of �rst fully connected layer are the learned discriminating �lters,
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Method Classifier Coding strategy #Measurements Accuracy

Santara et al. DNN Non-linear,

spatial and spectral

220 96.7% 
(reported)

Hu et al. DNN Convolutional, 

spectrum-only

220 90.16%
(reported)

Lee et al. DNN Convolutional,

spatial and spectral

220 93.6%
(reported)

Melgani et al. SVM Linear, spectrum-only 16 84%
(computed)

Proposed DNN Linear, spectrum-only 16 90%
(Computed)

Figure 4.7: Simulations on the Indian Pines dataset. We compare state-of-the-art classi�ers against the clas-

si�ers proposed in this chapter. By reported we report the accuracy �gures listed in the respective papers, while

computed results were generated by us. A key feature of our optical setup is that it can only compute linear projec-

tions of spectra. While this leads to reduction in accuracy, the number of captured images are far fewer.

and hence the �rst layer can be evaluated optically, thereby circumventing the need to measure the full

spectrum at each pixel. The number of �lters, Q depends on the number of materials and how easily

they can be separated. In our experiments, we classi�ed a total of 6 objects. We then varied the number

of �lters and computed mean classi�cation accuracy. Based on this, we picked the optimal number

of �lters. We note that the idea of optically computing the �rst layer has been explored before in the

context of designing color �lter arrays [14] and processing light �elds [16].

4.4.3 Simulations

To evaluate accuracy of linear-only classi�ers, we compare SVM and the 5-layer DNN classi�er to some

of the state-of-the-art techniques in spectral-classi�cation on the NASA Indian Pine dataset which con-

sists of 220 spectral bands with 16 object classes. We provide the relevant numbers here and provide

all other details in supplementary. Figure 4.7 tabulates the accuracy of various classi�ers, with the pro-

posed methods highlighted in bold. We observe that the accuracy is lower than state-of-the-art, which

is expected as we only use spectral information, while the other techniques use both spatial and spectral

information. However, relying on a spectrum-only classi�er lets us capture far fewer images than the

number of spectral bands.

4.5 Experiments

We demonstrate capabilities of our setup for video-rate binary classi�cation with binary SVM as well as

matched �ltering, and multi-class classi�cation with multi-class SVM and DNNs.
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4.5.1 Learning details

We provide details about our training process with emphasis on choice of parameters and hyperparam-

eters. We captured a total of 1, 000, 000 spectral pro�les over 5 material types. For each classi�er, we

used 20% for training, 5% for validation and 80% for testing. We found that the testing accuracy did not

improve even if we used more than 20% data.

Spectrometer dataset

To learn discriminant spectral �lters, we collected spectral pro�les of several samples of everyday ma-

terials, namely, fabric, metal, paper, plant, plastic, skin, stone and wood. The data was collected under

various lighting conditions such as sunlight, halogen light source and white LED light source. We di-

vided the data capture into various session for a given lighting condition. We then collected spectra

of materials, as well as spectral pro�le of a spectralon. This enabled us to estimate the re�ectance of

materials independent of illumination conditions.

Table 4.1 provides details of each material class. The two gray rows, metal and stone were not

used in our experiments in the main paper. We found that metal and stone are best classi�ed with a

setup that works over visible to near IR (400 − 900nm) range, while our setup was only made for NIR

(600− 900nm). We plan to release the complete dataset, as well as our trained SVM and DNN classi�ers

for future research.

Support Vector Machine

We used the function LinearSVC from Scikit-Learn [76] for training binary classi�ers. The only hyper-

paramter of tuning was penalty for the hyperplanes, C , which was tuned by performing a grid search

over the log space from 103 to 106. Hyperparamter search was done through a 3-fold cross-validation.

Neural Networks

We used PyTorch [75] for training our neural network (DNN) classi�ers. The architecture used for

learning is shown in Fig. 4.6 and the details of each layer is provided in Table 4.2. Q is the number of

�lters and was varied from 1 to 20 to evaluate performance as a function of measurements. We trained

the network with an initial learning rate of 10−3 and trained for a total of 500 epochs. The �lters were

initialized with a principal component analysis (PCA) decomposition of training data, which to smoother

�lters and higher accuracy. For each Q , we picked the model with best accuracy on validation dataset.
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Data Class Subclasses Illumination conditions #samples

Fabric Cotton, Acrylic, Polyester, Wool Halogen (VIS, NIR), LED 
(VIS)

2,258

Metal Aluminum, Iron, Brass, Copper, 
Steel

Halogen (VIS, NIR), LED 
(VIS), Sunlight (VIS, NIR)

2945

Paper A4 sheet, Novel pages, Book 
covers

Halogen (VIS, NIR), LED 
(VIS)

1024

Plant Outdoor trees, Indoor plants, 
Succulents

Halogen (VIS, NIR), Sunlight 
(VIS, NIR)

2270

Plastic HDPE, LDPE, Polyethene, Tire 
rubber

Halogen (VIS, NIR), LED 
(VIS), Sunlight (VIS, NIR)

1438

Skin Palm, Forearm, Arm, Leg, 
Forehead

Halogen (VIS, NIR), LED 
(VIS), Sunlight (VIS, NIR)

400

Stone Granite, Poured Concrete, Tar road Halogen (VIS, NIR), Sunlight 
(VIS, NIR)

1495

Wood Pine, Oak, Tree bark, Hardwood Halogen (VIS, NIR), Sunlight 
(VIS, NIR)

2123

Table 4.1: List of materials in dataset. VIS implies the data has strong signal component in visible (400 − 900

nm) wavelengths, while NIR implies the data has strong signal component in 600 − 900nm regime.

Layer Components
1 (Filters) Linear (256xQ), ReLU, Dropout (0.1)

2 Linear (Qx256), ReLU, Dropout (0.1)
3 Linear (256x128), ReLU, Dropout (0.1)
4 Linear (128x64), ReLU, Dropout (0.1)
5 Linear (64x32), ReLU, Dropout (0.1)

6 (Output) Linear (32x6), Softmax

Table 4.2: Components of our DNN classi�er. All the layers are formed of fully connected layers with a ReLU

and dropout added after each linear layer. Here, Q is the number of spectral �lters and was variable in our experi-

ments to compare performance. The output was a single linear layer. During training process, we used cross-entropy

as loss function.

4.5.2 Optical setup

Hardware prototype. Figure 4.8 shows a picture of our lab prototype with names of major components.

The last lens in the setup was replaced by a 50mm objective lens focused at in�nity. This led to a better

spatial resolution than an achromat.

Our SLM is a Holoeye LCoS SLM with a frame rate of 60 Hz that works as a secondary monitor.

We used an NIR-sensitive sCMOS camera (Hamatasu ORCA Flash 4.0 LT). Inspired by previous work in

material classi�cation [25, 86], we designed our optical system to image from 600− 900nm. Our setup is

capable of coding spectrum at a resolution of 3.3nm, giving us 100 spectral bands. Finally, the SLM acts

as a dynamic spectrally-selective camera and hence can be directly used for measuring the complete HSI.

To do so, we display permuted Hadamard patterns on the SLM to capture a 256× 256× 256 dimensional

HSI. Figure 4.9 shows an example of captured HSI of an acrylic painting.
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1 2

3 4

5

6

1
8mm Objective Lens
Thorlabs MVL8M23 3

Polarizing Beam Splitter
Moxtex Wiregrid Polarizing Beamsplitter

4
300 groves/mm Diffraction Grating
Dynasil G300TN31.7CC 

5
NIR LCoS Display
Holoeye HED6001 with NIR-enhancement

6
sCMOS camera
Hamamatsu ORCA Flash 4.0 LT

100mm Achromat
Thorlabs AC254-100-B2

Coded Aperture
Printed by Photoplot store with a 
feature size of 10μm

Figure 4.8: Lab prototype. A picture of the lab prototype along with major components marked with

details. We skipped details about opto-mechanical components such as cage plates and posts to avoid

clutter. The inset image shows the printed mask we used as coded aperture.
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Figure 4.9: Example HSI. Our prototype is designed to capture images from 600nm to 900nm. (a) was

captured using a cellphone while (b)-(d) are images captured by our setup. Bottom row shows spectral

pro�les at three marked points. Note how all the pigments disappear at λ = 850nm in (d).

Calibration. As described in the previous sections, our setup required calibration of coded aperture,

wavelengths and spatial PSF. We detail the calibration procedure here.

1. Coded aperture calibration: This is required to capture the code that blurs the spectrum. We measure

the coded aperture by illuminating a spectrally �at object (such as spectralon) with a laser of known

wavelength and scanning the complete HSI. We then average all spatial pixels to get the spectrum of

the scene. Since a laser can be treated as a discrete delta, the measured spectrum will be the coded

aperture. We threshold the measured spectrum appropriately to get the binary coded aperture, as

shown in Fig. 4.10 (a).
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Figure 4.10: Wavelength calibration. We �rst estimate the blur due to coded aperture by capturing

a scene illuminated by a narrowband light source (635nm laser), giving us the code in (a). We then

calibrate the correspondence between band index and wavelengths by capturing two separate scenes

illuminated by known laser light sources (635nm, 850nm). The results of the two calibration are show

in (b), where we capture two more scenes with 780nm and 830nm laser.
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(a) Target pro�le (b) Without correction (c) With correction

Figure 4.11: Displaying desired spectral pro�le. Given a target pro�le (a), we display a binary image

on the SLM, as shown in (b), which ensures grayscale modulation despite wavelength-dependent gamma

curve. However, since the SLM is 2f away from the camera sensor, there will be e�ects of di�raction.

We counter this by adding a small DC o�set, as shown in (c).

2. Wavelength calibration: To �nd the correspondence between band index (1 - 256) and the correspond-

ing wavelengths, we capture two scenes, each one comprised of a spectrally �at object illuminated

by a narrowband laser light source. The averaged spectrum of the HSI is a blurred version of the

laser spectrum. By deconvolving with the previously estimated coded aperture, we get location of

the laser in terms of band index. We use this information along with laser wavelength to calibrate

the correspondence.
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Figure 4.12: Spatial deconvolution. Due to design of an invertible spatial blur, the optical setup is

capable of high resolution after deconvolution. (a) shows a raw image, with enlarged PSF in inset,

(b) shows result of wiener deconvolution, and (c) shows a comparison of modulation transfer function

(MTF). There is a marked increase in resolution both quantitatively and qualitatively.

3. Spatial PSF : To �nd the spatial blur kernel, we capture a single image of a 10µm pinhole. Since the

PSF is well conditioned, deblurring the spatial images is well conditioned.

4. Radiometric calibration of SLM: The LCoS SLM in our optical setup is based on twisted-nematic design,

and hence has di�erent gamma curves for di�erent wavelengths. Since the spectrum on the SLM is a

blurred version of the true spectrum, we cannot perform a column-wise gamma correction. Instead,

we use the SLM only as a binary modulator and achieve grayscale modulation by varying height of

each column as shown in Fig 4.11 (b). This way, the SLM has a linear gamma curve for all wavelengths.

Figures of merit. Our setup is capable of achieving spectral resolution of up to 5nm over the

wavelength range of 600 − 900nm, which is slightly worse than the designed resolution of 3.3 nm.

(interested readers may refer to [87])). Due to invertible spatial blur, our setup is capable of high

resolution after deconvolution. Figure 4.12 visualizes the captured image in (a) and deconvolved image

in (b) of a sector star target. (c) shows plot of Modulation Transfer Function (MTF) as a function of

line pairs per pixel. Image was deconvolved using simple Wiener deconvolution. The MTF30 after

deconvolution was 0.45 linepairs/pixel.

Handling di�raction due to SLM. Since the SLM is placed 2f away from the image plane, any pattern

displayed on SLM will lead to a di�raction blur. To counter this e�ect, we always display ones in the

middle of the pattern to be displayed on the SLM. This reduces the e�ect of di�raction while adding a

simple o�set to the data, which can be removed by capturing image with only the central part open.
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4.5.3 Handling illumination

The discussion so far has relied on classifying materials based on their re�ectance spectrum only. In

practice, we measure the re�ectance multiplied by scene illumination as well as the camera’s spec-

tral response. Speci�cally, if H (x ,y, λ) is the HSI of the scene, then the measured HSI is Ĥ (x ,y, λ) =

H (x ,y, λ)c(λ)l(λ), where c(λ) is the camera spectral response and l(λ) is illuminant spectra. To account

for the modi�ed spectral measurements, we can follow one of the two approaches:

1. Corrected spectral �lters. By displaying ŝk (λ) = sk (λ)/(c(λ)l(λ)), the measured spectral measurements

are directly proportional to the re�ectance spectra of the material.

2. Training on modi�ed data. Instead of training on H (x ,y, λ) we can train on Ĥ (x ,y, λ), which then

produces one model for each illuminant condition.

While both are equivalent, we found training on modi�ed data to be more robust to illumination changes

and hence trained di�erent models for di�erent experiments.

4.5.4 Dataset

To learn discriminant spectral �lters, we collected spectra of several everyday object with a spectrom-

eter1. For experiments in this chapter, we divided the materials into six classes, namely, fabric, paper,

plants, plastic, human skin and wood – materials that are most likely to be found in everyday settings.

We collected objects under varying illumination such as indoor illuminant, outdoor sunlight, LED light

source and halogen light sources. All measurements were then divided with the corresponding illumi-

nant spectrum to obtain re�ectance spectra of objects. Image of some of the objects and spectral pro�les

are displayed in Fig. 4.2. We plan to release our dataset as well as the training code to the public. More

details can be found in supplementary material.

4.5.5 Training classi�ers

For binary classi�cation, we used SVM to learn the spectral �lters. We used Scikit-Learn [76] for this

purpose. We trained DNNs for multi-class classi�cation with the network architecture shown in Fig.

4.6 with loss function set to cross entropy. The number of spectral �lters were varied from 1 to 20 to

compare performance. We learned the network using the PyTorch framework [75] with learning rate

set to 10−3 for a total of 500 epochs. We then extracted weights of �rst layer and used them as spectral

1OceanOptics Flame FX 400 − 1000nm spectrometer.
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filter 1 filter 2

filter 3 filter 4

Figure 4.13: Learned �lters. The �lters shown here correspond to a DNN classi�er with 4 spectral �lters.

�lters. The learned �lters are shown in Fig. 4.13. The trained �lters are then implemented on our lab

prototype through a simple linear interpolation from spectrometer wavelengths to setup wavelengths.

Further details about the learning process are included in supplementary.

4.5.6 Handling scale of features

A key requirement of any classi�er is that the scale of features be same during training and testing. A

common practice is to set the norm of feature at (x0,y0), ‖H (x0,y0, λ)‖ to unity, or the maximum value

to unity. In our case, this requires having knowledge of the complete spectral pro�le, which defeats

the purpose of optical computing. instead, we normalize our measurements with sum of the spectrum,∫
λ H (x0,y0, λ), which can be measured by displaying a spectral pro�le with all ones. The measured

featured vectors are then,

Isum(x0,y0) =

∫
λ
H (x0,y0, λ)dλ (4.12)

Ĩk (x0,y0) =

∫
λ
H (x0,y0, λ)sk (λ)dλ (4.13)

Ik (x0,y0) =
Ĩk (x0,y0)

Isum(x0,y0)
(4.14)

Such an approach also makes the measurements invariant to shading of individual pixels [67–69]. We

scale the spectra the same way even while training, which makes the scaling consistent. Hence any set

of measurements with spectral pro�les requires just one extra image.
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Figure 4.14: Accuracy vs. number of �lters. We varied the number of �lters and estimated mean

accuracy on a held out test dataset. Based on the plot, we observe that DNNs outperform SVM, and that

accuracy starts saturating beyond 4 �lters.

4.5.7 Accuracy vs. number of �lters

Classi�ers such as SVM have a �xed number of �lters, which is K for one-vs-rest and K(K − 1)/2 for

one-vs-one classi�er. In contrast, neural networks can be designed with any number of spectral �lters.

To choose the appropriate �lter count, we trained models with varying number of �lters and evaluated

average accuracy on a held-out test dataset. Fig. 4.14 shows an accuracy plot. We observe that DNNs

achieve higher accuracy than SVM. Further, for our 6-class problem, we see that the accuracy saturate

after four �lters. We hence chose Q = 4 in all our experiments.

4.5.8 Accuracy vs. smoothness

Smoothness of spectral �lters is controlled by regularization parameter in SVM and weight decay term in

neural networks. It is desirable to have smooth spectral �lters, as they lead to higher light throughput. In

contrast, very smooth spectral �lters may lead to lowered classi�cation accuracy. To �nd the appropriate

regularization term, we once again trained several models and chose the one that gave best accuracy on

a held out dataset. Accuracy vs regularization for both SVM and DNNs is shown in Fig. 4.15.

4.5.9 Binary classi�cation

The simplest task possible with our optical setup is a binary classi�cation, where the label at each pixel

belongs to one of the two possible classes. In such a situation, one may either use a linear SVM where the

spectral �lter is the learned supporting hyperplane, w, or use a matched �lter, where the spectral �lter

is di�erence of spectra of the two classes, s1(λ) − s2(λ). Figure 4.16 shows classi�cation of a real cactus

surrounded by several plastic plants. The SVM score in (b) as well as the labels show that our setup

is capable of resolving very thin structures such as the cactus thorns. Figure 4.17 shows classi�cation
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Figure 4.15: Accuracy vs. smoothness. We plotted accuracy as a function of decay constant, η, with

lower η encouraging smoother �lters. The accuracy is highest around η = 2× 10−3, which was the value

we used for all our experiments.

(a) RGB (b) SVM score (c) Label

Figure 4.16: Per-pixel classi�cation. Due to per-pixel operation with high spatial resolution, our imager can

clearly identify the micro-structures such as the cactus thorns by capturing only two images instead of the complete

HSI.

results for real vs. plastic plants and real vs. fake wood with matched �ltering and Fig. 4.18 shows

classi�cation results with SVM classi�er.

Figure 4.19 evaluates the advantages of optical classi�cation. (b) visualizes the SVM score at each

pixel obtained by scanning the complete HSI and then computing the projection to the SVM hyperplane,

which requires a total of 256 measurements. In contrast, optical projection, shown in (c) requires only

two images. Bottom row shows the Receiver operating Characteristic (RoC) of classi�cation for both

cases. The SNR advantage is evident; the area under the curve for optical projection (0.7194) is higher

than full measurement and then projection (0.7912).
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Figure 4.17: Matched �ltering. If spectrum of the speci�c objects is known, one can implement a matched �lter

and perform per-pixel material classi�cation.

4.5.10 Remote photoplethismography

By programming our optical setup to display pro�les of oxygenated and deoxygenated blood, we can

remotely perform pulse oximetry in a non-invasive way, which can be used for studying vasculature.

Figure 4.21 shows an example data on index �nger. We placed a light source behind the �nger to capture

data in transmissive mode, and collected 500 �ltered images at 10 frames per second The obtained data

was then temporally �ltered to retain signal from 1 − 2 Hz. The resultant data enhanced the digital

arteries (dark line passing through center of the �nger). The heart beat was estimated from this signal

was 80.7 beats per minute, while an o�-the-shelf pulse oximeter reported 79 − 84 beats per minute.

4.5.11 Multi-class classi�cation with DNNs

We �rst tested our prototype on an outdoor scene shown in Fig. 4.22 to verify that our setup was capable

of accurate multi-class classi�cation. We collected spectra with the prototype itself where we scanned

full HSI of three classes, namely concrete, grass and sky, and then used the obtained spectral pro�les to

train a 3-class neural network. We then optically classi�ed a scene with 6 �lters. The resultant label map

is shown in Fig. 4.22. Such a per-pixel label map can then be used for accurate semantic segmentation.

Next, we used the 6-class classi�er that we trained earlier on spectrometer data (Fig. 4.13 and classi-

�ed several indoor objects. Figure 4.23 compares the spectrally �ltered output using full scan, as well as
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Figure 4.18: SVM classi�cation. We learned SVM �lters on spectrometer training data and then implemented

them on our optical setup. Our setup is very versatile and can be used for classifying arbitrary material classes.
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Figure 4.19: Advantage of optical computing. We show an example of binary classi�cation between cardboard

and wood (a) using per-pixel SVM. Optical computing achieves higher accuracy with far fewer measurements.

optical projection. The two results look very similar; while optical computing requires only �ve images,

full scanning required 256 images. Figure 4.24 shows several real world scenes classi�ed with our optical

classi�cation strategy. In all cases, �ve images were captured, four with �lters and one image with an
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Figure 4.20: Video rate classi�cation. Since our setup can rapidly change spectral �lters, we can implement

video-rate classi�cation. In this example, we show some frames of a classi�er that separates human skin from

plastic (silicone in this example), which is often useful for biometrics.
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Figure 4.21: Remote pulse oximetry. Hemoglobin in blood varies between being oxygenated and deoxygenated,

thereby having di�erent spectral pro�les (left plot). We program our camera with a di�erence of the two pro�les, to

capture oximetric signal in a remote, non-contact fashion. The plot in the second row shows the processed oximetry

signal over the �nger.

all-pass spectral �lter.
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Figure 4.22: Classi�cation of outdoor materials with DNNs. We trained a 3-class classi�er with 6 �lters to

classify outdoor scene. Such a classi�cation strategy can be used as an initial estimate for an accurate semantic

segmentation.
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Figure 4.23: n

Comparison of optical and full-scan spectral �ltering. The proposed method is capable of directly

measuring the spectral projections, which requires 5 images instead of 256 images (full HSI scanning).

4.5.12 Discussion

Across all the experiments, we note that the propose optical classi�cation strategy is promising, par-

ticularly when operated in binary classi�cation mode. We showed video-rate binary classi�cation, as

well as remote pulse oximetry. Importantly, we showed a transferable �lter learning strategy where

we learned spectral �lters on spectrometer data and then implemented them on our setup. In case of

multi-class classi�cation, we note that the performance degrades compare to binary classi�cation. This

is to be expected due to two key reasons. One, any model mismatch arising due to the optical hardware

propagates through the classi�cation pipeline. Mismatches can cause severe error in estimates if spectral

pro�les are similar in shape. This can be corrected with careful and precise alignment of all optics.
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Figure 4.24: Multiclass classi�cation with DNNs. We show diverse set of scenes that were classi�ed with our

optical classi�cation strategy.

Second, higher order e�ects such as non-Lambertian surfaces, global illuminant component and

scatter cause the measured spectrum to be di�erent that the pure material spectra. Classi�cation can

be made robust if the training data is augmented with all possible spectral variations for each material.

This can be achieved with a spectral-angular gantry, and will be pursued as a future direction.

4.5.13 Limitations

A key limitation of our setup is the assumption that the pixels come from a single material class. Some

real world examples are made of a mixture of materials at each class, an example being land cover. In

such a case, outputting just a class label may not su�ce but relative probabilities of each class is desired.

This can be achieved by modifying the classi�ers to output a score for each material at each pixel instead
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of most probable class.

4.6 Conclusion

We propose a per-pixel material classi�er that relies on a high resolution programmable spectral �lter.

We achieve this by learning spectral �lters that can achieve high classi�cation accuracy and then mea-

sure images of the scene with the learned �lters. Owing to a simple, per-pixel decoding strategy, we can

achieve classi�cation at video rates. We showed several compelling real world examples with emphasis

on binary video-rate and multi-class classi�cation. We also contributed a dataset of spectra of every-

day materials which we believe will enable future research in spectrum-based material classi�cation for

computer vision.



5Conclusions
This thesis focuses on e�cient sensing and inference of hyperspectral images with novel optical systems.

The core observation is that the true complexity of hyperspectral images lies in its spectral diversity,

which is low for any given scene. The right approach is then to build tools that directly measure this low-

dimensional approximation, without having to completely scan the scene’s HSI. This requires us to �rst

build an tool that is central to hyperspectral imaging – a spectrally programmable camera. Building

such a camera was a challenging task, due to the space-spectrum uncertainty. We �rst see a concise

theoretical expression for this uncertainty, and then demonstrate computational approaches to imaging

beyond fundamental limits, along with engineered pupil functions.

The spectrally-programmable camera built in this thesis paves way to two important technologies

which rede�ne the way we captures HSIs. The �rst one is an adaptive imager, that optically computes

the low rank decomposition of the scene with as few as �ve images and �ve spectral measurements.

The second one is an optical computing approach to classi�cation, where fewer than �ve discriminant

spectral �lters are utilized to perform per-pixel classi�cation.

This thesis emphasizes the importance of optical computing to tackle conventionally hard computer

vision problems. Optical computing e�ectively transfers the computational burden to the sensing sys-

tem, thereby resulting in signi�cantly higher SNR, and remarkably few measurements. The idea of a

computer in the loop for sensing goes beyond the applications in this thesis. We saw that learning

schemes such as neural networks can be tightly coupled with optical systems by replacing the �rst layer

with the camera output. Such end-to-end learning schemes will revolutionize how we sense very high

dimensional signals. Imaging non-invasively under the skin, which faces the acute problem of heavy

scattering is another hard task that is well tackled by optical computing. Some of the tools explored

in this thesis, in particular spectral �ltering, will prove invaluable to high-contrast imaging under such

scattering conditions.

While we explored spectrum and space, which are crucial components of light and its interactions,
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there are several other directions that require attention. For example, the work in this thesis relied on

light being incoherent. However, several scienti�c applications such as microscopy and imaging via scat-

tering medium rely on coherent imaging systems, and hence it is important to build optical computing

and adaptive sensing tools for such settings. Similarly, the angular variations of light, captured as light

�elds, reveal important texture and micro-structure information about materials. As with spectrum,

light �elds are high dimensional and therefore would signi�cantly bene�t from the tools introduced in

this thesis. To this end, sampling the complete plenoptic function [1] which involves sampling three

spatial, two angular, one spectral and one temporal dimension is currently an unachievable task due to

the enormous amount of data required for even modest number of samples along each axis. We believe

this thesis makes contributions towards this grand goal.

We showed sampling and inference of HSIs at resolutions of several microns in spatial dimension

and several nanometers in spectral dimension; however, the truest bene�ts are when the resolutions are

at a much �ner scale. Tasks such as Raman spectroscopy often require programming at much �ner res-

olutions in order to accurately reveal the molecular structure. A future direction for this thesis would be

to build imagers that work at such high resolutions. Another promising future direction is to utilize ac-

tive illumination to optically compute the singular vectors of scene’s HSI. A key bene�t of such a system

is that the spectral and spatial resolutions are decoupled, since illumination is separate from the spatial

imager. High resolution hyperspectral imaging with active illumination systems will be indispensable

tools in microscopy where fast and accurate estimation of properties of the specimen is crucial.

The past decade focused on building imagers that capture compressed measurements, and then sep-

arately use computational tools to recover the signal. I believe this thesis sets tone for a new set of

imagers that utilize signal models to design sensing technologies, in a closed loop fashion. To this end,

I envision that the ideas presented in this paper is a step towards bring the hyperspectral camera to

mainstream computer vision applications, reducing the gap between what we can measure and what we

should measure.



ASupplementary for KRISM

A.1 Real experiments

We provide visualizations for some of the real experiments presented in the previous sections. Speci�-

cally, we compare the captured singular vectors for two scenes with spectrally Hadamard multiplexed

measurements. We also show spectral band images for Macbeth chart and crayons chart, showing the

intensity variation of various colors.

A.1.1 Visualizing spatial images

Figure A.3 shows images across various wavelengths for the “color checker" scene and “crayons" scene.

In particular, The images show the variation of intensity of each color swatch/crayon across wave-

lengths, with blur objects being brighter initially, green objects in the middle and red objects �nally.

Figure A.1 shows RGB image captured by our lab prototype as well as a cellphone camera for the Chop-

per scene. The insets shows textured areas which show high spatial resolution of our prototype.

(a) KRISM (b) Cellphone

Figure A.1: Comparison of RGB images with our lab prototype and cellphone. Note that the KRISM image

is not white balanced whereas the cellphone image is white balanced by default. The zoomed in patches show edges

in the toy, establishing high spatial resolution of our lab prototype.
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A.1.2 Comparison of singular values and singular vectors

The ability of KRISM to accurately compute singular vectors has been presented in the previous sec-

tions. Here, we present two more experimental measurements to show how KRISM is applicable across

various settings. Comparison is done against spectrally Hadamard multiplexed data, and then comput-

ing singular vectors on computer. We evaluate three metrics, namely, SNR between singular values,

SAM between spectral singular vectors and SAM between spatial singular vectors. “Color checker" ex-

periment (�rst row in Figure A.2) was captured by placing the Macbeth chart in front of the camera,

and illuminating with a tungsten-halogen light source. The PSNR between singular values was 45.8dB,

average SAM between spectral singular vectors 10◦ and that between spatial singular vectors was 10◦.

“Chopper" experiment (second row in Figure A.2) was captured by placing the Chopper toy in front of

the camera, and illuminating it with CFL, a peaky illuminant. The PSNR between singular values was

39.3dB, average SAM between spectral singular vectors 10◦ and that between spatial singular vectors

was 10◦. Finally, the last row shows a comparison between singular values from Hadamard multiplex-

ing and singular values from KRISM for some scenes presented in the previous sections. Across the

board, KRISM computes the low-rank approximation with very high accuracy, as is evident from the

experiments.

A.2 Synthetic experiments

We showed some simulation results in the previous sections. We show several more examples here,

with emphasis on diversity of datasets. We tested KRISM via simulations on four di�erent datasets and

compared it against competing techniques for hyperspectral imaging.

Datasets. We used the hyperspectral data set by Arad and Ben-Shahar [2] (ICVL dataset), which con-

sists of several high spatial and spectral resolution hyperspectral images covering 519 bands in visible

and near IR wavelengths. We downsampled the HSI to 256 × 256 × 260 to keep computation with

CASSI-type simulations tractable. We also used datasets from Choi et al. [18], Yasuma et al. [102] and

Chakrabarti and Zickler [15] with 31 spectral bands to compare with learning-based techniques. Finally,

we present one example from NASA AVIRIS to compare KRISM against Row/Column CS proposed in

[27].

Competing methods. We compared KRISM against four competing CS hyperspectral imaging tech-

niques. All methods were simulated with 60dB readout and photon noise and 12-bit quantization.
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Speci�cs of each simulation model are given below:

1. KRISM: We performed a rank-4 approximation of the HSI with 6 spatial and 6 spectral measurements.

Di�raction blur due to coded aperture was introduced both in spectral and spatial pro�les. Decon-

volution was then done using Wiener deconvolution in both spectral and spatial domains.

2. Fazel et al. [27]: As with KRISM, we performed a rank-4 approximation of the HSI by computing

random Gaussian projections with 6 spatial and 6 spectral measurements. Di�raction blur due to

coded aperture was introduced as well.

3. Lin et al. [57]: We recovered HSI from a single snapshot image using technique in Lin et al. [57].

4. Choi et al. [18]: We recovered HSI from a single snapshot image using technique in [18].

5. Kittle et al. [49]: We used the multi-frame CASSI architecture for obtaining coded images, and re-

covered the HSI with sparsity prior in wavelet domain. We reduced the number of spectral bands for

ICVL dataset to 31 to keep computations tractable.

6. Sun and Kelly [93]: We obtained spatially-multiplexed spectral measurements with random permuted

Hadamard matrix and recovered the HSI with sparsity in wavelet domain.

We de�ne reconstruction SNR as rsnr = 20 log10
(
‖x‖F
‖x−x̂‖F

)
, where ‖ · ‖F is the Frobenius norm and x̂ is

the recovered version of x.

A.2.1 Performance with high spectral resolution

The true potential of KRISM can be exploited when there are a large number of spectral bands, such as

the ones in the dataset by Arad and Ben-Shahar [2]. We keep compression low for competing methods

as the accuracy scaled poorly with higher compressions (see Figure A.7) Results on some representative

examples have been show in Figure A.4. Qualitatively, the reconstructed spatial images as well as the

spectral signatures are very close to ground truth. Figure A.5 shows a comparison of reconstruction

SNR as a function of compression ratios. As is evident, KRISM works signi�cantly better than other

methods despite very high compression ratios. The closes competitor to KRISM is the Row/Column CS

approach by [27]. We show comparison between KRISM and Row/Column CS on one example from

NASA’s AVIRIS dataset consisting of of 224 spectral bands between 400-2400nm, and on SpecTIR [92]

dataset consisting of 178 spectral bands, making it a good example to test our method. Results are shown

in Figure A.6. For the same compression ration, KRISM o�ers a 10dB higher accuracy, and is qualitatively

more accurate in both spatial images and spectral pro�les.
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A.2.2 Performance with low spectral resolution

Most of the visible HSI datasets contains 31-33 spectral bands between 400 - 700nm. In this regime,

learning-based snapshot techniques such as Choi et al. [18] and [57] have better performance. We used

the dataset by Chakrabarti and Zickler [15], Choi et al. [18] and Yasuma et al. [102] for simulations

with 31 spectral bands. Spatial resolution has been speci�ed for individual images in Figure A.8. We

compare KRISM with varying number of measurements against snapshot techniques [18, 57] in Figure

A.9. We observe that in the setting closest to snapshot mode, Choi et al. [18] and Lin et al. [57] do

outperform KRISM; this is to be expected since after a single iteration, KRISM provides only a rank-

1 approximation. As the number of KRISM iterations are increased (which allows approximations of

higher ranks), KRISM performance improves. We note that simulations for [57] were performed with

downsampled dataset and only on a select set of scenes as the recovery required several days for each

scene even with parallelization. Figure A.10 shows recovery SNR as a function of compression for multi-

frame techniques. As was discussed earlier, KRISM is particularly e�ective for high resolution imaging.

However, even with small number of bands, performance is superior in terms of spatial and spectral

resolutions. It is worth noting that learning-based snapshot technique by [18] outperforms [49] with

fewer measurements. This is expected, as it exploits the smooth nature of underlying spectra.
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Figure A.2: Comparison of singular values and singular vectors captured via spectrally Hadamard-

multiplexed sensing and KRISM. The left image singular vector is from Hadamard multiplexed data and the

right one is from KRISM. Blue represents negative values and red represents positive values. KRISM method re-

quired capturing a total of 6 spectral and 6 spatial measurements to construct 4 singular vectors. While the Nyquist

sampling method took a total of 59 minutes, KRISM took under 5 minutes. Top row shows singular vectors for

“Color checker" scene, the middle row shows singular vectors for “Chopper" scene, and the last row compares

singular values computed by Hadamard multiplexing and KRISM. Overall, our optical setup captures a low-rank

approximation of the HSI with high accuracy.
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(a) “Color checker"

scene

(b) Spectral band images

(c) “Crayons" scene (d) Spectral band images

Figure A.3: Crayons and Macbeth scene images across di�erent wavelengths. Both scenes were captured

by illuminating the subjects with a tungsten-halogen bulb and then obtaining a rank-4 approximation with KRISM.

The intensity of the crayons across wavelengths correctly re�ects the individual color.
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Figure A.4: Simulations on high resolution datasets. Visualization of results for the high resolution dataset by

[2]. “CASSI" represents Single Disperser CASSI, recovered using spectral prior [18]. Kittle et al. uses multiple spatio-

spectral images [49], and was reconstructed with sparsity in wavelet domain. Sun and Kelly represents spatially-

multiplexed measurements [93], and was reconstructed with sparsity in wavelet domain. Row/Col CS represents

random row and column projections [27], and KRISM is the proposed method. Simulations were performed with

60dB readout, and photon noise. Row/Col CS and KRISM were simulated with spatio-spectral di�raction blur. We

show zoomed in image patches for each method and spectrum at pixel marked by a cross. Across the board, KRISM

outperforms all methods, both qualitatively and quantitatively.
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Figure A.5: Accuracy vs. compression ratio. Comparison of reconstruction SNR vs compression ratio for various

methods on [2] dataset. Simulations were done as described in Figure A.4. KRISM outperforms any other method

by a larger margin in both approximation accuracy, as well as compression ratio.
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Figure A.6: KRISM vs Row/Col CS. Comparision of Row/Col CS vs KRISM for large number of spectral bands

with high spatial and spectral resolution, making a good candidate for KRISM. Simulations were done with 60dB

readout noise, photon noise, and di�raction blur on spatial images and spectra. We show zoomed in image patches

for each method and spectrum at pixel marked by a cross. For the same compression ratio, KRISM outperforms

Row/Col CS by 10dB.
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(a) Ground truth (b) KRISM

47.7dB

(c) Sun et al.

32.5dB

(d) Kittle et al.

30.2dB

Figure A.7: Performance of multi-frame methods at high compression. We show a simulated example

of recovery with N /M = 43 with (a) KRISM, (b) Sun and Kelly [93] and (c) Kittle et al. [49]. Existing multi-frame

techniques do not work well under high compression ratio. While KRISM recovers spatial images accurately, [49, 93]

lead to severe loss in resolution.
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Figure A.8: Comparison of reconstructed images low spectral resolution. All experiments were performed

with 60dB readout noise and poisson noise. We show zoomed in image patches for each method and spectrum at

pixel marked by a cross. For lower spectral resolution, KRISM o�ers limited bene�ts in compression ratios but is

superior in terms of spatial and spectral reconstructions and overall accuracy.
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Figure A.9: Evaluation on Door dataset from [15]. We compared KRISM against methods from [57] and [18]

on low-resolution spectra. We show zoomed in image patches for each method and spectrum at pixel marked by a

cross. At settings close to snapshot sensing (K = 1), data-driven techniques perform better; with more iterations,

KRISM achieves higher quality in spatial and spectral resolution.
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Figure A.10: Accuracy vs. compression for low-resolution datasets. Comparison of reconstruction SNR vs

compression ratio for various methods on [15] dataset. Simulations were done as described in Figure A.8. Despite

lower compression ratios, KRISM promises greater overall performance.
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B.1 Simulations

We showed simulations on the “Indian Pine" dataset from NASA where the average accuracy was com-

pared with state-of-art techniques in hyperspectral classi�cation. Our simulations showed that using

spectral features alone reduced accuracy by a small amount but required far more measurements than

the number of bands in the HSI. We show simulations on some more datasets in comparison to state-of-

art results along with visualization of labels in Fig. B.1. We used the same models for SVM and DNN as

our real experiments. To keep comparison fair between SVM and DNN, we set the number of spectral

�lters to number of object classes. Overall, DNN outperforms SVM, often by a large margin. More im-

portantly, DNN is capable of achieving very high accuracy even when the �rst layer of the network is

constrained to be linear, and fully connected. This validates our hardware for classi�cation tasks.
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(a) Indian Pine (b) SVM (83.1%) (c) DNN (93.0%)

(d) Pavia center (e) SVM (96.5%) (f) DNN (99.4%)

(g) Pavia center (h) SVM (82.2%) (i) DNN (96.7%)
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(j) Salinas (k) SVM (91.6%) (l) DNN (97.3%)

Figure B.1: Performance comparison. Each dataset was trained with same number of spectral �lters as number

of object classes. Across the board, DNN has higher accuracy than SVM and can achieve near-perfect classi�cation.
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