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Shape and Spatially-Varying Reflectance
Estimation From Virtual Exemplars
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Abstract—This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume
that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo.
At the core of our techniques is the assumption that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary.
This assumption enables a per-pixel surface normal and BRDF estimation framework that is computationally tractable and requires no
initialization in spite of the underlying problem being non-convex. Our estimation framework first solves for the surface normal at each
pixel using a variant of example-based photometric stereo. We design an efficient multi-scale search strategy for estimating the surface
normal and subsequently, refine this estimate using a gradient descent procedure. Given the surface normal estimate, we solve for the
spatially-varying BRDF by constraining the BRDF at each pixel to be in the span of the BRDF dictionary; here, we use additional priors
to further regularize the solution. A hallmark of our approach is that it does not require iterative optimization techniques nor the need for
careful initialization, both of which are endemic to most state-of-the-art techniques. We showcase the performance of our technique on
a wide range of simulated and real scenes where we outperform competing methods.

Index Terms—Photometric stereo, BRDF estimation, Dictionaries, Spatially varying BRDF.
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1 INTRODUCTION

Photometric stereo [1] seeks to estimate the shape of an
object from images obtained from a static camera and

under varying lighting. While there has been remarkable
progress in photometric stereo, the vast majority of tech-
niques are devoted to scenes that exhibit simple reflectance
properties. In particular, scenes with Lambertian reflectance
have received the bulk of the attention [1], [2], [4] due to the
immense simplification that such an assumption provides.
Unfortunately, real-life scenes often involve non-Lambertian
materials that interact with light in complex ways; this
creates a significant disconnect between theory and practice.

In this paper, we present a photometric stereo method
for recovering the shape and the reflectance of opaque
objects that exhibit spatially-varying reflectance. The key
challenge here is that the reflectance, characterized in terms
of spatially-varying bidirectional reflectance distribution
function (SV-BRDF), and the shape, characterized in terms
of surface normals, are inherently coupled and need to be
estimated jointly. Further, the SV-BRDF is a 6D function of
space and incident/outgoing angles and hence, can be very
high-dimensional. In the absence of additional assumptions,
estimating the SV-BRDF requires a large number of input
images for robust estimation.

A common assumption for enabling computationally
tractable models for SV-BRDF is that the BRDF at each pixel
is a weighted combination of a few, unknown reference BRDFs
[5]. The SV-BRDF is now represented using the reference
BRDFs and their relative abundances at each pixel. This
model offers a significant reduction in the dimensionality of
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the unknowns and, as a consequence, has been used in the
context of photometric stereo [6], [7]. In Goldman et al. [6],
the parametric isotropic Ward model [8] is used to charac-
terize the reference BRDFs. Alldrin et al. [7] assume that the
reference BRDFs are approximated by the non-parametric
bivariate model [9] that approximates the 4D BRDF as a
2D signal. In both cases, the problem of shape and SV-
BRDF estimation reduces to alternating minimization over
the surface normals, the reference BRDFs, and abundances
of the reference BRDFs at each pixel. The drawback of these
approaches is that the optimization is not just computation-
ally expensive but also has a critical dependence on the
ability to find a good initial solution since the underlying
problem is non-convex and riddled with local minima.

An alternate approach called example-based photomet-
ric stereo [10] introduces reference objects — typically,
spherical objects — in the scene. This technique relies on
the concept of orientation consistency [10] which suggests that
two surface elements with identical normals and BRDFs will
take the same appearance when placed in the same illumina-
tion. Example-based photometric stereo exploits orientation
consistency as follows. Suppose that we want to estimate the
surface normal at a particular pixel on the target. If the refer-
ence sphere has the same BRDF as the target, then we simply
compare the intensity profile observed at each pixel on the
sphere to that observed on the target pixel. The surface nor-
mal at the target pixel is recovered by finding the pixel on
the sphere that best matches the intensity profile. In essence,
each pixel on the reference sphere provides a candidate for
the true surface normal. When the target’s BRDF is spatially-
varying, two reference objects — one diffuse and the one
specular — can be used to recover the surface normals of the
target by approximating the unknown BRDF at each pixel
as a non-negative linear combination of the reference BRDFs
[10]. A hallmark of example-based photometric stereo is
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that we do not need to calibrate the illumination. While
example-based photometric stereo produces precise shape
estimates without requiring the knowledge of lighting, there
are multiple drawbacks associated with the method. The
accuracy of recovering the surface normals is affected by the
non-uniform sampling of normals of the spherical objects;
specifically, we can expect to observe dense sampling of
candidate normals along the viewing direction and coarse
sampling near the vanishing directions. Many BRDFs are
also poorly approximated as a linear combination of the two
reference BRDFs. Finally, introducing reference objects is not
always desirable in many practical applications.

The technique proposed in this paper relies on the
core principle of example-based photometric stereo without
actually introducing reference objects into the scene. Given a
dictionary whose atoms are BRDFs associated with a wide
range of materials, we can render virtual spheres, one for
each atom in the dictionary, under the knowledge of the
scene illumination. This provides a set of “virtual exem-
plars” that can be used to obtain a per-pixel estimate of the
shape and reflectance of the scene with arbitrary spatially-
varying BRDF. The assumption that we make is that the
unknown BRDF at each pixel lies in the non-negative span
of the dictionary atoms. We show that the surface normals
and the BRDFs can be estimated via a sequence of tractable
linear inverse problems. This obviates the need for com-
plex iterative optimization techniques as well as careful
initialization required to avoid convergence to local minima.
The interplay of these ideas for both the normal and SV-
BRDF estimation provides not just a tractable solution to a
previous ill-posed problem but also state-of-the-art results
on challenging scenes (see Figure 1).

Contributions. We make the following contributions.
[Model] We propose the use of a dictionary of BRDFs to
regularize the surface normal and SV-BRDF estimation.
The BRDF at each pixel of an object is assumed to lie in
the non-negative span of the dictionary atoms.
[Normal estimation] We show that the surface normal at
each pixel can be efficiently estimated using a coarse-to-
fine search and further refined using a gradient descent-
based algorithm.
[SV-BRDF estimation] Given the surface normals, we first
recover the BRDF at each pixel independently by solving
a linear inverse problem that enforces sparsity in the oc-
currence of the reference BRDFs at the pixel. To further
regularize the BRDF estimation and obtain estimates with
improved accuracy, we impose a low rank constraint on
the SV-BRDF.
[Validation] We showcase the accuracy of the shape and
SV-BRDF estimation technique on a wide range of simu-
lated and real scenes and demonstrate that the proposed
technique outperforms state-of-the-art.

A short version of this paper appeared in [11]. We
have since improved the core ideas in two important ways.
First, in [11], the precision of surface normal estimation is
inherently limited by the sampling of the candidate normals.
We have addressed this limitation by performing gradient
descent to improve the precision of surface normal estimates
while adding little to the time required for estimation.
Second, [11] uses a non-parametric SV-BRDF estimation

a few input images

object rendered in novel poses

Fig. 1: Recovery of surface normals and spatially-varying
BRDF. We propose a framework for per-pixel estimation
of surface normal and BRDF in the setting of photometric
stereo. Shown above are the estimated shape and rendered
images of a visually-complex object. The results were ob-
tained from 250 images.

algorithm where the BRDF at each pixel is independently
recovered; while per-pixel BRDF estimation is desirable,
the recovered estimation is often erroneous due to limited
amount of information available at each pixel. To alleviate
this problem, we introduce an additional constraint that
limits the number of unique reflectance functions in the
scene; we achieve this by enforcing a low rank constraint
to regularize the SV-BRDF. While the use of low-rank priors
for SV-BRDF estimation is inspired in part by prior works
[5]–[7], our optimization framework is significantly more
tractable. We show that incorporating this low-rank prior
leads to a SV-BRDF estimation that is more robust.

2 PRIOR WORK

In this section, we review some of the key techniques for
shape estimation with respect to different BRDF models.

The diffuse + specular BRDF model. It is well known
that the collection of images of a convex Lambertian object
typically lies close to a low-dimensional subspace [12], [13].
This naturally leads to techniques [14]–[16] that robustly
fit a low-dimensional subspace, capturing the Lambertian
component while isolating non-Lambertian components,
including specularities, as sparse outliers. From the low-
dimensional space reconstructed, they implement Lamber-
tian photometric stereo to get the shape of objects. However,
these techniques have restrictive assumptions on the range
of BRDFs to which they are applicable, and more impor-
tantly, miss out on powerful cues to the shape of the object
that are often present in specular highlights.

Parametric BRDF representations. Parametric models
such as the Blinn-Phong [17], Ward [8], Oren-Nayar [18],
Ashikhmin-Shirley [19], Lafortune et al. [20], He et al. [21]
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and Cook-Torrance model [22] are based on macro-behavior
established using specific micro-facet models on the materi-
als, and have been widely used in computer graphics. In the
context of shape and SV-BRDF estimation, Goldman et al.
[6] utilize the isotropic Ward model [8] to reduce the dimen-
sionality of the inverse problem. Oxholm and Nishino [23]–
[25] further extend this idea by introducing a probabilistic
formulation to estimate the BRDFs and exploit visual cues
from multiple views under natural lighting conditions to
reconstruct the object’s shape. However, parametric models
are inherently limited in their ability to provide precise
approximations to the true BRDFs and further, often lead
to challenging and ill-conditioned inverse problems.

Non-parametric BRDF representations. Non-parametric
models are built upon the raw measured BRDFs [26], [27]
and can provide faithful rendition to the empirical observa-
tions. The BRDFs are tabulated with respect to four angles,
two for the incident direction and two for the outgoing
direction. The high-dimensionality of non-parametric BRDF
representations is often a challenge when we need to per-
form BRDF estimation, even when the shape is known.

Isotropic BRDFs. Isotropic materials exhibit a form of
symmetry, wherein the reflectance of the material is un-
changed when the incident and outgoing directions are
jointly rotated about the surface normal. This enables the
representation of isotropic BRDFs as the function over three
as opposed to four angles. In the context of photometric
stereo, Alldrin and Kriegman [28] observe that, for isotropic
materials, the surface normal at each point can be restricted
to lie on a plane. By restricting the light source with cir-
cular motion, Chandraker et al. [29] show that the shape
can be estimated from the iso-contours of depth as well
as an initial starting surface normal. When the isotropic
BRDF has a single dominant lobe, Shi et al. [30] resolve the
planar ambiguity and show that the surface normals can be
uniquely determined. For the materials with multiple lobes,
Shi et al. [31] address the problem by utilizing biquadratic
to characterize the low-frequency components of isotropic
materials, allowing for the normal estimation via solving a
least square problem from the diffuse components. Ikehata
and Aizawa [32] model the isotropic BRDFs as the sum of
bivariate functions and solve for the surface normals via
a constrained regression problem. Higo et al. [33] utilize
properties of isotropy, visibility and monotonicity to restrict
the solution space of the surface normal at each pixel. This
enables a framework for shape estimation without the need
for radiometric calibration. Lu et al. [34]–[36] further extend
the idea by exploiting the relation between surface nor-
mals and observed intensity profiles to estimate the shape
of the object from multiple images without illumination
calibration. Finally, a bivariate approximation for isotropic
materials is used in Romeiro et al. [9], [37] to estimate the
BRDF of a known shape from a single image and without
knowledge of the scene illumination.

Relationship to prior work. There have been other methods
similar to our approach that seek to remove the use of “ex-
amples” from example-based photometric stereo. In Acker-
mann et al. [38], [39], a partial reconstruction of the scene

using multi-view stereo techniques is used as a reference
(or example) to obtain dense normal estimates. In contrast,
our technique focuses on the traditional problem of single-
view photometric stereo. The assumption of the scene’s
reflectance function being composed of a few reference
BRDFs is a common assumption used for photometric stereo
under SV-BRDFs [5]–[7], [40], [41]. However, this leads to
a multi-linear optimization in high-dimensional variables
(the reference BRDFs) that is highly dependent on initial
conditions. In contrast, our proposed technique avoids the
need to estimate high-dimensional optimization by evoking
knowledge of a dictionary of BRDFs.

3 PROBLEM SETUP

Setup. We make the following assumptions, most of which
are typical to photometric stereo-based shape estimation.
First, the camera is orthographic and hence, the viewing
direction v ∈ R3 is constant across all scene points. Second,
the scene illumination is assumed to be from a distant point
light source. The light sources are assumed to be of constant
brightness (equivalently, that calibration is known) and their
direction is known. We denote lk ∈ R3 to refer to the
lighting direction in the k-th image Ik. For a light-stage, this
information is typically obtained by a one-off calibration.
Third, the effects of long-range illumination such as cast
shadows and inter-reflections are assumed to be negligible;
this is satisfied for objects with a convex shape. Finally, the
radiometric response of the camera is linear.

BRDF representation. We follow the isotropic BRDF rep-
resentation used in [42] in which a three-angle coordinate
system based on half angles is used. Specifically, the BRDF
is expressed as a function ρ(θh, θd, φd) with θh, θd ∈ [0, π/2)
and φd ∈ [0, 2π). However, by Helmholtz’s reciprocity,
the BRDF exhibits the following symmetry: ρ(θh, θd, φd) =
ρ(θh, θd, φd + π), and hence, it is sufficient to express
φd ∈ [0, π). Following [26], we use a 1◦ sampling of each
angle. As a consequence, a BRDF is represented as a point
in a T = 90 × 90 × 180 = 1, 458, 000-dimensional space.
When we deal with color images, we have a BRDF for each
color channel and hence, the dimensionality of the BRDF
goes up proportionally.

Consider a scene element with BRDF ρ ∈ RT , surface
normal n, illuminated by a point light source from a direc-
tion l and viewed from a direction v. For this configuration
of normal, incident light and viewing direction, the BRDF
value is simply a linear functional of the vector ρ:

s>{l,v;n}ρ,

where s{l,v;n} is a vector that encodes the geometry of the
configuration. In essence, the vector samples the appropriate
entry from ρ, allowing for the appropriate interpolation if
the required value is off the sampling-grid.

Problem formulation. Our goal is to recover the surface
normals and the SV-BRDF in the context of photometric
stereo; i.e., multiple images of an object {I1, . . . , IQ} ob-
tained from a static camera under varying lighting. The
intensity value Iip observed at pixel p = (x, y) with lighting
li can be written as

Iip = (s>{li,v;np}ρp) ·max{0,n>p li}, (1)
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Fig. 2: Accuracy of BRDF models on the MERL database [26]. For the 100 materials in the database, we plot the
approximation accuracy in relative RMS error [27] (also see (8)) for the proposed, bivariate [9], Cook-Torrance [22], and the
isotropic Ward [8] models. For the proposed model, we use a leave-one-out scheme, wherein for each BRDF the remaining
99 BRDFs in the database are used to form the dictionary. The proposed model outperforms competing models both
quantitatively (top) as well as in visual perception (bottom).

where ρp is the BRDF and np is the surface normal at pixel
p, respectively, and max{0,n>p li} accounts for shading.

Given multiple intensity values at pixel p, one for each
lighting direction {l1, . . . , lQ}, we can write

Ip =

 I1p
...
IQp

 =


max{0,n>p l1} · s>{l1,v;np}

...
max{0,n>p lQ} · s>{lQ,v;np}

 ρp,
= A(np)ρp. (2)

Given the intensities, Ip, observed at a pixel p and knowl-
edge of lighting directions {l1, . . . , lQ}, we seek to estimate
the surface normal np and the BRDF ρp at the pixel. This
problem is intractable without additional assumptions that
constrain the BRDF to a lower-dimensional space.

Model for BRDF. The key assumption that we make is that
the BRDF at a pixel p lies on the non-negative span of the

atoms of a BRDF dictionary. Specifically, given dictionary
D = [ρ1, ρ2, · · · , ρM ], we assume that the BRDF at pixel p
can be written as

ρp = Dcp, cp ≥ 0,

where cp ∈ RM are the abundances of the dictionary
atoms. In essence, we have constrained the BRDF to lie in
an M -dimensional cone.1 This provides immense reduction
in the dimensionality of the unknowns at the expense of
introducing a model misfit error. Indeed the success of this
model relies on having a dictionary that is sufficiently rich to
cover a wide range of interesting materials. Figure 2 shows
the accuracy of various BRDF models on the MERL BRDF
database [26].

1. A more appropriate model for the BRDF is that (Dc) ≥ 0.
However, this leads to significantly higher-dimensional constraints. We
instead use a sufficient condition to achieve this, c ≥ 0.
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In addition to the dictionary model for the BRDF, we also
consider two additional priors.
• Sparsity. In the context of per-pixel BRDF estimation, we

assume that cp is sparse, suggesting that BRDF at the
pixel p is the linear combination of a few dictionary atoms.
The sparsity constraint avoids over-fitting to the intensity
measurements Ip as well as provides a regularization for
under-determined problems.

• Low rank. In the context of estimating the SV-BRDF
for all pixels jointly, we assume that coefficient matrix
C = [cp1

, cp2
, . . . cpN

], that denotes the collection of the
abundances for all the N pixels in the scene, is low rank.
The low-rank prior on C implies that BRDFs at all pixels
can be expressed as a linear combination of small number
of unique reflectance functions. This prior is at the heart
of many approaches for photometric stereo under SV-
BRDF [5]–[7], [41]. The low-rank prior also enables us to
efficiently pool together information from multiple pixels,
thereby providing significant improvements over the per-
pixel estimates, without exploiting any explicit spatial
smoothness priors.

Solution outline. We formulate the per-pixel surface nor-
mal and BRDF estimation using the following optimization
problem.

{n̂p, ĉp} = argmin
n,c

‖Ip −A(n)Dc‖22 + λ‖c‖1
s.t c ≥ 0, ‖n‖2 = 1.

(3)

The `1-penalty serves to enforce sparse solutions, with
λ ≥ 0 determining the level of sparsity in the solution.
The optimization problem in (3) is non-convex due to unit-
norm constraint on the surface normal n as well as the term
A(n)Dc. Our solution methodology consists of two steps:

1) Surface normal estimation. We perform an efficient multi-
scale search together with the gradient descent based
refinement scheme which provides us with a precise
estimate of the surface normal at pixel p (see Section 4);

2) BRDF estimation. We first solve (3) only over c with
the normal fixed to obtain the BRDF at p. We next
incorporate a low rank constraint on the SV-BRDF to
further regularize the BRDF estimates (see Section 5).

4 SURFACE NORMAL ESTIMATION

In this section, we describe an efficient per-pixel surface
normal estimation algorithm.

4.1 Virtual exemplar-based normal estimation
The first step of our surface normal estimation can be
viewed as an extension of the method proposed in [10],
where two spheres — one diffuse and one specular — are
introduced in a scene along with the target object. Recall
that, the scene is observed under Q different illuminations.
Hence, at a pixel p on the target, we can construct the
intensity profile Ip ∈ RQ that enumerates the Q intensity
values observed at p. To obtain the surface normals at
the pixel p, we compare the intensity profile, Ip, to those
on the reference spheres. The reference spheres provide a
sampling of the space of the normals and hence, we can
simply treat them as a collection of candidate normals N .

By orientation consistency, the surface normal estimation
now reduces to finding the candidate normal that can best
explain the intensity profile Ip. Given a candidate normal
ñ, we have two intensity profiles, ID(ñ) and IS(ñ), one
each for the diffuse and specular sphere, respectively. The
estimate of the surface normal at pixel p is given as

n̂p = argmin
ñ∈N

min
a1,a2≥0

‖Ip − a1ID(ñ)− a2IS(ñ)‖.

In [10], this is solved by scanning over all the pix-
els/candidate normals on the reference spheres.

Rendering virtual spheres. We rely on the same approach
as [10] with the key difference that we virtually render
the reference spheres. The virtual spheres are rendered as
follows. Given the lighting directions {l1, . . . , lQ} and the
BRDF dictionary D = [ρ1, . . . , ρM ], for each candidate nor-
mal ñ ∈ N , we render a matrix B(ñ) = [bij(ñ)] ∈ RQ×M
such that bij(ñ) is the intensity observed at a surface with
normal ñ and BRDF ρj , under lighting li.

bij(ñ) = max{0, ñ>li} · s>{li,v;ñ}ρ
j ,

We render one such matrix B(·) for each candidate normal
in N . Given these virtually rendered spheres, we can solve
(3) by searching over all candidate normals.

Brute-force search. For computationally efficiency, we drop
the sparsity-promoting term in (3). We empirically observed
that this makes little difference in the estimated surface
normals. Now, given the intensity profile Ip at pixel p and
noting that B(ñ) = A(ñ)D, solving (3) reduces to:

n̂p = argmin
ñ∈N

min
c≥0

‖Ip −B(ñ)c‖22. (4)

The unit-norm constraint on the surface normals is absorbed
into the candidate normals being unit-norm. The optimiza-
tion problem in (4) requires solving a set of non-negative
least squares (NNLS) sub-problems, one for each element
of N . For the results in the paper, we used the lsnonneg
function in MATLAB to solve the NNLS sub-problems.

The accuracy and the computational cost in solving (4)
depends solely on the cardinality of the candidate set N ,
|N |. We obtain N by uniform or equi-angular sampling on
the sphere [43]. Note that the smaller the angular spacing
of N , the larger is its cardinality. For example, a 5◦ equi-
angular sampling over the hemisphere requires approxi-
mately 250 candidates, while a 0.5◦ requires 20, 000 can-
didates. Given that the time-complexity of the brute-force
search is linear in |N |, the computational costs for obtaining
very precise normal estimates can be overwhelming (see
Table 1). To alleviate this, we outline a coarse-to-fine search
strategy that is remarkably faster than the brute-force ap-
proach with little loss in accuracy.

4.2 Coarse-to-fine search
Figure 3 shows the value of

E(ñ) = min
c≥0
‖Ip −B(ñ)c‖

as a function of the candidate normal ñ for a few examples.
We observe that there is a gradual increase in error value as
we moved away from the global minima of E(·). We exploit
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Fig. 3: The error as a function of candidate normals for a
few test examples. We can observe that the global minima
is compact and the error increases largely monotonically in
its vicinity. This motivates our coarse-to-fine search strategy.

this to design a coarse-to-fine search strategy where we first
evaluate the candidate normals at a coarse sampling and
subsequently search in the vicinity of this solution at a finer
sampling.

Specifically, let Nθ be the set of equi-angular sampling
on the unit-sphere where the angular spacing is θ degrees.
Given a candidate normal ñ, we define

Cθ(ñ) = {n | 〈n, ñ〉 ≥ cos θ, ‖n‖2 = 1}

as the set of unit-norm vectors within θ-degrees from ñ,
In the first iteration, we initialize the candidate normal

set N (1) = Nθ1 . Now, at the j-th iteration, we solve (4)
over a candidate setN (j). Suppose that n̂(j) is the candidate
normal where the minimum occurs at the j-th iteration. The
candidate set for the (j + 1)-th iteration is constructed as

j ≥ 1, N (j+1) = Cθj (n̂
(j)) ∩Nθj+1

,

with θj+1 < θj . That is, the candidate set is simply the set
of all candidates at a finer angular sampling that are no
greater than the current angular sampling from the current
estimate. This is repeated till we reach the finest resolution
at which we have candidate normals. For the results in this
paper, we use the following values: θ1 = 10◦, θ2 = 5◦, θ3 =
3◦, θ4 = 1◦, and θ5 = 0.5◦. For efficient implementation, we
pre-render B(ñ) for ñ ∈ Nθ1 ∪ · · · ∪ Nθ5 .

The computational gains obtained via this coarse-to-fine
search strategy are immense. Table 1 shows the run-time
and precision of both brute force and coarse-to-fine normal
estimation strategy for different levels of angular sampling
in the generation of the candidate normal set. As expected
the run-time of the brute force algorithm is linear in the
number of candidates. In contrast, the coarse-to-fine strategy
requires a tiny fraction of this time while nearly achieving
the same precision as the brute force strategy.

A drawback of both the brute-force as well as the coarse-
to-fine approaches is that the estimated normals are re-
stricted by the candidate normal set and hence, the accuracy
of the estimates, on an average, cannot be better than
the half the angular spacing of the candidate set at the
finest level. To address this, we propose a local descent-
based scheme that circumvents the limitations of using just
candidate normals.

4.3 Gradient descent-based normal estimation

Our gradient descent-based scheme to estimate the surface
normals relies on two observations: first, we can use the

θ1 θ2 θ3 θ4 θ5 

Brute 

force 

time  0.18s 0.77s 4.25s 27.3s 74.1s 

ang. error 7.07° 3.99° 1.56° 0.60° 0.42° 

max samples 76 327 1828 11829 31830 

Coarse 

to fine 

time 0.18s 0.19s 0.23s 0.34s 0.41s 

ang. error 7.07° 4.99° 2.56° 1.23° 0.82° 

max samples 76 81 89 105 112 

TABLE 1: Comparison of brute-force and coarse-to-fine
normal estimation for different angular samplings of the
candidate normals: θ1 = 10◦, θ2 = 5◦, θ3 = 3◦, θ4 = 1◦,
and θ5 = 0.5◦. For each method, we report the time taken,
the angular error, and the maximum number of candidates
evaluated. Shown are averages over 100 random trials.

estimate obtained from the coarse-to-fine strategy as an
accurate initial guess; and second, we can linearize the cost
function in (4) in the vicinity of our initial guess and devise
a gradient descent algorithm.

Specifically, let f(np, cp) be the value of the data term in
(4), i.e.

f(np, cp) = ‖Ip −B(np)cp‖22.

Now, at n̂p, ĉp obtained by using coarse-to-fine search, we
can linearize f(np, cp) as

f(n̂p+4np, ĉp+4cp) = ‖Ip−B(n̂p +4np)(ĉp+4cp)‖22.

Given B(n̂p) is locally smooth2, it can be linearized at n̂p as

B(n̂p +4np) = B(n̂p) +∇nB(n̂p)4np.

To account for the unit norm constraint on n̂p + 4np, we
utilize the elevation angle, which is denoted as θ, and the
azimuth angle, which is denoted as φ, to represent surface
normals. That is, we restrict the update of surface normals
into a two dimensional space by absorbing the unit norm
constraint. In particular, we can write B(n̂p +4np) as

B(n̂p +4np) = B(n̂p) +∇φB(n̂p)4φp +∇θB(n̂p)4θp,

where4φp and4θp denote local gradients for the elevation
and azimuth angles of n̂p, respectively. In essence, we have
now reformulated the problem in (4) into a form involving
the local gradients in surface normals and abundances.
This enables us to refine the normal estimates without any
restrictions imposed by the sampling of the candidate set.

Now, an estimate of local gradients at a pixel p can be
obtained by solving

{4θ̂p,4φ̂p,4ĉp} = argmin
4θ,4φ,4c

‖Ip − (B(n̂p) +∇φB(n̂p)4φ+∇θB(n̂p)4θ)(ĉp +4c)‖22
s.t ĉp +4c ≥ 0.

(5)

We drop the second-order terms 4θ4c and 4φ4c in (5),
which contributes little energy to the cost function, and we

2. Although B(n) involves the shading term, the smoothness prop-
erty holds in most scenarios due to the dense angular sampling of the
candidate normals.



7

can solve the resulting convex optimization problem in (5)
over 4θ, 4φ and 4c using alternating minimization.

Estimating∇φB(n̂p) and∇θB(n̂p). LetN (J) be the candi-
date normals set at the finest sampling level J . To estimate
the gradients at the current estimate n̂p, we construct a
set S ⊂ N (J) of all normals in N (J) that lie in a small
neighborhood (smaller than 2 degrees in angular difference)
of n̂p. For each normal ñ ∈ S we can write

B(ñ)−B(n̂p) = (φ̃− φ̂p)∇φB(n̂p) + (θ̃ − θ̂p)∇θB(n̂p),

where (θ̃, φ̃) is the Euler angle representation of ñ. We can
set up an over-determined set of equations by stacking
together the constraints arising from normals in the set
S to estimate the gradients, ∇φB(n̂p) and ∇θB(n̂p). We
recover the gradients by taking the pseudo-inverse of this
overdetermined linear system.

Given the estimated ∇φB(n̂p) and ∇θB(n̂p), we per-
form the following steps until convergence.

Updating 4φ̂p and 4θ̂p. Both 4φ̂ and 4θ̂ are estimated
by solving a least square problem.

Update 4ĉp. Due to the non-negative constraint on
ĉp + 4c, we first solve the least square problem over 4c
and then project the solution to the space specified by the
constraint.

The estimate of surface normals can be obtained by

θ̂p ← θ̂p +4θ̂p,

φ̂p ← φ̂p +4φ̂p,

n̂p ← [cos(φ̂p) sin(θ̂p), sin(φ̂p) sin(θ̂p), cos(θ̂p)]
>.

Observations. The gradient descent procedure described
above can be solved efficiently. For a single surface normal,
optimization to converge takes between 0.8 and 0.9 seconds
in MATLAB on a desktop with Intel Xeon 3.6G CPU. In
Table 2, we tabulate the improvements provided by the gra-
dient descent procedure when initialized with the solutions
of the brute force as well as the coarse-to-fine strategies.
We observe that both algorithms benefit immensely from
utilizing the gradient descent search. Further, the average
error can be made smaller than the sampling resolution
of candidate normals on the unit sphere. However, the
average angular error often does not reduce to zero due to
measurement noise as well as model misfit.

5 REFLECTANCE ESTIMATION

5.1 Per-pixel BRDF estimate
Given the surface normal estimate n̂p, we obtain an estimate
of the BRDF at each pixel, individually, by solving

ĉp = argmin
c≥0

‖Ip −B(n̂p)c‖22 + λ‖c‖1. (6)

The use of the `1-regularizer promotes sparse solutions and
primarily helps in avoiding over-fitting to the observed
intensities. The optimization problem in (6) is convex and
we used CVX [44], a general purpose convex solver, to
obtain solutions. The estimate of the BRDF at pixel p is

θ1 θ2 θ3 θ4 θ5 

Brute 

force 

original  7.07° 3.99° 1.56° 0.60° 0.42° 

refine 4.10° 2.43° 0.97° 0.43° 0.21° 

Coarse 

to fine 

original 7.07° 4.99° 2.56° 1.23° 0.82° 

refine 4.10° 2.86° 1.57° 0.75° 0.38° 

TABLE 2: Gradient descent local search starting from both
the brute-force and coarse-to-fine normal estimation for
different angular samplings in the candidate normals: θ1 =
10◦, θ2 = 5◦, θ3 = 3◦, θ4 = 1◦, and θ5 = 0.5◦. Shown are
aggregate statistics over 100 randomly generated trials.

given as ρ̂p = Dĉp. The value of λ was manually tuned for
best performance on synthetic data. For color-imagery, we
solve for the coefficients associated with each color channel
separately.

The advantage of the per-pixel BRDF estimation frame-
work is the ability to handle arbitrarily complex spatial
variations in the BRDF. However, a drawback of per-pixel
BRDF estimation is the relative lack of information available
at a pixel. When we know a priori that multiple pixels
share the same BRDF, then we can solve (6) simply by con-
catenating their corresponding intensity profiles and their
respective B(·) matrices. As is to be expected, pooling in-
tensities observed at multiple pixels significantly improves
the quality of the estimates. Yet, while spatial averaging
or spatial smoothness priors improve the quality of the
estimate, inherently they require the object to exhibit smooth
spatial-variations in its BRDF. To address this, we pool
together information across multiple pixels by utilizing the
low rank prior.

5.2 Incorporating low rank priors
Given the matrix C = [cp1

, cp2
, . . . , cpN

] for the estimated
abundances for all N pixels in the scene, we constrain
C to be low rank. The low rank prior, inspired by prior
work [5]–[7], [45], suggests that the SV-BRDF of the scene
under consideration can be generated from a small number
of unique reference reflectance functions such that linear
combinations of these reference BRDFs produces the BRDF
at any pixel. The low rank prior also allows us to restrict the
solution space for all the pixels globally without enforcing
any spatial smoothness or clustering of pixels.

Solution outline. We can now formulate a global optimiza-
tion problem that incorporates the low rank prior as follows:
The estimate of the abundances of the BRDF at pixel p is
given as

Ĉ = argmin
C

β‖C‖∗ +
∑
p

‖Ip −B(n̂p)cp‖22 + λ‖cp‖1.

s.t. C = [cp1 , . . . , cpN
], ∀p, cp ≥ 0. (7)

where ‖C‖∗, the nuclear norm of the matrix C, promotes
low-rank solutions [46]–[48]. Note that we do not control the
rank of the solution directly, but instead do so by using the
penalty parameter β. This is achieved as follows: for large
values of β, the nuclear norm penalty is strongly enforced
and hence, we can expect the solution to be of low-rank.
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Similarly, small values of β lead to solutions with larger
rank. We exploit this observation as a precept in sequentially
selecting β till we find a solution of desired rank.

The objective in (7) consists of a smooth data fidelity
term and two non-differentiable regularization terms, the
`1-term that promotes sparse solutions and the nuclear
norm that promotes low-rank solutions. We solve this by
using prox-linear or forward-backward operator splitting
[49]. This results in the following algorithm.

Given the estimate in the (k)-th iteration, Ĉ(k) =

[ĉ
(k)
p1 , . . . , ĉ

(k)
pN ], we perform three operations to obtain the

estimate at the (k + 1)-th iteration.
• Gradient descent. We perform the “forward operation”

which comprises of a gradient descent on the smooth
data fidelity term. Given the separable nature of the data
fidelity term, we can apply this on each pixel separately.

â(k+1)
p = ĉ(k)p + 2tB(n̂p)

>(Ip −B(n̂p)ĉ
(k)
p ),

where t denotes the update step in gradient descent.
• Soft thresholding. We next perform the first “backward

operation” corresponding to the `1-norm and the non-
negativity constraint. The associated proximal operator
results in soft thresholding at each pixel, followed by a
thresholding at zero to enforce non-negativity

b̂(k+1)
p = max

(
Sλt

(
â(k+1)
p

)
,0
)
,

where Sτ (·) denotes the soft-thresholding operator de-
fined as Sτ (x) = sgn(x)max(|x| − τ, 0), and | · | is the
absolute value.

• Singular value thresholding. Finally, we perform the
second “backward operation” corresponding to the nu-
clear norm. The associated proximal operator results

in a singular value thresholding step. Let B̂
(k+1)

=

[b̂
(k+1)
p1 , . . . , b̂

(k+1)
pN ]. Now, we can obtain Ĉ(k+1) as

Ĉ(k+1) = U [Sβ(σ)]V >,

where B̂
(k+1)

= Udiag(σ)V >.
We perform the update for the matrix C until the conver-
gence can be reached. In the next section, we carefully char-
acterize the performance of our proposition using synthetic
and real examples.

6 RESULTS

We characterize the performance of our technique using
both synthetic and real datasets. We also direct the reader
to the supplemental material for a complementary set of
results that we could not accommodate due to space con-
straints. Finally, our code base is available for download
from https://github.com/huizhuo1987/ICCP DL PS.

6.1 Synthetic experiments
We use the BRDFs in the MERL database [26] in a leave-
one-out scheme for testing the accuracy of our proposed al-
gorithms. Specifically, when we simulate a test object using
a particular material, the dictionary is comprised of BRDFs
of the remaining M = 99 materials from the database. We
used the configuration in the light-stage described in [50]
for our collection of lighting directions.
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Fig. 4: Normal and BRDF estimation with varying number
of images. We estimate the angular errors for the coarse-to-
fine (in dot green) and the gradient descent method (solid
green line). We also estimate the relative BRDF errors for
both per-pixel (in dot red) and rank-1 prior (solid red line)
under perfect knowledge of the surface normals. Finally, we
test the entire estimation pipeline by measuring the accuracy
of BRDFs using the surface normals from the gradient
descent scheme (orange solid line). The plots were obtained
by averaging across all 100 BRDFs in the MERL database
and 20, 000 randomly-generated normals per material.

6.1.1 Performance of normal estimation

We characterize the performance of normals estimation by
testing on the synthetic data with varying number of light-
ing directions, varying BRDFs as well as varying dictionary
size and type.

Varying number of input images. Figure 4 characterizes the
errors in surface normal for varying number of input images
or equivalently, lighting directions. We report the average
angular error for both the coarse-to-fine search strategy
and gradient descent method. In each case, the average
angular error is computed by randomly generating 20, 000
normals per material and varying across all 100 material
BRDFs in the database. This experiment is similar in setup
to the one reported in [30] which, to our knowledge, is one
of the most accurate techniques for photometric stereo on
isotropic BRDFs. In [30], for 200 images, the angular error in
estimating only the elevation angle when the azimuth is known
is reported as 0.88◦; in contrast, our proposed technique,
without any prior knowledge of the azimuth, has an angular
error of 0.82◦ for the coarse-to-fine search and 0.58◦ for the
gradient descent refinement.

Varying BRDF. Figure 5 compares the performance of
the proposed technique to that of state-of-the art non-
Lambertian photometric stereo algorithms [31], [32]. We
fixed the number of images at Q = 253. Shown are ag-
gregate statistics computed over 1, 000 randomly-generated
surface normals. For the coarse-to-fine technique, the worst-
case error is less than 2◦ and, further, the error tapers down
to 0.5◦ — which is the finest sampling of the candidate

https://github.com/huizhuo1987/ICCP_DL_PS
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coarse−to−fine angular error
gradient descent angular error
Shi et al. PAMI14
Ikehata et al. CVPR14

Fig. 5: Normal estimation for different materials. We fix the number of input images/lighting directions to 253. For
each material BRDF, we compute average error over 1, 000 randomly-generated surface normals for both the coarse-to-
fine search strategy (in red) and the gradient descent method (in green). The gradient descent scheme outperforms both
competing methods [31], [32] in 88 out of 100 materials.

normals. Incorporating the gradient descent method pro-
vides substantial improvements and the angular error, in
the best-case scenario, is reduced to 0.1◦, which is much
smaller than the finest sampling on the candidate normals.
This demonstrates the value of the gradient descent method
over only coarse-to-fine search strategy. We also note that
the proposed technique algorithm outperforms the both
state-of-the-art techniques [31], [32] for most of materials
we compare against; in total, the proposed technique has
worse performance in 12 out of 100 materials. In addition to
these simulations, in the supplemental material, we report
the performance of the proposed normal estimation tech-
niques as well as competing algorithms for multiple non-
Lambertian BRDFs.

Varying dictionary size and type. Figure 6 evaluates the
performance of both coarse-to-fine and gradient descent
approaches as the number of dictionary atoms is varied. We
use the same setting as Figure 5 but randomly pick 10, 30,
50, 70 and 90 atoms from the remaining 99 materials in
MERL database. Shown are aggregate statistics computed
over 5 trials. We observe that the angular errors of the gra-
dient descent approach are less than 3◦ for most materials
even for a small, randomly-selected dictionary.

Next, we evaluate the performance of our technique with
specialized dictionaries that are comprised of BRDFs from
similar materials. We construct three kinds dictionaries: (i)
one each for paints, fabrics, plastics, phenolics, and metals;
(ii) one dictionary whose atoms are randomly selected; and
(iii) a leave-one-out dictionary made of all BRDFs except
the one being tested. For evaluation, we isolate 10 materials
— two each for the five categories in type (i) above —
with no intersection between the training and test materials.
Adopt the same setup from Figure 5 in terms of lighting
directions and the number of input images, we evaluate the
performance of the proposed technique on these 7 dictio-
naries in Figure 7. As is to be expected, a mismatch between

the dictionary type and the test material produces unstable
estimates. This trend is most distinct for metallic objects
which have high-frequency components in their BRDFs. We
also observe that the dictionaries with a mixture of materials
returns the most stable performance. Finally, as expected,
the leave-one-out dictionary with 99 atoms outperforms
other dictionaries. This demonstrates the advantage of the
proposed technique by using reference materials from a
wide range.

6.1.2 Performance of BRDF estimation
We characterize the performance of BRDF estimation by
testing on the objects with spatial invariant as well as the
spatially varying BRDFs.

Given a test BRDF, we generated 100 surface normals
with random orientations and rendered their appearance
for 253 lighting directions. Assuming the knowledge of the
true surface normals, we estimate the BRDF using the opti-
mization in Section 5, comparing the estimates produced by
the per-pixel as well as low-rank constrained methods. We
use the relative BRDF error [27] to quantify the accuracy of
the estimate. Given true BRDF ρ and estimated value ρ̂, the
relative BRDF error is given as√∑

i

wi((ρ̂(i)− ρ(i)) ·max(0, cos(θi)))2/
∑
i

wi, (8)

with wi set equal to 1 for convenience.

Spatially-invariant BRDF. Figure 4 characterizes the av-
erage relative BRDF error for varying number of lighting
directions, which is computed by averaging all 100 material
BRDFs in MERL database based on the 20, 000 random gen-
erated normals. Additional results on objects with spatially-
invariant BRDF can be found in the supplemental material.

Spatially-varying BRDF. Though our model qualitatively
and quantitatively performs well on the homogeneous ob-
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Fig. 6: Normal estimation for different dictionary size. We fix the number of input images/lighting directions to 253. For
different dictionary size, we compute average error over 1, 000 randomly-generated surface normals for both coarse-to-fine
search (in red) and the gradient descent (in green) methods.
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Fig. 7: Normal estimation for different type of materials in
the dictionary. We fix the number of input images/lighting
directions to 253. The numbers in the legend indicates the
size of the corresponding dictionary. We observe that a
mismatch in material type always leads to poor normal
estimates. Shown are average errors over 1, 000 randomly-
generated surface normals.

jects, objects with spatially-varying BRDF present a more
challenging scenario. To illustrate this, we simulate an ob-
ject whose SV-BRDF is constantly varying. An example is
shown in Figure 8. We select three materials from the MERL
database [26] and vary their relative abundances smoothly
as shown in Figure 8. Now, the BRDF at each pixel in the
rendered objects can be represented as a linear combination
of the selected materials. In Figure 8, we showcase the
performance of the low-rank BRDF estimation technique by
rendering results obtained at different rank of the solution.
We obtain solutions with varying ranks by tuning the value
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Fig. 8: BRDF evaluation with low rank prior for a synthetic
object. We show a spherical object whose per-pixel BRDF is
a linear combination of the three materials shown. The color
coded sphere shows the relative abundances of the three
materials in each color channel. We show rendered images
using the ground truth, the per-pixel estimate as well as the
low-rank estimate for different values of rank, K . For each
value of the solution rank K , we include the corresponding
value of β used in the optimization at the top of the plot.
Finally, we present the relative BRDF error as a function of
the rank.

of β; for each value of the rank K , we show the corre-
sponding value of β at the top of the plot in Figure 8. The
performance demonstrated in terms of both the qualitative
results and quantitative measurements suggests robustness
by incorporating low-rank prior. Note that the value of
K used for the optimization may not be consistent with
the number of the underlying materials. That is, the BRDF
at each pixel, which is the linear combination of selected
BRDFs, may not be uniquely described by the BRDF dic-
tionary due to linear correlation between the atoms. This
naturally introduces a larger value of K for the convergence
of the relative BRDF errors.
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Joint scheme [31] + [41] Gradient descent + low-rank prior

(a) Ground truth (b) Estimated normals (c) Relighting results (d) Estimated normals (e) Relighting results

Fig. 9: Joint evaluation for the surface normals and BRDFs. We compare on synthetic synthetic data for the proposed
technique with the joint scheme of surface normals estimating using [31] and BRDF estimation using [41]. Insets on the
top-left are the angular errors and euclidean intensity differences for the relighting, shown for both the joint scheme and
the proposed approach. The proposed technique outperforms the competing methods in both normal estimation and novel
image synthesis.

6.1.3 End-to-end performance characterization

To evaluate the end-to-end performance of both surface
normal and BRDF estimation, we first characterize BRDF
recovery using the estimated normals under varying num-
ber of light directions. Figure 4 characterizes the average
relative BRDF errors for different number of light sources
for the materials in the MERL database [26]. As seen here,
the relative BRDF errors when using normal estimates of the
gradient descent technique are in close proximity to errors
when using the ground-truth surface normals. We also
compare the relighting results for the proposed technique
with the joint scheme with estimated surface normals from
[31] and per-pixel BRDF fitting model from [41]. Specifically,
given the surface normals estimated from [31], we perform
BRDF fitting scheme as shown in [41]. We generate the
test materials BRDFs by mixing materials from the MERL
database and use 253 input images for the estimation.
Given the estimated normals and BRDFs, we rendered the
objects using the Grace Cathedral environment as the scene
illumination. Figure 9 showcases the performance for the
proposed technique and the combination of [31] and [41].
An evaluation of reconstruction error is shown in the top-
left in the relighting results. We observe that the proposed
technique outperforms the combination scheme for surface
normal [31] and BRDF fitting [41] in terms of both visually
results and quantitative measurements. While the methods
[31] can produce good estimates for the surface normals and
[41] can effectively address the BRDF fitting given the sur-
face normals, they still need to solve the ill-posed problem
by using priors to model the BRDFs or surface normals,
making the framework fragile to the noisy estimates. In
contrast, we solved for a sequence of well-defined problems,
allowing for robust estimates for both surface normals and
material BRDFs even noisy estimates present.

6.2 Real data

Real images present a layer of difficulty well beyond simula-
tions and introduce inter-reflections, sub-surface scattering,
cast shadows, and imprecise light source localization. We
test the performance of our shape and BRDF recovery
algorithm on a wide range of datasets. Specifically, we use
datasets from three sources — the benchmark dataset of [51],
the light-stage data from [50], and the gourd from [7].

Comparisons on benchmark dataset. Figure 10 showcases
the performance of non-Lambertian photometric stereo
techniques on the benchmark dataset [51]. Each object in
the database was captured with the ground truth surface
normals, allowing for quantitative evaluations. For each
object, we tabulate the mean and median of the angular
errors for the estimated surface normals. The results for
the benchmarked algorithms were done using code-base
provided as part of the dataset.3 For eight out of the ten
objects, the gradient descent scheme outperforms all the
methods provided as part of the benchmark in both mean
and median angular error.

Normal estimation. Figure 11 showcases shape estima-
tion of both the coarse-to-fine search and gradient descent
method, respectively, on a variety of real datasets from
the USC database [50]. We use Poisson reconstruction to
obtain 3D surfaces from the estimated normal maps. The
results were obtained from 250 input images. From the
performance of the surface, the gradient descent method
provides more fine scale structures as indicated in the red
rectangle (the bolt on the shoulder-plate, the bolt on the
helmet, the badge), as well as remove the artifacts shown
in the helmet.

3. See https://sites.google.com/site/photometricstereodata/

https://sites.google.com/site/photometricstereodata/
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methods metric ball cat pot1 bear pot2 buddha goblet reading cow harvest

WG10 [16]
mean 2.03° 6.72° 7.18° 6.50° 13.12° 10.91° 15.70° 15.39° 25.89° 30.00°

median 2.11° 5.70° 5.64° 4.88° 8.92° 8.51° 12.34° 9.70° 26.81° 24.08°

IW12 [17]
mean 2.54° 7.21° 7.74° 7.32° 14.09° 11.11° 16.25° 16.16° 25.70° 16.11°

median 2.29° 6.02° 6.09° 5.88° 10.58° 8.73° 13.27° 9.37° 26.50° 29.26°

GC10 [8]
mean 3.21° 8.22° 8.53° 6.62° 7.90° 14.85° 14.22° 19.07° 9. 55° 27.84

median 1.17° 4.67° 4.01° 3.61° 3.37° 7.57° 8.01° 14.07° 5.79° 20.22°

AZ08 [9]
mean 2.71° 6.53° 7.23° 5.96° 11.03° 12.54° 13.93° 14.17° 21.48° 30.51°

median 2.47° 4.32° 4.70° 3.97° 8.40° 7.62° 9.64° 7.23° 21.52° 18.34°

HM10 [37]
mean 3.55° 8.40° 10.85° 11.48° 16.37° 13.05° 14.89° 16.82° 14.95° 21.79°

median 2.86° 6.07° 7.35° 9.81° 13.07° 9.14° 10.10° 11.34° 12.70° 14.88°

ST12 [34]
mean 13.58° 12.33° 10.37° 19.44° 9.84° 18.37° 17.80° 17.17° 7.62° 19.30°

median 12.32° 9.57° 7.52° 19.07° 6.67° 15.48° 14.04° 12.74° 3.91° 13.58°

ST14 [35]
mean 1.74° 6.12° 6.51° 6.12° 8.78° 10.60° 10.09° 13.63° 13.93° 25.44°

median 1.57° 4.04° 4.05° 4.38° 6.50° 6.89° 7.27° 7.59° 12.17° 17.12°

IA14 [36]
mean 3.34° 6.74° 6.64° 7.11° 8.77° 10.47° 9.71° 14.19° 13.05° 25.95°

median 3.33° 4.86° 4.24° 5.57° 6.57° 6.71° 6.59° 8.21° 10.59° 17.40°

Gradient 
descent

mean 1.33° 4.88° 5.16° 5.58° 6.41° 8.48° 7.57° 12.08° 8.23° 15.81°

median 0.91° 3.04° 2.55° 4.45° 3.18° 5.36° 5.10° 5.35° 4.58° 7.74°

Fig. 10: Evaluations on the benchmark photometric stereo dataset [51]. Shown are the mean and median of the angular
errors measured in degrees for both the gradient descent method and the state-of-the-art techniques. For each object, the
best performing algorithm for both mean and median angular error is marked in red. The proposed technique outperforms
the benchmarked techniques in a majority of scenes. The numbers for the benchmarked algorithms are reported from [51].

BRDF estimation. Next, we showcase the performance of
BRDF estimation on the knight scene using the surface
normals estimated using the gradient descent technique.
The object in the scene exhibits many unique materials
(the helmet, the breast-plate, the chain, the red scabbard,
to name a few) as well as significant modeling deviations
(inter-reflections, cast-shadows). Figure 12 shows rendered
photographs under natural lighting based on the USC light
probes [52] for both the per-pixel and low-rank prior ap-
proaches. While the per-pixel estimates show the robust-
ness to handle objects with complex spatial variations, it
produces noisy rendering results due to insufficient obser-
vations. Incorporating the low-rank prior returns a more
faithful rendition of the scene, indicating the advantages
gained by pooling the information across multiple pixels.

Evaluations. Figure 13 showcases the performance of our
algorithm on two real datasets (gourd1 and helmet). The
results for the helmet were obtained from 250 input im-
ages, and the results of gourd1 were obtained from 100
input images. The recovered shape and BRDF (as visualized
via rendered images) seem to be in agreement with the
results in [7]; however, our algorithm is significantly simpler
and employs a per-pixel algorithm that be easily paral-
lelized. The proposed estimation framework showcases its
robustness to handle objects with complex spatial varying
materials and render faithful renditions under both simple
and complex lighting environment. We refer the reader to
the supplemental videos highlighting the relighting results.

7 DISCUSSIONS

We present a photometric stereo technique for per-pixel
normal and BRDF estimation for objects that are visually

complex. We demonstrate that the use of a BRDF dictionary
significantly simplifies the inverse problem and provides
not just state-of-the-art results in normal and BRDF estima-
tion but also works robustly on a wide range of real scenes.
The hallmark of our approach is the ability to obtain surface
normal and SV-BRDF estimates without requiring complex
iterative techniques endemic to state-of-the-art techniques
[6], [7]. Finally, our per-pixel estimation framework is ripe
for further speed-ups by solve for the shape and reflectance
at each pixel in parallel.

Limitations. While the use of virtual exemplars provides
flexibility beyond [10], we require light calibration and
hence, our method is most suited to shape and reflectance
acquisition from light-stages where the light sources are
fixed and the calibration is a one-time effort. Finally, it
is also important that the scene lies in the linear span of
our dictionary. In the failure of this, our results can be
unpredictable. Here, the need for a larger dictionary encom-
passing hundreds, if not thousands, of materials would be
invaluable for the broader applicability of our method.
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