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Fig. 1. Hyperspectral imagers resolve scenes at high spatial and spectral resolutions. We propose a novel architecture called KRISM that provides the ability to
implement two operators: a spatially-coded spectrometer and a spectrally-coded spatial imager. By iterating between the two, we can acquire a low rank
approximation of the hyperspectral image in a light efficient manner with very few measurements. The left image shows optical schematics for implementing
the two operators. On the right, we show a hyperspectral image of a scene illuminated with a compact fluorescent lamp (CFL) acquired using our lab prototype.
The proposed method enables high spatial and spectral resolution as observed in the zoomed-in image patches and CFL peaks, respectively.

We present an adaptive imaging technique that optically computes a low-
rank approximation of a scene’s hyperspectral image, conceptualized as a
matrix. Central to the proposed technique is the optical implementation of
two measurement operators: a spectrally-coded imager and a spatially-coded
spectrometer. By iterating between the two operators, we show that the
top singular vectors and singular values of a hyperspectral image can be
adaptively and optically computed with only a few iterations. We present
an optical design that uses pupil plane coding for implementing the two
operations and show several compelling results using a lab prototype to
demonstrate the effectiveness of the proposed hyperspectral imager.

CCS Concepts: • Computing methodologies → Computational pho-
tography; Hyperspectral imaging;

Additional Key Words and Phrases: Krylov subspaces, optical computing,
coded apertures

ACM Reference Format:
Vishwanath Saragadam and Aswin C. Sankaranarayanan. 2019. KRISM —
Krylov Subspace-based Optical Computing of Hyperspectral Images. ACM
Trans. Graph. 38, 5, Article 148 (October 2019), 14 pages. https://doi.org/https:
//doi.org/10.1145/3345553

1 INTRODUCTION
Hyperspectral images (HSIs) capture light intensity of a scene as a
function of space and wavelength and have been used in numerous
vision [Kim et al. 2012; Pan et al. 2003; Tarabalka et al. 2010], geo-
science and remote sensing applications [Cloutis 1996; Harsanyi
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and Chang 1994]. Traditional approaches for hyperspectral imag-
ing, including tunable spectral filters and pushbroom cameras, rely
on sampling the HSI, i.e., measuring the photon counts in each
spatio-spectral voxel. When imaging at high-spatial and spectral
resolutions, the amount of light in a voxel can be quite small, thus
requiring long exposures to mitigate the effect of noise.
HSIs are often endowed with rich structures that can be used to

alleviate the challenges faced by traditional imagers. For example,
natural scenes are often comprised of a few materials of distinct
spectra and further, illumination of limited spectral complexity [Lee
et al. 2000; Parkkinen et al. 1989]. This implies that the collection
of spectral signatures observed at various locations in a scene lies
close to a low-dimensional subspace. Instead of sampling the HSI of
the scene one spatio-spectral voxel at a time, we can dramatically
speed-up acquisition and increase light throughput by measuring
only projections on this low-dimensional subspace. However, such a
measurement scheme requires a priori knowledge of the scene since
this subspace is entirely scene dependent. This paper introduces an
optical computing technique that identifies this subspace using an
iterative and adaptive sensing strategy and constructs a low-rank
approximation to the scene’s HSI.

The proposed imager senses a low-rank approximation of a HSI by
optically implementing the so-called Krylov subspacemethod [Golub
and Kahan 1965]. We show that this requires two operators: a
spatially-coded spectrometer and a spectrally-coded spatial imager;
when we interpret the HSI as a 2D matrix, these two operators
correspond to left and right multiplication of the matrix with a
vector. The two operators are subsequently used in an iterative
and adaptive imaging procedure whose eventual output is a low-
rank approximation to the HSI. The proposed imager is adaptive,
i.e., the measurement operator used to probe the scene’s HSI at a
given iteration depends on previously made measurements. This is
a marked departure from current hyperspectral imaging strategies
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where the signal model is merely used as a prior for recovery from
non-adaptive measurements [Arce et al. 2014].

Contributions. We propose an optical architecture that we refer
to as KRylov subspace-based Imaging and SpectroMetry (KRISM)
and make the following three contributions:

• Optical computation of HSIs.We show that optical computing of
HSIs to estimate its dominant singular vectors provides significant
advantages in terms of increased light throughput and reduced
measurement time.

• Coded apertures for resolving space and spectrum. Sensing archi-
tectures typically used in spectrometry and imaging are mutually
incompatible due to use the of slits in spectral imaging and open
apertures in conventional imaging. To mitigate this, we study
the effect of pupil plane coding on the HSI and propose a coded
aperture design that is capable of simultaneously achieving high
spatial and spectral resolutions.

• Optical setup.We design and validate a novel and versatile optical
implementation for KRISM that uses a single camera and a single
spatial light modulator (SLM) to efficiently implement spatially-
coded spectral and spectrally-coded spatial measurements.

The contributions above are supported via an extensive set of simula-
tions as well as real experiments performed using the lab prototype.

Limitation. The benefits and contributions described above come
with a key limitation. Our method is only advantageous if there
are a sufficient number of spectral bands and the hyperspectral
image is sufficiently low rank. If we only seek to image with very
few spectral bands or if the scene is not well approximated by a
low-rank model, then the proposed method performs poorly against
traditional sensing methods.

2 PRIOR WORK
Nyquist sampling of HSIs. Classical designs for hyperspectral

imaging based on Nyquist sampling include the tunable filter —
which scans one narrow spectral band at a time, measuring the
image associated with spectral bands at each instant — or using a
pushbroom camera — which scans one spatial row at a time, measur-
ing the entire spectrum associated with each pixel on the row. Both
approaches are time-consuming as well as light inefficient since
each captured image wastes a large percentage of light incident on
the camera.

Multiplexed sensing. The problem of reduced light throughput
can be mitigated by the use of multiplexing. One of the seminal re-
sults in computational imaging is that the use of multiplexing codes
including the Hadamard transform can often lead to significant
efficiencies either in terms of increased SNR or faster acquisition
[Harwit and Sloane 1979]. This can either be spectral multiplexing
[Mohan et al. 2008] or spatial multiplexing [Sun and Kelly 2009].
While multiplexing mitigates light throughput issues, it does not
reduce the number of measurements required. Sensing at high spa-
tial and/or spectral resolution still requires long acquisition times to
maintain a high SNR. Fortunately, HSIs have concise signal models
that can be exploited to reduce the number of measurements.
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Fig. 2. HSIs, interpreted as a matrix, are often low rank. We validate this
observation by plotting accuracy in terms of peak SNR (PSNR) as a function
of the rank of the approximation. We do this for many commonly used
HSI datasets and observe that the PSNR is higher than 40dB for a rank 10
approximation across all datasets.

Low-rank models for HSIs. There are many approaches to ap-
proximate HSIs using low-dimensional models; this includes group
sparsity in transform domain [Rasti et al. 2013], low rank model
[Golbabaee and Vandergheynst 2012; Li et al. 2012], as well as low-
rank and sparse model [Saragadam et al. 2017; Waters et al. 2011].
Of particular interest to this paper is the low-rank modeling of HSIs
when they are represented as a 2D matrix (See Figure 2). These
models have found numerous uses in vision and graphics including
color constancy [Finlayson et al. 1994], color displays [Kauvar et al.
2015], endmember detection [Winter 1999], source separation [Hui
et al. 2018], anomaly detection [Saragadam et al. 2017], compressive
imaging [Golbabaee and Vandergheynst 2012] and denoising [Zhao
and Yang 2015]. Chakrabarti and Zickler [2011] also provide empiri-
cal justification that HSIs of natural scenes are well represented by
low dimensional models.

Compressive hyperspectral imaging. The low-rank model has also
been used for compressive sensing (CS) of HSIs. CS aims to recover
a signal from a set of linear measurements that are fewer than its
dimensionality [Baraniuk 2007]. This is achieved by modeling the
sensed signal using lower dimensional representations — low-rank
matrices being one such example. The technique most relevant to
this paper is that of row/column projection [Fazel et al. 2008] where
the measurement model is restricted to obtaining row and column
projections of a matrix. Given a matrix X ∈ Rm×n , and measure-
ment operators Srow ∈ Rp×m, Scolumn ∈ Rn×p , the measurements
acquired are of the following form,

Yrow = SrowX , Ycolumn = XScolumn.

When the matrix X has a rank k , it can be shown that it is sufficient
to acquire p images and p spectral profiles with p ∝ k2. In contrast,
the method proposed in this paper requires only a number of mea-
surements proportional to the rank of the matrix; however, these
measurements are adaptive to the scene. At an increased cost of
optical complexity, adaptive sensing promises accurate results with
fewer measurements than non-adaptive measurement strategies.

Hyperspectral imaging architectures. Several architectures have
been proposed for CS acquisition of HSIs. The Dual-Disperser Coded
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Method Approach Number of 
measurements

Estimation accuracy 
under noise Advantages Disadvantages

Sampling
Tunable spectral filter

𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦𝑁𝑁𝜆𝜆 𝜎𝜎 𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦𝑁𝑁𝜆𝜆

Easy calibration Low spectral resolution; high
acquisition time

Pushbroom High spectral resolution Optical complexity; high 
acquisition time

Multiplexed
Spatial multiplexing

𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦𝑁𝑁𝜆𝜆
𝜎𝜎 𝑁𝑁𝜆𝜆

Hadamard multiplexing gain High acquisition time
Spectral multiplexing 𝜎𝜎 𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦

Compressive sensing
CASSI depends on signal model

Fewer measurements

Loss in spatial/spectral 
resolution

Row/column projection ∝ 𝑘𝑘2 𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦 + 𝑁𝑁𝜆𝜆 [Fazel et al. 2008] Complex optics

KRISM (proposed method) Optical Krylov subspace ∝ 𝑘𝑘 𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦 + 𝑁𝑁𝜆𝜆
prop. to model misfit + 

noise
Fewest number of measurements; 

very high light efficiency Complex optics

Table 1. Various sensing strategies for hyperspectral imaging of Nx × Ny spatial dimension and Nλ spectral bands. Noise in measurement is assumed to be
AWGN with σ 2 variance. The expressions in third column represent the number of measurements required, while those in fourth column represent the error in
reconstruction.

Aperture Snapshot Spectral Imager (DD-CASSI) [Gehm et al. 2007]
obtains a single image multiplexed in both spatial and spectral do-
mains by dispersing the image with a prism, passing it through
a coded aperture, and then recombining with a second prism. In
contrast, the Single Disperser CASSI (SD-CASSI) [Wagadarikar et al.
2008] relies on a single prism that performs spatial coding using a
binary mask followed by spectral dispersion with a prism. Baek et
al. [2017] disperse the image by placing a prism right before an SLR
camera. The HSI is then reconstructed by studying the dispersion
of color at the edges in the obtained RGB image. Takatani et al.
[2017] instead propose a snapshot imager that uses a faced reflec-
tors overlaid with color filters. Various other snapshot techniques
have been proposed which rely on space-spectrum multiplexing
[Cao et al. 2016; Jeon et al. 2016; Lin et al. 2014a]. While snapshot
imagers require only a single image, they often produce HSIs with
reduced spatial or spectral resolutions. Data-driven approaches such
as overcomplete dictionaries [Lin et al. 2014a] and convolutional
neural networks [Choi et al. 2017] partially alleviate the loss in
resolution by building priors for the HSI. However, they require
complex optimization that can often be time consuming.

Resolution and accuracy of the HSI can be improved by acquiring
multiplemeasurements instead of a single snapshot image. Examples
include multiple spatio-spectrally encoded images [Kittle et al. 2010],
spatially-multiplexed spectral measurements [Li et al. 2012; Sun and
Kelly 2009] or separate spatial and spectral coding [Lin et al. 2014b].
While multi-measurement techniques overcome spatial and spectral
resolution limits, the price is paid in the form of increased number
of measurements and hence, reduced time resolution.

Performance of snapshot techniques can be improved by tailoring
the spatial masks to a given HSI dataset [Rueda et al. 2016, 2017] or
by optimizing spatial masks for sensing a selected subset of spectral
bands [Arguello andArce 2013]. Optimizing the spatial masks results
in increased accuracy, but still requires long reconstruction times. A
key insight into the existing methods is that the measurements are
either non-adaptive and random, or adapted to a fixed signal class.
In contrast, the proposed method is adapted to the specific instance
of the signal, requires fewer measurements, and has practically no
post-processing for reconstruction. Table 1 compares and contrasts

various HS imaging strategies and their relative merits in terms
of number of measurements and error in reconstruction. We next
discuss the concept of Krylov subspaces for low-rank approximation
of matrices, which motivates iterative and adaptive techniques and
paves the way to the proposed method.

Krylov subspaces. Central to the proposed method is a class of
techniques, collectively referred to as Krylov subpaces, for esti-
mating singular vectors of matrices. Recall that the singular value
decomposition (SVD) of a matrix X ∈ Rm×n,m ≤ n is given as
X = U ΣV⊤, where U ∈ Rm×m and V ∈ Rn×n are orthonormal
matrices, referred to as the singular vectors, and Σ ∈ Rm×n is a
diagonal matrix of singular values. Krylov subspace methods allow
for efficient estimation of the singular values and vectors of a matrix
and enjoy two key properties. First, we only need access to the
matrix X via left and right multiplications with vectors, i.e., we do
not need explicit access to the elements of the matrix X . Second,
the top singular values and vectors of a low-rank matrix can be esti-
mated using a small set of matrix-vector multiplications. These two
properties are invaluable when the matrix is very large or when it is
implicitly represented using operators or, as is the case in this paper,
the matrix is the scene’s HSI and we only have access to optical
implementations of the underlying matrix-vector multiplications.
There are many variants of Krylov subspace techniques which

differ mainly on their robustness to noise and model mismatch.
The techniques in this paper are based on the so-called Lanczos
bidiagonalization with full orthogonalization [Golub and Kahan
1965; Hernandez et al. 2007]. Such iterative operations to reduce
the complexity of matrix-vector multiplications have found use in
communication theory in the form of reduced-rank filtering [Ge
et al. 2004; Tian et al. 2005] and adaptive beam forming [Ge et al.
2006]. Our goal is to leverage the benefits of iterative operations
for low-rank approximation of high dimensional optical signals, in
particular HSIs.

Optical computing of low-rank signals. Matrix-vector and matrix-
matrix multiplications can often be implemented as optical sys-
tems. Such systems have been used for matrix-matrix multiplication
[Athale and Collins 1982], matrix inversion [Rajbenbach et al. 1987],
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as well as computing eigenvectors [Vijaya Kumar and Casasent
1981]. Of particular interest to our paper is the optical comput-
ing of the light transport operator using Krylov subspace methods
[O’Toole and Kutulakos 2010]. The light transport matrix T repre-
sents the linear mapping between scene illumination and a camera
observing the scene. Each column of the matrixT is the image of the
scene when only a single illuminant is turned on. Hence, given a vec-
tor ℓ that encodes the scene illumination, the image captured by the
camera is given as r = T ℓ. By Helmholtz reciprocity, if we replaced
every pixel of the camera by a light source and every illuminant with
a camera pixel, then the light transport associated with the reversed
illumination/sensing setup is given as T⊤. Hence, by co-locating a
projector with the camera and a camera with the scene’s illuminants,
we have access to both left- and right-multiplication of the light
transport matrix with vectors; we can now apply Krylov subspace
techniques for optically estimating a low-rank approximation to
the light transport matrix. This delightful insight is one of the key
results in [O’Toole and Kutulakos 2010].
This paper proposes a translation of the ideas in [O’Toole and

Kutulakos 2010] to hyperspectral imaging. However, as we will
see next, this translation is not straightforward and requires the
construction of novel imaging architectures.

3 OPTICAL KRYLOV SUBSPACES FOR HYPERSPECTRAL
IMAGING

In this section, we provide a high-level description of optical com-
puting of HSIs using Krylov subspace methods.

Notation. We represent HSIs in two different ways:
• H (x,y, λ) — a real-valued function over 2D space (x,y) and 1D
spectrum λ,

• X ∈ RNxNy×Nλ — a matrix with NxNy rows and Nλ columns,
such that each column corresponds to the vectorized image at a
specific spectrum.

The goal is to optically build the following two operators:
• Spectrally-coded imager I — Given a spectral code x ∈ RNλ , we
seek to measure the image y ∈ RNxNy given as

y = I(x) = Xx. (1)

The image y corresponds to a grayscale image of the scene with
a camera whose spectral response is x.

• Spatially-coded spectrometerS —Given a spatial code x̃ ∈ RNxNy ,
we seek to measure a spectral measurement ỹ ∈ RNλ given as

ỹ = S(̃x) = X⊤x̃. (2)

The measurement ỹ corresponds to the spectral measurement of
the scene, where-in the spectral profile of each pixel is weighted
by the corresponding entry in the spatial code x̃.

Since the two operators correspond to left and right multiplication
of a vector to the HSI matrix X , we can implement any Krylov
subspace technique to estimate the top singular vectors and values.

Number of measurements required. To obtain a rank-k approx-
imation of the matrix X , we would require at least k spatially-
coded spectral measurements — each of dimensionality Nλ , and
k spectrally-coded images — each of dimensionality NxNy . Hence,

the number of measurements required by the approach is propor-
tional to k(NxNy + Nλ) and, over traditional Nyquist sampling, it
represents a reduction in measurements by a factor of

k(NxNy + Nλ)

NxNyNλ
= k

(
1
Nλ
+

1
NxNy

)
. (3)

For low-rank HSIs, we can envision dramatic reductions in mea-
surements required over Nyquist sampling especially when sensing
at high spatial and spectral resolutions (see Table 1).

Challenges in implementing operators I and S. Spatially-coded
spectral measurements have been implemented in the context of
compressive hyperspectral imaging [Sun and Kelly 2009]. Here,
light from a scene is first focused onto an SLM that performs spatial
coding, and then directed into a spectrometer. For spectral coding
at a high-resolution, we could replace the sensor in a spectrometer
with an SLM; subsequently, we can form and measure an image of
the coded light using a lens. However, high-resolution spectrometers
invariably use a slit aperture that produces a large one-dimensional
blur in the spatial image due to diffraction.We show in Section 4 that
simultaneous spatio-spectral localization is not possible with either
a slit or an open aperture. This leads to the design of optimal binary
coded apertures which enable high spectral and spatial resolutions.
Subsequently, in Section 6, we present the design of KRISM and
validate its performance in Section 7.

4 CODED APERTURES FOR SIMULTANEOUS SENSING
OF SPACE AND SPECTRUM

In this section, we introduce an optical system capable of simulta-
neously resolving space and spectrum at high resolutions.

4.1 Optical setup
The ideas proposed in this paper rely on the optical setup shown in
Figure 3 which is a slight modification of a traditional spectrometer.
An objective lens focuses a scene onto its image plane, that we
denote as P1. This is followed by two 4f relays with a coded aperture
placed on the first pupil plane, P2, and a diffraction grating placed
at the plane marked as P3. We are interested in the intensity images
formed at the planes marked at the “rainbow plane” P4 and the
“spatial plane” P5, and their relationship to the image formed on P1,
the coded aperture, and the grating parameters.

We assume that the field formed on the plane P1 is incoherent and,
hence, we only need to consider its intensity and how it propagates,
and largely ignore its phase. Let H (x,y, λ) be the intensity of the
field as a function of spatial coordinates (x,y) and wavelength λ. Let
a(x,y) be the aperture code placed at the plane P2,v0 be the density
(measured in grooves per unit length) of the diffraction grating in
P3, and f be the focal length of the lenses that form the 4f relays.
The hyperspectral field intensity at the plane P4 is given as

F4(x,y, λ) =
1

λ2 f 2
a2(−x + f λv0,−y) S(λ), (4)

where S(λ) is the scene’s overall spectral content defined as

S(λ) =

∫
x

∫
y
H (x,y, λ)dxdy.
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Fig. 3. Schematic diagram of simultaneous spatio-spectral measurements with a coded aperture. The diffraction grating disperses light along x-axis. The
image of the scene is formed on plane P1. The coded aperture is placed in P2, which introduces a diffraction blur in spatial plane P3, and dictates the spectral
profile formed on the plane P4. A slit or an open aperture on P2 is not a good choice for simultaneously high spatial and spectral resolution. Instead, we rely
on design of a novel pupil aperture that enables simultaneous high spatial and spectral resolution.

The intensity field at the spatial plane P5 is given as

F5(x,y, λ) = H (x,y, λ) ∗

���� 1
λ2 f 2

A

(
−

x

λ f
,−

y

λ f

)����2 , (5)

whereA(u,v) is the 2D spatial Fourier transform of the aperture code
a(x,y), and ∗ denotes two-dimensional spatial convolution along x
and y axes. These expressions arise from Fourier optics [Goodman
2005] and their derivation is provided in the supplemental material.

Image formed at the rainbow plane P4. A camera with spectral
response c(λ) placed at the rainbow plane would measure

IR (x,y) =

∫
λ
a2(−x + f λv0,−y)

1
λ2 f 2

S(λ)c(λ)dλ

∝ a2(−x,−y) ∗

(
S

(
x

f v0

)
c̃

(
x

f v0

))
, (6)

where c̃(λ) = c(λ)/λ2 f 2. Here, the dimensionless term f v0, that
scales of the spectrum S(·), indicates the resolving power of the
diffraction grating. For example, we used a focal length f = 100mm
and a grating with groove density v0 = 300 grooves/mm for the
prototype discussed in Section 6; here, f v0 = 30,000. This implies
that the spectrum is stretched by a factor of 30,000. Therefore, a 1
nm of the spectrum maps to 30 µm, which is about 6-7 pixel-widths
on the camera that we used. The key insight this expression provides
is that the image IR is the convolution of the scene’s spectrum —
denoted as a 1D image — with the aperture code a(·, ·) (see Figure 4).
This implies that we can measure the spectrum of the scene, albeit
convolved with the aperture code on this plane; this motivates our
naming of this plane as the rainbow plane.

Image at the spatial plane P5. A camera with the spectral response
c(λ) placed at the spatial plane P5 would measure

IS (x,y) =

∫
λ

(
H (x,y, λ) ∗

���� 1
λ2 f 2

A

(
−

x

λ f
,−

y

λ f

)����2) c(λ)dλ (7)

IS is a “spatial image” in that spectral components of the HSI have
been integrated out. Hence, we refer to P5 as the spatial plane. Figure
4 shows the image formed at P5 for different choices of the coded
apertures, including slits and open apertures.

rainbow image

514nm filter, 532nm laser

spatial image 

30 μm slit

open

Optimized code

resolution chart

coded aperture

Fig. 4. We implemented the setup shown in Figure 3 to verify the effect of
different pupil codes. The scene consists of a resolution chart illuminated
by two distinct narrowband light sources. An open aperture leads to sharp
spatial images, but the spectrum is blurred. On the other hand, a slit offers
high spectral resolution, but the spatial image is blurred. Optimized codes
offer invertible spectral blur, and at the same time, invertible spatial blur.

Implementing KRISM operations. The derivation above suggests
that we get a spatial image of the scene formed at the spatial plane
P5 and a spectral profile at the rainbow plane P4. We can therefore
build the two operators central to KRISM by coding light on one
of the planes while measuring it at the other. For the spectrally-
coded imager I, we will place an SLM on the rainbow plane P4
while measuring the image, with a camera, at P5. For the spatially-
coded spectrometer S, we place an SLM on P3 — which is optically
identical to P5 — while measuring the image formed at P4.
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Effect of the aperture code on the scene’s HSI. Introducing an aper-
ture code a(x,y) on the plane P2 can be interpreted as distorting the
scene’s HSI in two distinct ways. First, a spectral blur is introduced
whose point spread function (PSF) is a scaled copy of the aperture
code a(x,y). Second, a spatial blur is introduced for each spectral
band whose PSF is the power spectral density (PSD) of the aperture
code, suitably scaled. With this interpretation, the images formed
on planes P4 and P5 are a spectral and spatial projection, respec-
tively, of this new blurred HSI. Our proposed technique measures a
low-rank approximation to this blurred HSI and we can, in principle,
deblur it to obtain the true HSI of the scene. However, the spatial and
spectral blur kernels may not always be invertible. As we show next,
the choice of the aperture is critical and that traditional apertures
such as a slit in spectrometry and an open aperture in imaging will
not lead to invertible blur kernels.

4.2 Failure of slits and open apertures
We now consider the effect of the traditional apertures used in
imaging and spectrometry — namely, an open aperture and a slit,
respectively — on the images formed at the rainbow and the spatial
planes. Suppose that the aperture code a(x,y) is a box function of
widthW mm and height H mm, i.e.,

a(x,y) = rectW (x) rectH (y).

Its Fourier transform A(u,v) is the product of two sincs

A(u,v) = sinc(Wu) sinc(Hv).

The spatial image IS is convolved with the PSD |A(u,v)|2 scaled by
f λ, so the blur observed on it has a spatial extent of f λ/W × f λ/H
units. Suppose that f = 100 mm and λ = 0.5µm, the observed blur
is 50/W × 50/H (µm)2. The rainbow plane image IR , on the other
hand, simply observes a box blur whose spatial extent isW × H
mm2. Armed with these expressions, we can study the effect of an
open and a slit apertures on the spatial and rainbow images.

Scenario #1 — An open aperture. Suppose thatW = H = 10 mm,
then we can calculate the spatial blur to be 5µm in both height and
width and hence, we can expect a very sharp spatial image of the
scene. The blur on the rainbow image has a spread of 10 mm; for
relay lenses with focal length f = 100mm and grating with groove
densityv0 = 300 grooves/mm, this would be equivalent of a spectral
blur of 10,000/30 ≈ 333 nm. Hence, we cannot hope to achieve high
spectral resolution with an open aperture.

Scenario #2 — A slit. A slit is commonly used in spectrometers;
suppose that we use a slit of widthW = 100µm and height H =
10mm. Then, we expect to see a spectral blur of 100/30 ≈ 3.3 nm.
The spatial image is blurred along the y-axis by a 5µm blur and
along the x-axis by a 50/0.1 = 500µm blur; effectively, with a 5µm
pixel pitch, this would correspond to a 1D blur of 100 pixels. In
essence, the use of a slit leads to severe loss in spatial resolution.

Figure 4 shows images formed at the rainbow and spatial planes
for various aperture codes. This validates our claim that conven-
tional imagers are unable to simultaneously achieve high spatial
and spectral resolutions due to the nature of the apertures used. We
next design apertures with carefully engineered spectral and spatial
blurs, which can be deblurred in post-processing.

4.3 Design of aperture codes
We now design an aperture code that is capable of resolving both
space and spectrum at high-resolutions. Our use of coded apertures
is inspired by seminal works in coded photography for motion and
defocus deblurring [Levin et al. 2007; Raskar et al. 2006; Veeraragha-
van et al. 2007].

Observation. Recall that the rainbow plane image IR is a convolu-
tion between a 1D spectral profile s(·) and a 2D aperture code a(x,y).
This convolution is one dimensional, i.e., along the x-axis; hence,
we can significantly simplify the code design problem by choosing
an aperture of the form

a(x,y) = a(x) rectH (y), (8)
with H being as large as possible. The choice of the rect function
along they-axis leads to a high light throughput as well as a compact
spatial blur along the y-axis. For ease of fabrication, we further
restrict the aperture code to be binary and of the form

a(x) =
N−1∑
k=0

ak I[k∆,(k+1)∆](x), (9)

where I[p,q](x) = 1 when x ∈ [p,q] and zero otherwise. Hence,
the mask design reduces to finding an N -bit codeword a =
{a0, . . . ,aN−1}. The term ∆, with units in length, specifies the phys-
ical dimension of each bit in the code. We fix its value based on
the desired spectral resolution. For example, for f = 100mm and
v0 = 300 grooves/mm, a desired spectral resolution of 1nm would
require ∆ ≤ 30µm.

Our goal is to design masks that enable the following:

• High light throughput. For a given code length N , we seek codes
with large light throughput which is equal to the number of ones
in the code word a.

• Invertibility of the spatial and spectral blur. The code is designed
such that the resulting spatial and spectral blur are both invertible.

An invertible blur can be achieved by engineering its PSD to
be flat. Given that the spectrum is linearly convolved with a(x), a
(N +Nλ − 1)-point DFT of the code word a captures all the relevant
components of the PSD of a(x). Denoting this (N+Nλ−1)-point DFT
of a as A[k], we aim to maximize its minimum value in magnitude.
Recall from (7) that the spatial PSF is the power spectral density
(PSD) of a(x), with suitable scaling. Specifically, the Fourier trans-
form of spatial blur is given by c(λ f u), where c(x) = a(x) ∗ a(−x) is
the linear autocorrelation of a(x) and u represents spatial frequen-
cies. From (9), we get,

c(x) = a(x) ∗ a(−x)

=

N−1∑
k=−N

ck

(
I[k∆,(k+1)∆](x) ∗ I[k∆,(k+1)∆](x)

)
, (10)

where ck is the discrete linear autocorrelation of ak . Thus, it is
sufficient to maximize ck to obtain an invertible spatial blur.

We select an aperture code that leads to invertible blurs for both
space and spectrum by solving the following optimization problem:

max
a0, ...,aN−1

α min
k

(|A[k]|) + (1 − α)min
k

ck , (11)

ACM Transactions on Graphics, Vol. 38, No. 5, Article 148. Publication date: October 2019. 2019-10-21 09:24. Page 6 of 1–14.



KRISM • 148:7

-2000 0 2000
0

0.5

1

1.5

(a) Optimized code and aperture for N = 32.

400 700500 600 
Wavelength (nm)

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

(b) Raw measurements.

400 700500 600 
Wavelength (nm)

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

(c) Deconvolved spectrum and image respectively.

Fig. 5. Optimized codes ensure that the spectral as well as spatial blur can be deconvolved stably. We simulate the performance of optimal code on a spatial
and spectral target similar to Figure 4. Spectrum was deconvolved using Wiener deconvolution, and spatial images were deconvolved using TV prior. Optimized
codes offer high spatial as well as spectral resolution.

under the constraint that the elements of a are binary-valued, and
α ∈ (0, 1) is a constant. For code length N sufficiently small, we
can simply solve for the optimal code via exhaustive search of all
2N − 1 code words. We used N = 32 and an exhaustive search
for the optimal code took over a day. The resulting code and its
performance is shown in Figure 5 and 6; we used ∆ = 100µm and
H = 6.4mm for this result. A brute force optimization is not scalable
for larger codes. Instead of searching for optimal codes, we can
search for approximately optimal codes by iterating over a few
candidate solutions. This strategy has previously been explored in
[Raskar et al. 2006], where 6 million candidate solutions are searched
for a 52-dimensional code.

Figure 6 shows the frequency response of both spectral and spatial
blurs for the 32-dimensional optimized code. The advantages of
optimized codes are immediately evident — an open aperture has
several nulls in spectral domain, while a slit attenuates all high
spatial frequencies. The optimized code retains all frequencies in
both domains, while increasing light throughput.

5 SYNTHETIC EXPERIMENTS
We tested KRISM via simulations on three different datasets, listed in
Table 2, and compared against existing approaches. For all methods,
we simulated both photon and readout noise respectively as Poisson
and Gaussian random variables. All KRISM simulations were done
with diffraction effects due to coded aperture.

We quantify performance through compression in measurements
N /M which is ratio of number of unknowns to measurements and
peak signal to noise ratio (PSNR). Given a HSI matrix x and its
reconstruction x̂, we define peak SNR as

PNSR = 20 log10

(
∥x∥∞

RMSE(x, x̂)

)
,

where RMSE is the root mean squared error defined as

RMSE(x, x̂) =

√√√
1
N

N∑
n=1

(xn − x̂n )2. (12)

Comparison with snapshot techniques. Snapshot techniques such
as CASSI [Wagadarikar et al. 2008] and spatial-spectral encoded
CS [Lin et al. 2014a] recover HSI from a single image and hence
are appropriate for video-rate hyperspectral imaging. In contrast,
KRISM is not a snapshot technique since, at the very least it requires
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Fig. 6. Frequency response of spatial and spectral blur for various pupil
codes. Width of the slit was 100µm, while that of open aperture was 3.2mm.
The length of optimized code is 32-bits, with each bit being 100µm wide,
giving a 3.2mm wide aperture. We assume that a slit can resolve up to 1nm.
In the graph, 0.5 cycles/nm corresponds to a spectral resolution of 1nm,
and hence the frequency response of the slit falls off after 0.5 cycles/nm.
Similarly, the maximum spatial resolution is 15µm and hence fx is shown
till 32 cycles/mm. For spectral measurements, a slit has a flat frequency
response, while an open aperture has several nulls. In contrast, an open
aperture has no nulls for spatial measurements, whereas a slit attenuates
high frequencies. Optimized codes have a fairly flat frequency response for
spectral blur, and no nulls for spatial blur.

Dataset Spatial 
resolution

#Spectral 
bands

Waveband 
(nm)

KAIST  [Choi et al. 2017] 512 x 384 31 400-700

Harvard [Charkabarti et al. 2011] 696 x 520 31 400-700

ICVL [Arad and Ben-Shahar 2016] 256 x 256 260 390-1043

Table 2. Datasets used for simulations. The spatial resolution for KAIST and
Hardvard datasets, and spectral resolution for ICVL dataset was reduced to
keep computation tractable with competing methods.

the measurement of an image and a spectral profile. Nevertheless,
we compare KRISM against snapshot techniques by varying the
number of KRISM iterations. Figure 7 shows performance of these
methods with varying number of measurements on KAIST and
Harvard datasets. We observe that in the setting closest to snapshot
mode, Choi et al. [2017] and Lin et al. [2014a] do outperform KRISM;
this is to be expected since after a single iteration, KRISM provides
only a rank-1 approximation. As the number of KRISM iterations are
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Fig. 7. Evaluation against snapshot techniques. We compare KRISM with varying rank against results from [Lin et al. 2014a] and [Choi et al. 2017] in terms of
compression as well as accuracy. We show zoomed in image patches for each method and spectrum at pixel marked by a cross. At similar compression rates
(K = 1), KRISM has lower accuracy than snapshot techniques. However, snapshot techniques require solving a complex optimization problem that can be time
consuming. In contrast, KRISM requires practically no reconstruction time as the dominant singular vectors are captured directly.

increased (which allows approximations of higher ranks), KRISM
performance improves. KRISM enjoys advantages when we look at
computational cost for reconstruction. The reconstruction time for
Choi et al. [2017] is more than 10 minutes1 even with multiple GPUs,
while it runs to several hours for Lin et al. [2014a]2. In contrast,
KRISM requires practically no reconstruction time for recovering
the HSI as we directly measure the singular vectors.

Comparison with multi-frame techniques. Since KRISM is essen-
tially a multi-frame technique, we compare against multi-frame
version of CASSI [Kittle et al. 2010], and spatially-multiplexed hy-
perspectral imager [Sun and Kelly 2009]. We simulate spatially-
multiplexed HSI imager via randomly permuted Hadamard multi-
plexed spectra and recover using sparsity of individual bands in
wavelet domain. Note that the compression ratio is lower for Kittle
et al. [2010] and Sun and Kelly [2009] since the results were inac-
curate for higher compressions3. Figure 8 shows a comparison of
recovered spatial and spectral images for ICVL dataset. The poor
performance of Kittle et al. [2010] is due to usage of a translational
mask to get multiple measurements. On the other hand, Sun and
Kelly [2009] performs poorly as multiplexing is done only in the

1We used code, dataset and model from https://github.com/KAIST-VCLAB/deepcassi
2We used code, dataset and overcomplete dictionary from the paper itself.
3Please see supplementary for further details.

spatial domain. Performance can be improved if we multiplex in the
spectral domain as well; the resulting method is the low-rank CS
approach proposed by Fazel et al. [2008]. This results in an increase
in accuracy with fewer measurements, as seen in Figure 8 (f). Note
that CS-based techniques are based on random projections and are
not adapted to the scene. In contrast, KRISM adaptively computes
a low-rank approximation leading to an increase in accuracy with
the same number of measurements as Fazel et al. [2008].

Based on these simulations, we conclude that KRISM is indeed a
compelling methodology when spatial and spectral resolution are
high — a desirable operating point in many applications. When the
number of spectral bands are smaller, the gains are modest, but
nevertheless present. In the next section, we provide an optical
schematic for implementing KRISM.

6 THE KRISM OPTICAL SETUP
We now present an optical design for implementing the two opera-
tors presented in Section 3 and analyzed in Section 4. For efficiencies
in implementation, we propose a novel design that combines both
operators into one compact setup. Figure 9 shows a schematic that
uses polarization to achieve both operators with a single SLM and a
single camera. First, in Figure 9(a), an SLM is placed 2f away from
the grating, and an image sensor 2f away from the SLM, implement-
ing spectrally coded spatial measurement operator I. In Figure 9(b),
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(a) ICVL dataset
(256 × 256 × 260)

(b) Ground truth (c) KRISM, N /M : 43,
PSNR: 47.7dB

(d) Sun and Kelly
N /M : 5,
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(e) Kittle et al.
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PSNR: 43.2dB

(f) Fazel et al.
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Fig. 8. Evaluation with multi-frame techniques. We compare KRISM against
spatially-multiplexed HSI [Sun and Kelly 2009], multi-frame version of
CASSI [Kittle et al. 2010], and row/column CS [Fazel et al. 2008]. We show
zoomed in image patches for each method and spectrum at pixel marked
by a cross. Across the board, KRISM has highest accuracy with fewest
measurements.

light follows an alternate path where in the SLM is 4f away from
the grating; the camera is still 2f away from the SLM. This light
path allows us to achieve the spatial-coded spectral measurement
operator S. The two light pathways are combined using a combina-
tion of polarizing beam splitters (PBS) and liquid crystal rotators
(LC). The input light is pre-polarized to be either S-polarized or
P-polarized. When the light is P-polarized, the SLM is effectively
2f units away from the grating leading to implementation of I,
the spectrally-coded imager. When the light is S-polarized, the SLM
is 4f units away, provided the polarizing beamsplitter, PBS 3 was
absent. To counter this, an LC rotator is placed before PBS 3 that
rotates S-polarization to P-polarization when switched on. Hence,
when S-light is input in conjugation with the rotator being switched
on, we achieve the operator S, a spatially-coded spectrometer. By
simultaneously controlling the polarization of input light and the
LC rotator, we can implement both I and S operators with a single
camera and SLM pair.

Figure 10 shows our lab prototype with the entire light pathway
including the coded aperture placed in the relay system between

the objective lens and diffraction grating. The input polarization
is controlled by using a second LC rotator with a polarizer, placed
before the diffraction grating. Finally, an auxiliary camera is used to
image the pattern displayed on the SLM. This camera is used purely
for alignment of the pattern displayed on the SLM. A detailed list of
components can be found in the supplemental material.

Calibration. Our optical setup requires three calibration processes.
The first one is camera to SLM calibration. We used an auxiliary
camera (Component 12 in Figure 10) that is directly focused on the
SLM for this purpose. The second one is calibration of wavelengths.
We used several narrowband filters to identify the location of wave-
lengths. Finally, the third one is radiometric calibration. We used
a calibrated Tungsten-Halogen light source to estimate the spec-
tral response of the setup. A detailed description of the calibration
procedure can be found in the supplementary material.

System characterization. Spectral resolution (FWHM) of the setup
was computed using several 1nm narrowband filters across visible
wavelengths. Our optical setup provided an FWHM of 2.9nm. Spatial
resolution was computed by capturing photo of a Siemens star,
and then deconvolving with a point-spread function obtained by
capturing image of a 10µm pinhole. The frequency that achieved
30% of the modulation transfer function, MTF30, was found to be
nearly 0.4 line pairs/pixel. All computation details, as well as relevant
figures, can be found in the supplementary material.

Diffraction due to LCoS pattern. Since the SLM is placed 2f away
from spectral or spatial measurements, the displayed pattern intro-
duces diffraction blur, creating a non-linear measurement system.
To counter this, we add a constant offset to both positive and neg-
ative patterns, which makes the diffraction blur compact enough
that the non-linearities can be neglected.

Spectral deconvolution. Measurements by our optical system re-
turn spectra at each point, convolved by the aperture code. To get
the true spectrum, we deconvolved the kth measured singular vector
using a smoothness prior. The specific objective function we used:

min
vk

1
2
∥yk − a ∗ vk ∥

2 + η∥∇vk ∥
2, (13)

where vk is the true spectrum, yk is the measured spectrum, a
is the aperture code, ∇x is the first order difference of x, and η
is weight of penalty term. Solution to (13) was computed using
conjugate gradient descent. Higher η favors smoother spectra, and
hence is preferred for illuminants with smooth spectra, such as
tungsten-halogen bulb or white LED. For peaky spectra such as
CFL, a lower value of η is preferred. In our experiments, we found
η = 1 to be appropriate for peaky spectra, whereas, η = 103 was
appropriate for experiments with tungsten-halogen illumination.
We compare performance of various deconvolution algorithms in
the supplementary section.

Spatial deconvolution. Equation (7) suggests that the spatial blur
kernel varies across different spectral bands. More specifically, the
blur kernels at two different spectra are scaled versions of each other.
However, we observed that the variations in blur kernels were not
significant when we image over a small waveband — for example,
the visible waveband of 420 − 680nm. Given this, we approximate
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Fig. 9. Proposed optical setup in spectral coding (a) and spatial coding (b) mode. The optical method relies on polarization to switch between the two types of
coding. When the input light is S-polarized, the LC rotator is switched off, enabling spectrally coded spatial measurements. When the input light instead is
P-polarized, the LC rotator is turned on, which enables spatially coded spectral measurements. The input light polarization is controlled by a second LC rotator
placed before the grating. With a novel use of LC rotators, our optical setup enables dual coding of hyperspectral scenes with a single camera-SLM pair.
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Fig. 10. Photograph of our lab prototype. The optical paths for spectral as well as spatial coding shown in Fig. 9 have been overlaid for easy understanding.
Components have been marked, grouped and labeled for convenience. All other relevant information is available in supplementary material.

the spatial blur as being spectrally independent, which leads to the
following expression:

IS (x,y) ∝

[∫
λ
H (x,y, λ)c(λ)dλ

]
∗ p(x,y), (14)

where p(x,y) is the spatial blur. We estimated the spatial blur kernel
by imaging a pinhole and subsequently deconvolved the spatial
singular vectors. We used a TV prior based deconvolution using the
technique in [Bioucas-Dias and Figueiredo 2007] using the image of
a pinhole as the PSF. Details of the deconvolution procedure are in
the supplementary section.

7 REAL EXPERIMENTS
We present several results from real experiments which show the
effectiveness of KRISM. We evaluate the ability to measure singular
vectors with high accuracy, and high spatial and spectral resolution
capabilities. Unless specified, experiments involved a capture of a
rank-4 approximation of the HSI, with 6 spectral and 6 spatial mea-
surements. Lanczos iterations were initialized with all-ones spatial
image to speed up convergence. HSIs were acquired with a spatial
resolution of 560 × 550 pixels and a spectral resolution of 256 bands
between 400nm to 700nm, with 3 nm FWHM. For verifying spec-
troradiometric capabilities, we obtained spectral measurements at
a small set of spatial points using an Ocean Optics FLAME spec-
trometer. We use spectral angular mapper (SAM) [Yuhas et al. 1992]
similarity and PSNR between spectra measured by our optical setup

and that measured with a spectrometer. SAM between two vectors
x and x̂ is defined as SAM = cos−1

(
x⊤x̂

∥x∥ ∥x̂∥

)
.

Visualization of Lanczos iterations. Figure 11 shows iterations for
the “Color checker" scene in Figure 14. The algorithm initially cap-
tures brightest parts of the image, corresponding to the spectralon,
and the white and yellow patches. Consequently, by iteration 5, the
blue and red parts of the image are isolated. The iterations are rep-
resentative of the signal energy in various wavelengths. Maximum
energy is concentrated in yellow wavelengths, due to tungsten-
halogen illuminant and spectral response of the camera. This is then
followed by the red wavelengths, and finally the blue wavelengths.

Comparison of measured singular vectors. We obtain the complete
hyperspectral image through a permuted Hadamard multiplexed
sampling in the spectral domain for comparison with ground-truth
singular vectors. We chose a scene with four colored dice for this
purpose, shown in Figure 12 (a). We then computed 4 singular vec-
tors of spectrally Hadamard-multiplexed data. Figure 12 shows a
comparison of the spatial and spectral singular vectors. The singular
vectors obtained via Krylov subspace technique are close to the ones
obtained through Hadamard sampling. On an average, the recon-
struction accuracy between KRISM and Hadamard multiplexing
was found to be greater than 30dB, while the angle between the
singular vectors was no worse than 20◦, with the top three singular
vector having an error smaller than 8◦. Hadamard sampling took

ACM Transactions on Graphics, Vol. 38, No. 5, Article 148. Publication date: October 2019. 2019-10-21 09:24. Page 10 of 1–14.



KRISM • 148:11

Iteration 1: spectral and spatial Iteration 2: spectral and spatial Iteration 3: spectral and spatial

Iteration 4: spectral and spatial Iteration 5: spectral and spatial Iteration 6: spectral and spatial

Fig. 11. Data captured during measurement process for a rank-4 approximation of the “Color checker" scene for six iterations. A picture of the scene is
shown in Figure 14. Positive part of data is shown in red and the negative part is shown in blue. KRISM alternates between acquiring spectral and spatial
measurements to compute both spatial and spectral singular vectors. The first four iterations involve capturing the dominant wavelengths that includes yellow
and green colors, since they have the highest magnitude. The next set of iterations capture the blue and red wavelengths.
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Fig. 12. Comparison of singular vectors captured via spectrally Hadamard-multiplexed sensing and KRISM for the dice scene. the left image singular vector is
from Hadamard multiplexed data and the right one is from KRISM. Blue represents negative values and red represents positive values. KRISM required a total
of 6 spectral and 6 spatial measurements to construct 4 singular vectors. While spectral Hadamard sampling method took a total of 49 minutes, KRISM took
under 2 minutes. The SAM value between the singular vectors was less than 20◦.

49 minutes while KRISM took under 2 minutes for 6 spatial and 6
spectral measurements, thus offering a speedup of 20×.

Peaky spectrum illumination. We imaged a small toy figurine of
“Chopper", placed under CFL, which has a peaky spectrum, to test
high spatio-spectral resolving capability. Figure 1 shows the ren-
dered RGB image and spectra at a representative location. Spectra at
a selected spatial point, as measured by KRISM, and a spectrometer
are shown as well. The SAM between spectrum measured by KRISM
and that measured by spectrometer was found to be 14.7◦. Notice
that the location of the peaks, as well as the heights match accurately.
Indeed, the chopper example establishes the high spatio-spectral
resolution capabilities of KRISM.

Diverse real experiments. Figure 13 shows several real world ex-
amples captured with our optical setup, with a diverse set of objects.
For verification with ground truth, we captured spectral profiles
at select spatial locations. The “Dice" and “Objects" scene captures
several more colorful objects with high texture. The zoomed-in pic-
tures show the spatial resolution, while the comparison of spectra

highlights the fidelity of our system as a spectral measurement tool.
“Ace" scene was captured by placing the toy figurine under CFL
illuminant, which is peaky. We could not obtain ground truth with
a spectrometer, as the toy was too small to reliably probe with a
spectrometer. The peaks are located within 2nm of ground truth
peaks, and the relative heights of the peaks match the underlying
color. “Crayons" scene consists of numerous colorful wax crayons
illuminated with a tungsten-halogen lamp. The closeness of spectra
with respect to spectrometer readings shows the spectral perfor-
mance of our setup. Finally, “Feathers" consists of several colorful
feathers illuminated by tungsten-halogen lamp. The fine structure
of feathers is well captured by our setup.

Color checker. Since our setup is optimized for viewing in 400nm-
700nm, we evaluated our system on the 24-color Macbeth color
chart. The Macbeth color chart consists of a wide gamut of colors in
visible spectrum that are spectrally well separated, and forms a good
test bench for visible spectrometry. We placed the “Color passport"
and spectralon plug in front of our camera and illuminated it with a
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Fig. 13. Real data captured with our optical setup. We show the physical setup used for capturing the data, rendered RGB image with some interesting
patches zoomed in, and spectra at some points, compared with a spectrometer. The results are promising, as the spectra is very close to spectrometer readings
(PSNR > 20dB), and the spatial images are captured in high resolution.
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Fig. 14. Macbeth color chart. Spectra is shown at four locations and com-
pared with spectrometer readings. The PSNR is 25dB or higher and the SAM
between KRISM spectra and spectrometer readings is less than 6◦.

tungsten-halogen DC light source. The spectralon has a spectrally
flat response, and hence helps estimate the spectral response of the
illuminant+spectrometer system. This enables measurement of true
radiance of the color swatches. Since the spectra is smooth, we used
least squares recovery of the spectrum, with ℓ2 penalty on the first
difference of spectral singular vectors. The captured data was then
normalized by dividing spectrum of all points with the spectrum of
the spectralon. Figure 14 shows the captured image against reference
color chart along with spectra at select locations plotted along with
ground truth spectra. On an average, the PSNR between spectra
measured by KRISM and that measured by spectrometer is greater
than 25dB, while the SAM is less than 6◦.

8 DISCUSSION AND CONCLUSION
We presented a novel hyperspectral imaging methodology called
KRSIM, and provided an associated novel optical system for en-
abling optical computation of hyperspectral scenes to acquire the
top few singular vectors in a fast and efficient manner. Through
several real experiments, we establish the strength of KRISM in
three important aspects: 1) the ability to capture singular vectors of
the hyperspectral image with high fidelity, 2) the ability to capture
an approximation of the hyperspectral image with 20× or faster
acquisition rate compared to Nyquist sampling, and 3) the ability
to measure simultaneously at high spatial and spectral resolution.
We believe that our setup will trigger several new experiments in
adaptive imaging for fast and high resolution hyperspectral imaging.

Added advantages. There are two additional advantages to KRISM.
One, since we capture the top few singular vectors directly, there
is a data compression from the acquisition itself. Two, the only
recovery time involves deconvolution of a few spatial and spectral

(a) Spectral Hadamard (b) KRISM

400 600 800
 (nm)

-0.2

-0.1

0

0.1
Spectral Hadamard
KRISM

(c) Spectra

Fig. 15. Capturing higher singular vectors. Since KRISM computes higher
singular vectors by progressively blocking more light, photon noise domi-
nates measurements after some iterations resulting in noisy estimates of
singular vectors. The above example shows inaccurately estimated fifth
singular vectors measured for “color checker" scene with our lab prototype.

singular vectors, which is significantly less than the time required
for recovery of hyperspectral images from CS measurements.

Beyond low-rank volumes. Key to our paper is the assumption
that the underlying HSI is low-rank. Sensing a high rank HSI will
require several measurements which negates the benefits of KRISM.
However, there are several other matrix sampling techniques that
rely on row or column sensing [Hašan et al. 2007; Ou and Pellacini
2011] to capture information about high rank matrices in an efficient
manner. Since the proposed setup is capable of computing arbitrary
matrix-vector products, such matrix sampling techniques can be
implemented efficiently.

Effect of photon noise. Although Krylov subspace based methods
are very robust to noise [Simoncini and Szyld 2003], the quality of
the singular vectors degrade as the rank of acquisition is increased
(see Figure 15). This is primarily due to photon noise, as we pro-
gressively block most of the energy contained in initial singular
vectors. This can be mitigated by increasing the exposure time of
measurements for higher singular vectors. All said, the problem
of noisy higher singular vectors exists with any kind of sampling
scheme and hence needs separate attention via a good noise model.
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