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Wavelet Tree Parsing with Freeform Lensing
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We propose an architecture for adaptive sensing of images by progressively measuring its wavelet coefficients. Our approach,
commonly referred to as wavelet tree parsing, adaptively selects the specific wavelet coefficients to be sensed by modeling the
children of dominant coefficients to be dominant themselves. A key challenge for practical implementation of this technique is that
the wavelet patterns, especially at finer scales, occupy a tiny portion of the field of view and, hence, the resulting measurements
have very poor light levels and signal-to-noise ratios (SNR). To address this, we propose a novel imaging architecture that uses a
phase-only spatial light modulator as a freeform lens to concentrate a light source and create the wavelet patterns. This ensures
that the SNR of measurements remain constant across different spatial scales. Using a lab prototype, we demonstrate successful
reconstruction on a wide range of real scenes and show that concentrating illumination enables us to outperform non-adaptive
techniques as well as adaptive techniques based on traditional projectors.
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Fig. 1: Adaptive wavelet-tree sensing. (a) The 2D wavelet transform of an image is sparse and is accurately modeled as a connected
rooted subtrees across spatial scales. (b) This model is used to adaptively sense an image by parsing the children of the dominant wavelet
coefficients. We propose an active illumination setup where a phase-only spatial light modulator is used as a freeform lens to concentrate
the illumination source onto the projected wavelet patterns. This results in a constant measurement SNR at all spatial scales. (c) - (e) show
captured images with our method at various fractions of measurements, illustrating progressive reconstruction.

I. INTRODUCTION

THE vast majority of imaging techniques rely on acquiring
non-adaptive measurements of the signal of interest.

From the classical approach of Nyquist sampling to recent
advances in compressive sensing, non-adaptive measurement
operators have largely dominated both the theory and imple-
mentation of imaging systems. The hallmark of non-adaptive
imaging is that the measurement operator is pre-determined.
This is in sharp contrast to adaptive imaging where-in each
measurement can influence the design of subsequent measure-
ment operators. This paper provides a design for an adaptive
imaging system.

Of specific interest to this paper is the so called wavelet
tree model, which suggests that the wavelet coefficients of an
image exhibit “strong persistence across scales” [1], i.e, the
coefficients at a discontinuity tend to persist for a wide range
of spatial scales. As a consequence, the wavelet transforma-
tion of an image is not just well-approximated as a sparse
signal, but also highly structured, i.e., the dominant wavelet
coefficients are clustered across multiple scales (see Fig. 1).

The persistence of coefficients across scales has numerous
applications that range from predictive modeling in image
compression [2] to its use as a structured regularizer for
denoising [3] and compressive sensing [4].

The predictive power of the wavelet tree model finds its
utmost impact when used for adaptively sensing an image [5],
where we sequentially measure the wavelet coefficients of the
image. At each step, we measure the wavelet coefficients at the
spatial location of the coefficient with the largest magnitude,
but at a finer scale. This measurement strategy is especially
effective, often providing high quality images even when only
a small fraction of the coefficients have been measured, with
little or no computational overhead for the reconstruction.
However, since wavelet atoms are spatially compact, only a
small part of the field of view is sensed at finer spatial scales;
this dramatically reduces the light incident on the sensor and
causes the the signal to noise ratio (SNR) of the measurements
to reduce. This vastly limits the practical implementation of
the technique especially for sensing at high resolutions.

We propose a novel adaptive imaging strategy that delivers
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on the promise of wavelet tree parsing by making two key
modifications. First, we pursue an active illumination strategy
that projects wavelet atoms on to the scenes to measure the
wavelet coefficients. Second, we use a phase-only spatial light
modulator (SLM) as a freeform lens [6] to redistribute a light
source into the shape of a wavelet atom. We show that this
enables measurement of the wavelet coefficients without a
drop in the SNR across spatial scales, and results in high
quality images, with very few measurements (see Fig. 1).

This paper makes the following contributions.
1) Wavelet-tree parsing with adaptive illumination. We pro-

pose an active-illumination optical system that is capable
of adaptively sensing wavelet coefficients using a phase-
only SLM.

2) Reduced computational footprint. We show that an adaptive
strategy provides progressive reconstructions with negligi-
ble computational footprint.

3) Real experiments. We demonstrate a hardware prototype
and capture a diverse set of scenes to establish the efficacy
of our method.

II. PRIOR WORK

The key ideas of this paper revolve around imaging from
a small collection of high SNR measurements. This touches
upon ideas in multiplexed imaging and compressive sensing;
we briefly discuss them here.

A. Multiplexed imaging

One of the seminal works in computational imaging is that
the use of multiplexing codes such as Hadamard matrix [7], [8]
increases SNR of reconstructions [9], [10], [11], specifically
when the noise is independent of the signal. This has found
applications in spectrometry [12], hyperspectral imaging [13],
and light transport estimation [10]. While Hadamard multi-
plexing can lead to increased reconstruction quality, it does
not lead to any reduction in the number of measurements that
need to be acquired.

B. Compressive sensing

Compressive sensing (CS) aims to recover a signal from a
set of multiplexed linear measurements that are fewer than its
dimensionality [14]. Given an image x, CS seeks to recover
signal from several random projections:

y = Φx + n, (1)

where n is the measurement noise and Φ is the measurement
matrix. Since the measurements are fewer than signal dimen-
sion, (1) is an underdetermined set of linear equations. To
get a unique solution to this underdetermined problem, we
regularize the inverse process using signal priors to obtain an
optimization problem of the form

min
x
‖y − Φx‖2 + λΓ(x), (2)

where Γ(x) is a prior on the signal class of interest, typically
sparsity of the signal under some transformation. The success

Method Signal model Recovery 
algorithm Comments

Compressive 
Sensing

Sparse wavelet 
transform ℓ1 minimization

Slow reconstruction, 
prone to noise folding 

[15]

Wavelet tree Tree-based CS 
[31], [1] Slow reconstruction

DMD projector Greedy tree 
pursuit

Inverse wavelet 
transform

Fast reconstruction, 
degrading SNR at 

higher spatial scales

Phase SLM 
projector

Greedy tree 
pursuit

Inverse wavelet 
transform

Fast reconstruction, 
constant SNR for all 

measurements

TABLE I: Comparison of sensing strategies. CS relies on random
projections of the image that are not adaptive to scene. Further, using
a prior results often leads to slow recovery time, amplified with
the problem of noise folding [15]. In contrast, wavelet-tree parsing
directly captures the dominant wavelet coefficients using a greedy but
adaptive approach. However, when the scene is illuminated with a
DMD-based projector, the SNR degrades for high frequency features
such as edges. Our proposed method projects patterns using a phase-
only SLM that concentrates all the light into the spatially compact
wavelet pattern. This results in fewer measurements, negligible re-
construction time, and a constant SNR independent of scale.

of CS relies on the availability of a tractable and concise prior
for the signal. One such example is the 2D discrete wavelet
transform (DWT) of images.

The DWT is an orthonormal transformation that decom-
poses an image across multiple spatial scales (Fig 1 (a)). The
coarsest scale is called the approximation coefficients and
represents smooth regions in the image and the finer scales
called detail coefficients capture transitions such as edges at
different spatial scales. Since images are well approximated
as being smooth except for a finite number of discontinuities
(edges), the DWT often provides a sparsifying transformation.

a) Single pixel camera: CS of images with real hardware
was initiated with the seminal work of single pixel camera
(SPC) by Duarte et al. [16]. Instead of using a 2D sensor,
images are captured using a single photodetector along with a
spatial light modulator (SLM). The SLM is programmable and
enables measurement of random linear projections of the scene
being imaged, which are then used to reconstruct the image
by solving the optimization function in (2). This results in a
low-cost optical setup that required only a single measurement
unit, and captures far fewer measurements than the image
dimension.

b) Projector-based SPC: When the imaging hardware
has illumination as an integral component — for example, in
microscopy — a projector may be used instead of a 2D spatial
light modulator [17]. The same compressive measurements of
image of the scene can be obtained by projecting the desired
patterns on the scene and measuring the scene light level with
a photodetector. Our method is an instance of a projector-based
SPC, but with the key difference that we use a phase-only SLM
to generate the wavelet patterns, which efficiently redistributes
instead of spatially attenuating light.

c) Drawbacks of CS: While CS is a promising technique
for high-dimensional images, practical implementations suffer
from some setbacks. CS suffers from the problem of noise
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folding. Treichler et al. [15] show that for every doubling in
compression of measurements, the reconstruction SNR falls by
3 dB. Hence, CS does not provide significant benefits at higher
compression ratios. Further, recovery of signal requires a com-
putationally expensive and iterative optimization algorithm.
Finally, the measurement strategy of CS is non-adaptive and
not tailored to the specific instance of signal being measured.
However, there are significant benefits that can be achieved
if sampling strategy is tightly coupled to the specific signal
being sensed.

C. Adaptive sensing

In contrast to CS, adaptive sensing relies on measurements
tailored to the specific instance of a signal. At the heart of
adaptive sensing is a predictive signal model that enables
prediction of the next measurement based on some or all of
the previous measurements. This admits a sensing strategy that
maximizes SNR of measurements with fewest measurements,
as only the significant components of the signal are sensed.
Further, such a sensing scheme often has minimal reconstruc-
tion time, as the signal (or its orthonormal transformation) is
sensed directly. There is a rich body of literature that relies on
adaptive sensing to achieve higher accuracy [18], [19], or to
capture fewer measurements [20]. In the field of visual signals,
adaptive sensing has shown promising results for estimating
light transport matrices [21], hyperspectral images [22], and
images [5]. Our paper focuses on adaptively sensing of images
using an SPC architecture.

Wavelet trees of images: A key example of a predictive
model, and central to our proposed method, is the rooted tree
structure of wavelet coefficients of images. Specifically, the
wavelet tree model organizes the wavelet coefficients on a
tree with each node corresponding to a coefficient and each
level of the tree corresponding to the wavelet transform scale.
Under such a configuration, the dominant coefficients lie on
a rooted subtree, i.e., if a parent coefficient is zero, then all
the children coefficients are zero with high probability. The
intuition is that discontinuities in the form of edges persist
across scales and hence manifest as dominant coefficients. The
correlations between wavelet coefficients has been extensively
studied before [23], [24], [25] and has been used for significant
improvements in image compression [2], [26], rendering [27],
and even compressive imaging [4], [28], [29]. In this context,
this paper proposes an imaging hardware that relies on wavelet
tree of images to capture image of a scene with very few
measurements at high SNR.

III. ADAPTIVE WAVELET TREE PARSING

Closely related to the ideas in this paper is the work by
Deutsch et al. [5] who also proposed an adaptive imaging
scheme using wavelet-tree parsing. The proposed strategy is
initialized by sensing all approximation coefficients of the
image of the scene using an SPC architecture. Then, the detail
coefficients are sampled by traversing the wavelet-tree, where
only children of significant parent coefficients are measured
(Fig. 1 (b)). When images are well modeled as a wavelet tree,
this adaptive sensing scheme outperforms reconstructions from

(a) Scale 1 (b) Scale 2 (c) Scale 3 (d) Scale 4 (e) Scale 5

(f) Energy vs. spatial scale

Fig. 2: Fall-off of energy in wavelet bands. The plot shows average
energy of wavelet coefficients simulated on the “cameraman” image.
Wavelet patterns at finer spatial scales multiplex a smaller field of
view which results in reduced SNR of measurements. This poses
a problem when using adaptive sensing, as the measurement noise
dominates at high spatial scales. Instead of using a DMD projector
to generate patterns, we use a phase-only SLM as a freeform lens
to concentrate light over the wavelet basis’s spatial support, thus
maintaining measurement energy above noise floor. Then adaptive
sensing of images results in higher SNR than CS.

non-adaptive compressive sensing. Further, since the wavelet
coefficients are sampled directly, we can recover the sensed
image by applying an inverse DWT. The results in Deutsch
et al. are, however, all based on simulated data; as we see
next, a straightforward implementation of this idea results in
measurements that have poor SNR at the finer spatial scales.

A. Failure of projector-based wavelet-tree sensing

A practical implementation of adaptive imager proposed
in [5] is impeded by noise in measurements. Since wavelet
bases are spatially compact, a smaller field of view of the
scene is multiplexed resulting in reduced signal energy at finer
scales. This leads to a decreasing SNR of the measurements
with increasing spatial scales. To be specific, the average
SNR drops by a factor of four with a doubling of the scale
parameter. This can be seen in the plot of average energy
as a function of spatial scale in Fig. 2 simulated on the
“cameraman” image. Given a noise floor, the measurements
at finer scales dramatically reduced SNR, which results in
reduced reconstruction quality at high spatial resolutions.
Alternatively, acquiring measurements with a constant SNR
across scales would require an exponential increase in the
exposure time. Our core contribution is an imaging hardware
that concentrates all light within the spatially compact region
to maintain a constant measurement SNR.

B. Freeform lensing for concentrating illumination

The effect of reduced signal levels with increasing spatial
scales can be overcome if we use a longer exposure duration to
collect more photons on the sensor. However, such a strategy
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(a) Phase SLM, 6.25%
22.8dB

(b) 12.5%, 25.3dB (c) 25%, 26.6dB (d) 50%, 27.2dB (e) 100%, 27.9dB

(a) DMD projector,
6.25% 22.4dB

(b) 12.5%, 23.4dB (c) 25%, 22.6dB (d) 50%, 20.4dB (e) 100%, 17.8dB

(a) CS, 6.25% 17.2dB (b) 12.5%, 18.8dB (c) 25%, 20.9dB (d) 50%, 21.8dB (e) 100%, 22.5dB

Fig. 3: Imaging with various strategies. We simulated imaging on the house image (256 × 256) with phase SLM projector (first row),
DMD projector (second row), and CS (third row). CS was performed with permuted Hadamard measurements and recovered with sparsity
in the wavelet basis. We modeled noise as photon and readout noise. At low resolution, the advantages of concentrating light are minimal,
since signal energy is above noise floor. However, adaptive illumination outperforms both DMD projector and CS at higher resolution.

requires exponentially longer time for capturing higher reso-
lution wavelet coefficients. Instead, we use a phase-only SLM
to project wavelet atoms on the scene. A phase-only SLM
generates patterns by redistributing light intensity within the
spatial support of a pattern and can be seen as a programmable
freeform lens [6]. Hence the total energy in the pattern stays
the same independent of size or shape of the desired pattern.
This results in a constant SNR of measurements at all scales,
with no increase in measurement time. The plot in Fig. 2
(red solid line) shows the energy of wavelet coefficients when
using an adaptive illumination strategy illustrating that the
energy stays well above the noise floor at all spatial scales.
Coupled with wavelet-tree parsing idea, we demonstrate the
first adaptive imager with high quality images captured with
only a few measurements.

C. Simulations

We compare our method against compressive sensing with
passive wavelet-tree parsing as well as compressive sensing
using permuted Hadamard entries. We model each measure-
ment as yk = P(τφ>

k x) + n, where τ models intensity
of measurements, P captures Poisson noise, n ∼ N (0, σ2)
models readout noise, and φk is the pattern projected on the

scene. The values of x were normalized between 0, 1 and used
a readout noise of 50 dB to emulate machine vision cameras.
Henceforth, we refer to the adaptive wavelet-tree sensing using
a projector as “DMD projector” sensing strategy,1 and the
proposed method as “Phase SLM” projector sensing strategy.
For simulations, as well as in our real experiments, we used
a separable Haar wavelet transform. The results remain the
same for other wavelet bases. Sensing using phase SLM as
a projector was emulated by scaling value of the projected
pattern. Hence, when simulating projection of a pattern at scale
J , the amplitude is 4J instead of 1. Finally, CS recovery was
done using `1 minimization of wavelet transform.

Figure 3 shows simulations of imaging using a DMD and
phase SLM for varying measurement rates. Using a phase
SLM outperforms a DMD projector strategy, as well as com-
pressive sensing for any number of measurements which is in
agreement with our hypothesis. Moreover, the SNR of DMD
sensing degrades with increasing measurements, as the higher
scale coefficients are very noisy and add to inaccuracies.

It is worth noting that the gains of concentrating light are

1The usage of DMD projector is only for ease of exposition. The main
idea is that a traditional projector that uses DMD or Liquid Crystal on Silicon
(LCoS) operates by attenuating amplitude, while we only modify the phase.
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(a) Bright projector (b) Dim projector

Fig. 4: Comparison of various imaging techniques. The plots
above show accuracy vs compression for the cameraman image when
imaged with a (a) bright and (b) dim projector. We observe using a
phase SLM provides significant gains when operating with sources
that are not bright.

tangible only when measurements are made with light sources
that are not too bright, as well as the images are captured at
high resolution. Figure 4 shows quantitative plot of various
imaging techniques with projector light sources of different
intensities. When the scene is illuminated by a bright projector
(τ = 10,000), concentrating light does not offer any advantage
– this is a direct consequence of a low noise floor. However,
with low light projector (τ = 100), phase SLM strategy
outperforms DMD projector strategy. As expected, the gains
are negligible at high compression as the measured coefficients
belong to small spatial scales that have large spatial supports.

IV. IMPLEMENTATION DETAILS

Figure 5(a) shows a schematic of the proposed imaging
hardware consisting of a collimated light source, a phase-
only SLM, an objective lens, and a camera that we use as
a photo-diode. The collimated light is transformed by the
phase SLM to display a pattern on the intermittent plane using
Fraunhoffer diffraction [30]. Hence, given a pattern, p(x, y),
we display its Fourier transform g(u, v) = F(p(x, y)) on the
SLM. However, since the SLM only accepts phase values,
we require |g(u, v)| = 1. We solve for the phase pattern
using the Iterative Fourier Transform (IFT) technique [31] (see
Fig. 6). The algorithm iteratively satisfies the spatial domain
constraint, |F(g(u, v))|2 = p(x, y) and frequency domain
constraint, F(p(x, y)) = g(u, v), |g(u, v)| = 1. We observe
that the optimization process converges to a satisfactory result
in 40 iterations and takes approximately 10s for a pattern of
size 1024× 1024. Computations were done on a workstation
with Intel Xeon processor with six physical cores, 64GB RAM
and 2TB hard disk.

a) Efficient generation of patterns: While the patterns
can all be generated individually and stored before hand, the
number of patterns scales quadratically with image resolution.
However, since the wavelet atoms at a given scale are transla-
tions of each other, we can translate the phase mask by adding
a 2D phase ramp whose slope is determined by the amount of
translation. Therefore, we only need to generate three positive,
and three negative patterns per scale for each of the horizontal,

Phase SLM

Beam expansion opticsLaser

Objective lens

Scene

Intermittent
 image

(a) Optical schematic

(b) Our prototype

Fig. 5: Schematic and the prototype. The proposed optical setup
consists of a monochromatic light source along with a phase-only
SLM, which only redistributes light without attenuating amplitude.
We used a phase-only SLM from Holoeye with a spatial resolution
of 1920× 1080. The SLM is capable of introducing a phase shift of
up to 2π radians. We used a machine vision camera from Pointgrey
instead as a photodetector.

(a) Pattern (b) Phase mask

Fig. 6: Design of phase pattern. We use Iterative Fourier Transform
(IFT) to design phase masks. (a) shows positive part of a diagonal
wavelet basis and (b) shows the obtained phase mask. Since wavelet
bases of a given scale are simple translations of each other, we
generate a single pattern and add an appropriate phase ramp to obtain
its translated versions.

vertical and diagonal wavelet coefficients, and one more for
approximation coefficients at the coarsest scale. For imaging
at J distinct scales, this requires optimization of a total of
6J + 1 patterns. Figure 6 shows the desired pattern, generated
phase mask and the projected pattern for some representative
examples. Figure 7 shows example of projector patterns as
well as the measured energy in each of the generated pattern.
As expected, the energy of wavelet patterns formed on the
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(a) Target patterns and projected patterns (b) Energy of each pattern

Fig. 7: Energy vs. scale. A phase SLM forms patterns by redistributing light, and hence the energy stays constant, independent of shape or
scale of pattern. (a) shows target and projected patterns for some Haar wavelet patterns. Note how the intensity in smaller wavelet patterns
is higher. (b) shows energy of each pattern as a function of spatial scale, which is almost constant.

scene is approximately constant.
b) Adaptation strategy: Deutsch et al. [5] proposed an

adaptive strategy where children of coefficients above a fixed
threshold are measured starting from coarse scale to fine scale,
and parsing each rooted sub-tree. The same strategy is also
used in JPEG2000 for compressing images using wavelet trees
[2]. However, such strategies are not be suitable for a given
measurement budget, as the mapping from a given threshold
to number of measurements is scene-dependent.

Instead, we use a greedy approach of scanning, where
the next set of measurements are the three children of
the measured coefficient with maximum magnitude. Specif-
ically, let IDWT be the currently measured set of wavelet
coefficients, and let C((x, y)) be the children indices of
DWT index (x, y). The proposed greedy approach measures
C(arg maxx,y |IDWT(x, y)|). The algorithm then proceeds by
finding the next maximum, and so on. The algorithm is encap-
sulated in Algorithm 1. Such a greedy strategy is motivated by
the idea that coefficients of edges have large magnitude, and
hence are sensed earlier than the smooth regions. The proposed
approach is illustrated with a simple diagonal image in Fig. 8.
When measurements are only a few, the algorithm prioritizes
low resolution coefficients, with some emphasis on edges.
With increasing number of measurements, priority is given
to the diagonal edge, visible as non-zero wavelet coefficients
in higher scales.

V. REAL EXPERIMENTS

We evaluate the proposed method by capturing images of
a diverse set of scenes. We show results with raster scanning
and wavelet-tree parsing at a spatial resolution of 128× 128,
and some representative examples for wavelet-tree parsing at
256× 256 spatial resolution.

a) Progressive reconstruction: Figure 1 compares
wavelet transform of an image captured by raster scanning
the scene, and the wavelet coefficients captured by optically
scanning the wavelet tree. We make two observations here.
First, our greedy strategy pursues discerning features such as
edges, as is evident from transition from image (c) to (e).
Second, the quality of reconstruction gets progressively better
with increasing number of measurements and matches the
wavelet transform computed on raster-scanned image.

Algorithm 1 Greedy DWT measurement. PROJECT() displays
a pattern on the phase SLM. MEASURE() captures a measurement
from photo detector. CHILDREN() returns children indices of a given
DWT index. DWT LOC() computes shift and scale from DWT index.

Require: Number of measurements N , Initial resolution J
Initialization
IDWT ← ZEROS(H,W ) . Initialize DWT image
k ← 0 . Current number of measurements

Step 1: Measure approximation coefficients
for x = 1 · · · J do

for y = 1 · · · J do
PROJECT(φ(x, y)) . Project pattern
IDWT(Imeas)← MEASURE() . Photo detector
k ← k + 1

end for
end for

Step 2: Measure analysis coefficients
while k ≤ N do

xmax, ymax ← argx,y |IDWT(x, y)| . Get largest meas.
Imeas ← CHILDREN(xmax, ymax) . Get child. ind.
for Imeas ∈ Imeas do

x0, y0, j ← DWT LOC(Imeas) . Get DWT params
PROJECT(ψj(x− x0, y − y0)) . Project pattern
IDWT (x, y)← MEASURE() . Photo detector
k ← k + 1

end for
end while

return IDWT . Return captured DWT

b) Accuracy comparison: Figure 9 shows two example
scenes. The snowman scene consists of a soft toy with some
spatial texture and some strong edges. The features of the
toy, such as mouth, nose and eyes are well resolved even
with 25% measurements. The toys scene on the other hand
has more spatial complexity, and hence requires up to 50%
measurements for an accurate reconstruction. The images are
of good quality even at high compression due to concentration
of sampling around edges of the image.
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(a) Newly added samples (green)

(b) Recovered image

(c) 256 meas. (d) 512 meas. (e) 1024 meas.

(f) Wavelet coefficients

Fig. 8: Illustration of sampling strategy. We incorporate a greedy
sampling strategy where children of large magnitude coefficients
are measured first. Top row shows newly added samples in green,
previously captured samples in blue and unsampled coefficients in
black. Middle row shows reconstructed image and bottom row shows
corresponding wavelet transform. At low sampling rate, the coarse
scale coefficients are given priority. As sampling rate increases, the
edge coefficients, visible as diagonal streaks in higher scales are
prioritized. This enables a progressive reconstruction of images, while
giving high importance to discerning features such as strong edges.

c) Comparison with CS: Figure 10 shows comparison
between proposed method and CS-based image reconstruction
for varying number of measurements. The images were cap-
tured at 64 × 64 spatial resolution. CS measurements were
captured with subsampled and permuted Hadamard matrix,
and image was recovered using sparsity in wavelet basis.
Imaging using adaptive sensing looks visually superior to
CS results at all compression rates. Furthermore, while CS
recovery took over a minute for each image, adaptive sensing
requires practically no time to recover the image.

d) Comparison with DMD projector: Figure 11 shows
results of adaptive wavelet tree sensing using a DMD projector
as well as our proposed hardware. We observe that light con-
centration via freeform lensing does provide reconstructions
at higher quality.

e) Advantages at high resolution: Since images are
sparser at higher resolution, adaptive sensing requires a smaller
fraction of measurements to recover high quality images.
Figure 12 shows images of horse bust at 128×128 resolution,
with 100% wavelet samples captured, as well as a 256× 256
image with only 25% samples captured. In particular, the

(a) Snowman (b) 25% wavelet,
16.2dB

(c) 100% wavelet,
16.5dB

(d) Toys (e) 25% wavelet,
20.2dB

(f) 100% wavelet,
21.4dB

Fig. 9: Performance of proposed method for varying compres-
sion. The proposed method is capable of time-budgeted measure-
ments. The quality progressively improves with increasing number of
measurements, similar in spirit to progressive decompression of JPEG
images [2]. The results shown here are on 128 × 128 images with
varying number of measurements. The accuracy is close to maximum
even at low sampling rates.

details around horse’s ear, as well as its mane is well resolved
in 256× 256 image.

f) Wavelet foveation: Foveation of a scene can be
achieved by selecting a region of interest from the low-
resolution approximation image, and then giving high weights
to this region. We show an example of foveated sampling
in Fig. 13 where the region of interest is manually selected
to be over the marble bust’s face. Foveation is done by first
measuring all approximation coefficients first, and then using
the proposed greedy wavelet sampling strategy within the
region of interest. Fine details like the curl of hair are highly
resolved within the region. The compression in measurements
was 5× for fully sampling within the region and 10× for
greedy-adaptive sampling, clearly underlying the advantages
of our method.

g) Sampling with other wavelet bases: While we showed
all our results with 2D separable Haar wavelet transform,
the results hold for any other wavelet bases. To illustrate
this, we generated Daubechies-2 wavelet bases and performed
wavelet-tree sensing on a representative scene. Figure 14
shows comparison of the proposed method with Haar wavelet
basis and Daubechies-2. As is to be expected, the results are
identical at 100% sampling (b, d). However, sampling at lower
sampling rate (a, c) shows blocky artifacts with Haar wavelets
and smoother artifacts with Daubechies-2. Depending on the
specific scenes being captured, any of the wavelet bases may
be chosen for adaptive imaging.

VI. DISCUSSIONS AND CONCLUSION

We proposed and evaluated a new imaging hardware that
is capable of measuring images at high resolution at high
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(a) Adaptive sensing
6.25%

(b) 12.5% (c) 25% (d) 50% (e) 100%

(f) CS 6.25% (g) 12.5% (h) 25% (i) 50% (j) 100%

Fig. 10: Progressive reconstruction with CS and adaptive sensing. A key advantage of adaptive sensing is that the results get progressively
better with minimal computation time. We show an example of a 64×64 scene made of letters “ICCP” with reconstruction using adaptively-
sensed measurements, and CS with permuted subsampled Hadamard multiplexing and recovery using `1 sparsity in wavelet domain. The
visual quality of adaptive sensing is superior to compressive sensing at all measurement rates. Further, while adaptive sensing takes negligible
amount of time to reconstruct images, we need to solve a complex optimization problem for CS everytime we get new measurements.

(a) P. SLM, 25% (b) 50% (c) 75%

(d) DMD p., 25% (e) 50% (f) 75%

Fig. 11: DMD projector vs phase SLM. We captured a 64 × 64
image with a laser projector as well as our prototype to compare the
advantages of concentrating light. While the images look similar at
low sampling rates, adaptive sensing with DMD adds high frequency
artifacts at higher sampling rates, a direct consequence of reduced
signal energy.

compression rates. This is achieved by projecting wavelet
patterns using a phase-only SLM which concentrates light
into the spatially compact wavelet pattern, thereby overcoming
reducing SNR with higher resolution. We captured real results
over a diverse set of scenes, showing the superiority of our
method in terms of fewer measurements and higher quality of
reconstruction. Our method for the first time shows decoupling
of image resolution and number of samples, without long
reconstruction times or compromise in image quality.

(a) 128× 128, 100% (b) 256× 256, 25%

Fig. 12: Advantages at higher resolution. Images are sparser
as resolution increases, which works in favor of adaptive wavelet-
tree parsing. We show an example scene comprising of a horse bust
sampled at 128× 128 as well as at 256× 256 with same number of
measurements. Despite a 2× increase in resolution, we achieve finer
spatial details without an increase in measurements.

a) Limitations: The proposed method has limitations that
arise from three sources — the use of active illumination,
failure of wavelet tree models and finally, the specific proto-
type used. First, the use of an active illumination limits the
range of scenes on which our imager can be used; scenes that
contain strong global effects and specular reflections violate
the imaging model used in the paper and hence, lead to
artifacts in reconstructions (see Fig. 15). Second, images with
high frequency features have a dense wavelet transform that
do not necessarily follow the wavelet tree model, requiring
a full parsing of the images’ DWT. Figure 16 shows a
scene captured by our setup at 128 × 128 spatial resolution
with varying number of measurements and the corresponding
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(a) 128× 128
raster scan

(b) 256× 256
foveated,

10% measurements

(c) 256× 256
foveated,

19% measurements

Fig. 13: Optical wavelet foveation. Our setup is capable of
selectively sampling a region of interest; We show an example here
with selectively high resolution sampling over the marble bust. Even
with 10% measurements, our method is capable of capturing fine
details in the scene.

(a) Haar, 25% (b) Haar, 100%

(c) Daubechies-2, 25% (d) Daubechies-2, 100%

Fig. 14: Sampling with Daubechies wavelets. Though Haar
wavelets are a popular choice, our setup is capable of capturing any
wavelet decomposition. Here we show a comparison with Daubechies
wavelets with two filter taps.

wavelet transform. The key observation here is that the central
high frequency part is not sampled till much later. The
sector star is a good example of violation of the wavelet-
tree model – the coefficients at lower spatial scales are zero,
but are significantly high at higher spatial resolution. Third,
our current prototype is bottlenecked by speed of phase-only
SLM that runs at 10fps. This limits real-time imaging based
on wavelet sensing. One potential way to speed up acquisition
is use galvos and focus tunable lenses to translate and scale the
projected pattern, thereby avoiding the bottlenecks presented
by the low operating speed of the SLM.

(a) Frog imaged by
cellphone camera

(b) Wavelet, 25% (c) Wavelet, 100%

Fig. 15: Failure due to non-Lambertian BRDF. When the scene
to be imaged is highly specular, active illumination based methods
fail to work well. This can be seen from the blocky artifacts on the
lips of the ceramic frog.

VII. ACKNOWLEDGEMENTS

The authors acknowledge support from the National Science
Foundation under the grants CCF-1652569, IIS-1618823, and
the National Geospatial-Intelligence Agency’s Academic Re-
search Program (Award No. HM0476-17-1-2000).

REFERENCES

[1] R. G. Baraniuk, “Optimal tree approximation with wavelets,” in Wavelet
Applications in Signal and Image Processing VII, 1999.

[2] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3445–
3462, 1993.

[3] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding
for image denoising and compression,” IEEE Trans. Image Processing,
vol. 9, no. 9, pp. 1532–1546, 2000.

[4] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based
compressive sensing,” IEEE Trans. Info. Theory, vol. 56, no. 4, pp.
1982–2001, 2010.

[5] S. Deutsch, A. Averbush, and S. Dekel, “Adaptive compressed image
sensing based on wavelet modeling and direct sampling,” in SAMPTA,
2009, pp. General–session.

[6] G. Damberg, J. Gregson, and W. Heidrich, “High brightness HDR
projection using dynamic freeform lensing,” ACM Trans. Graphics,
vol. 35, no. 3, p. 24, 2016.

[7] M. Harwit, Hadamard Transform Optics. Elsevier, 2012.
[8] M. Harwit and N. J. Sloane, Hadamard Transform Optics, 1979.
[9] O. Cossairt, M. Gupta, and S. K. Nayar, “When does computational

imaging improve performance?” IEEE Trans. Image Processing, vol. 22,
no. 2, pp. 447–458, 2013.

[10] Y. Y. Schechner, S. K. Nayar, and P. N. Belhumeur, “A theory of
multiplexed illumination,” in Intl. Conf. Computer Vision, 2003.

[11] Y. Y. Schechner, S. K. Nayar, and P. Belhumeur, “Multiplexing for op-
timal lighting,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 29, no. 8, pp. 1339–1354, 2007.

[12] J. A. Decker, “Experimental realization of the multiplex advantage with
a Hadamard-transform spectrometer,” Applied Optics, vol. 10, no. 3, pp.
510–514, 1971.

[13] M. Gehm, M. Kim, C. Fernandez, and D. Brady, “High-throughput, mul-
tiplexed pushbroom hyperspectral microscopy,” Optics Express, vol. 16,
no. 15, pp. 11 032–11 043, 2008.

[14] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Processing Mag-
azine, vol. 24, no. 4, pp. 118–121, 2007.

[15] J. Treichler, M. Davenport, and R. Baraniuk, “Application of compres-
sive sensing to the design of wideband signal acquisition receivers,”
US/Australia Joint Work. Defense Appl. Signal Processing, vol. 5, 2009.

[16] M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun,
K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, p. 83,
2008.
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