
1

FlatCam: Thin, Lensless Cameras using Coded
Aperture and Computation

M. Salmnan Asif, Ali Ayremlou, Aswin Sankaranarayanan, Ashok Veeraraghavan, and Richard Baraniuk

Abstract—FlatCam is a thin form-factor lensless camera that
consists of a coded mask placed on top of a bare, conventional
sensor array. Unlike a traditional, lens-based camera, where an
image of the scene is directly recorded on the sensor pixels, each
pixel in FlatCam records a linear combination of light from
multiple scene elements. A computational algorithm is then used
to demultiplex the recorded measurements and reconstruct an
image of the scene. FlatCam is an instance of a coded aperture
imaging system; however, unlike the vast majority of related
work, we place the coded mask extremely close to the image
sensor that enables thin and flat form-factor imaging devices.
We employ a separable mask to ensure that both calibration
and image reconstruction are scalable in terms of memory
requirements and computational complexity. We demonstrate the
potential of the FlatCam design using two prototypes: one at
visible wavelengths and one at infrared wavelengths.

I. INTRODUCTION

ARANGE of new imaging applications is driving the
miniaturization of cameras. As a consequence, significant

progress has been made towards minimizing the total volume
of the camera, and this progress has enabled new applica-
tions in endoscopy, pill cameras, and in vivo microscopy.
Unfortunately, this strategy of miniaturization has an important
shortcoming: the amount of light collected at the sensor
decreases dramatically as the lens aperture and the sensor
size become smaller. Therefore, ultra-miniature imagers built
simply by scaling down the optics and sensors suffer from
extremely low light collection.

In this paper, we present a camera architecture that we
call FlatCam, which is inspired by coded aperture imaging
principles pioneered in astronomical X-ray and gamma-ray
imaging [1]–[5]. Our proposed FlatCam design uses a large
photosensitive area with a very thin form factor. FlatCam
achieves thin form factor by dispensing with a lens and replac-
ing it with a coded, binary mask placed almost immediately
atop a bare conventional sensor array. The image formed on
the sensor can be viewed as a superposition of many pinhole
images. Thus, the light collection ability of such a coded
aperture system is proportional to the size of the sensor and
the area of the transparent regions (pinholes) in the mask.

M. Asif is with the with the Department of Electrical and Computer
Engineering, University of California, Riverside, CA 92501, USA e-mail:
sasif@ece.ucr.edu

A. Ayremlou is with Lensbricks Inc.
A. Sankaranarayanan is with the Department of Electrical and Computer

Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA e-mail:
saswin@andrew.cmu.edu

A. Veeraraghavan is with the Department of Electrical and Computer Engi-
neering, Rice University, Houston, TX 77005, USA e-mail: vashok@rice.edu

R. Baraniuk is with the Department of Electrical and Computer Engineer-
ing, Rice University, Houston, TX 77005, USA e-mail: richb@rice.edu

An illustration of the FlatCam design is presented in Fig. 1.
Light from a scene passes through a coded mask and lands on
a conventional image sensor. The mask consists of opaque and
transparent features (to block and transmit light, respectively);
each transparent feature can be viewed as a pinhole. Light
from the scene gets diffracted by the mask features such that
light from each scene location casts a unique mask shadow on
the sensor, and this mapping can be represented using a linear
operator. A computational algorithm then inverts this linear
operator to recover the original light distribution of the scene
from sensor measurements.

FlatCam has many attractive properties besides its slim
profile. First, since it reduces the thickness of the camera
but not the area of the sensor, it collects more light than
miniature, lens-based cameras with same thickness. Second,
the mask can be created from inexpensive materials that
operate over a broad range of wavelengths. Third, the mask can
be fabricated simultaneously with the sensor array, creating
new manufacturing efficiencies. The mask can be fabricated
either directly in one of the metal interconnect layers on top
of the photosensitive layer or on a separate wafer thermal
compression that is bonded to the back side of the sensor,
as is typical for back-side illuminated image sensors [6].

We demonstrate the potential of FlatCam using two pro-
totypes built in our laboratory with commercially available
sensors and masks: a visible prototype in which the mask-
sensor spacing is about 0.5mm and a short-wave infrared
(SWIR) prototype in which the spacing is about 5mm.

II. RELATED WORK

Pinhole cameras. Imaging without a lens is not a new idea.
Pinhole cameras, the progenitor of lens-based cameras, have
been well known since Alhazen (965–1039AD) and Mozi
(c. 370BCE). However, a tiny pinhole drastically reduces the
amount of light reaching the sensor, resulting in noisy, low-
quality images. Indeed, lenses were introduced into cameras
for precisely the purpose of increasing the size of the aperture,
and thus the light throughput, without degrading the sharpness
of the acquired image.

Coded aperture cameras. The primary goal of coded aper-
ture cameras is to increase the light throughput compared to
a pinhole camera. Coded aperture cameras extend the idea of
a pinhole camera by using masks with multiple pinholes [1],
[2], [4]. Figure 2 summarizes some salient features of pinhole,
lens-based, and FlatCam (coded mask-based) architectures.

Coded-aperture cameras have traditionally been used for
imaging wavelengths beyond the visible spectrum (e.g., x-
ray and gamma-ray imaging), for which lenses or mirrors
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Fig. 1: FlatCam architecture. (a) Every light source within the camera field-of-view contributes to every pixel in the multiplexed image
formed on the sensor. A computational algorithm reconstructs the image of the scene. Inset shows the mask-sensor assembly of our prototype
in which a binary, coded mask is placed 0.5mm away from an off-the-shelf digital image sensor. (b) An example of sensor measurements
and the image reconstructed by solving a computational inverse problem.

are expensive or infeasible [1], [2], [4], [5], [7]. Mask-based
lens-free designs have been proposed for flexible field-of-
view selection in [8], compressive single-pixel imaging using a
transmissive LCD panel [9], and separable coded masks [10].

In recent years, coded masks and light modulators have
been added to lens-based cameras in different configurations
to build novel imaging devices that can capture image and
depth [11], dynamic video [12], or 4D lightfield [13], [14]
from a single coded image. Coded aperture-based systems
using compressive sensing principles [15]–[17] have also been
studied for image super-resolution [18], spectral imaging [19],
and video capture [20].

Existing coded aperture-based lensless systems have two
main limitations: First, the large body of work devoted to
coded apertures invariably place the mask significantly far
away from the sensor (e.g., 65mm distance in [10]). In con-
trast, FlatCam design offers a thin form factor. For instance,
in our prototype with a visible sensor, the spacing between
the sensor and the mask is only 0.5mm. Second, the masks
employed in some designs have transparent features only in
a small central region whose area is invariably much smaller
than the area of the sensor. In contrast, almost half of the
features (spread across the entire surface) in our mask are
transparent. As a consequence, the light throughput of our
designs are many orders of magnitude larger as compared to
previous designs. Furthermore, the lensless cameras proposed
in [9], [10] use programmable spatial light modulators (SLM)
and capture multiple images while changing the mask patterns.
In contrast, we use a static mask in our design, which can
potentially be fixed on the sensor during fabrication or the
assembly process.

Camera arrays. A number of thin imaging systems have
been developed over the last few decades. The TOMBO
architecture [21], inspired by insect compound eyes, reduces
the camera thickness by replacing a single, large focal-length
lens with multiple, small focal-length microlenses. Each mi-
crolens and the sensor area underneath it can be viewed as
a separate low-resolution, lens-based camera, and a single
high-resolution image can be computationally reconstructed
by fusing all of the sensor measurements. Similar architectures

have been used for designing thin infrared cameras [22]. The
camera thickness in this design is dictated by the geometry
of the microlenses; reducing the camera thickness requires
a proportional reduction in the sizes of the microlenses and
sensor pixels. As a result, microlens-based cameras currently
offer only up to a four-fold reduction in the camera thickness
[23], [24].

Folded optics. An alternate approach for achieving thin
form factors relies on folded optics, where light manipulation
similar to that of a traditional lens is achieved using multi-fold
reflective optics [25]. However, folded optics based systems
have low light collection efficiencies.

Ultra-miniature lensless imaging with diffraction gratings.
Recently, miniature cameras with integrated diffraction grat-
ings and CMOS image sensors have been developed [26]–
[29]. These cameras have been successfully demonstrated on
tasks such as motion estimation and face detection. While
these cameras are indeed ultra-miniature in total volume (100
micron sensor width by 200 micron thickness), they retain
the large thickness-to-width ratio of conventional lens-based
cameras. Because of the small sensor size, they suffer from
reduced light collection ability. In contrast, in our visible
prototype below, we used a 6.7mm wide square sensor, which
increases the amount of light collection by about three orders
of magnitude, while the device thickness remains approxi-
mately similar (500 micron).

Lensless microscopy and shadow imaging. Lensless cameras
have been successfully demonstrated for several microscopy
and lab-on chip application, wherein the subject to be imaged
is close to the image sensor. An on-chip, lens-free microscopy
design that uses amplitude masks to cast a shadow of point
illumination sources onto a microscopic tissue sample has
shown significant promise for microscopy and related appli-
cations, where the sample being imaged is very close to the
sensor (less than 1mm) [30], [31]. Unfortunately, this tech-
nique cannot be directly extended to traditional photography
and other applications that require larger standoff distances
and do not provide control over illumination.
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Fig. 2: Comparison of pinhole, lens-based, and coded mask-based cameras. Pinhole cameras and lens-based cameras provide one-to-one
mapping between light from a focal plane and the sensor plane (note that light from three different directions is mapped to three distinct
locations on the sensor), but the coded mask-based cameras provide a multiplexed image that must be resolved using computation. The table
highlights some salient properties of the three camera designs. Pinholes cameras suffer from very low light throughput, while lens-based
cameras are bulky and rigid because of their optics. In contrast, the FlatCam design offers thin, light-efficient cameras with the potential for
direct fabrication.

III. FLATCAM DESIGN

FlatCam design places an amplitude mask almost immedi-
ately in front of the sensor array (see Fig. 1). We assume that
the sensor and the mask are planar, parallel to each other,
and separated by distance d. While we focus on a single
mask for exposition purposes, the concept extends to multiple
amplitude masks in a straightforward manner. For simplicity of
explanation, we also assume (without loss of generality) that
the mask modulates the impinging light in a binary fashion;
that is, it consists of transparent features that transmit light
and opaque features that block light. We denote the size of the
transparent/opaque features by ∆ and assume that the mask
covers the entire sensor array.

Consider the one-dimensional (1D) coded aperture system
depicted in Fig. 3, in which a single coded mask is placed at
distance d from the sensor plane. We assume that the field-of-
view (FOV) of each sensor pixel is limited by a chief ray angle
(CRA) θCRA, which implies that every pixel receives light only
from the angular directions that lie within ±θCRA with respect
to its surface normal. Therefore, light rays entering any pixel
are modulated by the mask pattern of length w = 2d tan θCRA.
As we increase (or decrease) the mask-to-sensor distance, d,
the width of the mask pattern, w, also increases (or decreases).
Assuming that the scene is far from the camera, the mask
patterns for neighboring pixels shift by the same amount as
the pixel width. If we assume that the mask features and the
sensor pixels have the same width, ∆, then the mask patterns
for neighboring pixels shift by exactly one mask element. If
we fix d ≈ N∆/2 tan θCRA, then exactly N mask features
lie within the FOV of each pixel. If the mask is designed by
repeating a pattern of N features, then the linear system that
maps the light distribution in the scene to sensor measurements
can be represented as a circulant system.

A number of mask patterns have been introduced in the
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Fig. 3: An illustration of a coded aperture system with a mask
placed d units away from the sensor plane. Each pixel records light
from angular directions within ±θCRA. Light reaching each sensor is
modulated by the mask pattern that is w = 2d tan θCRA units wide,
which we can increase (or decrease) by moving the mask farther (or
closer) to the sensor.

literature that offer high light collection and robust image
reconstruction for circulant systems. Typical examples include
uniform redundant array (URA), modified URA (MURA),
and pseudo-noise pattens such as maximum length sequences
(MLS or M-sequences) [2], [3], [32]–[34]. One key property
of these patterns is that they have near-flat Fourier spectrum,
which is ideal for a circulant system. Coded aperture systems
have been conventionally used for imaging X rays and Gamma
rays for which diffraction effects can be ignored and the mask
pattern can be designed to yield a circulant system.

The FlatCam design does not necessarily yield a circulant
system; however, we demonstrate that by employing a scalable
calibration procedure with a separable mask pattern, we can
calibrate the system and reconstruct quality images via simple
computational methods.

A. Replacing lenses with computation

Light from all points in the three dimensional (3D) scene is
modulated and diffracted by the mask pattern and subsequently
recorded on the image sensor. Let us consider a surface, S, in
the scene that is completely visible to the sensor pixels and
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denote x as a vector of light distribution from all the points
in S. We can then describe the sensor measurements, y, as

y = Φx+ e. (1)

Φ denotes a transfer matrix whose ith column corresponds to
an image that would form on the sensor if the scene contains
a single light source of unit intensity at ith location in x. e
denotes the sensor noise. Note that if all the points in the scene,
x, are at the same depth, then S becomes a plane parallel to
the mask at distance d.

Since the sensor pixels do not have a one-to-one mapping
with the scene pixels, the matrix Φ will not resemble the iden-
tity matrix. Instead, each sensor pixel measures multiplexed
light from multiple scene pixels, and each row of Φ indicates
how strongly each scene pixel contributes to the intensity
measured at a particular sensor pixel. In other words, any
column in Φ denotes the image formed on the sensor if the
scene contains a single, point light source at the respective
location.

Multiplexing generally results in an ill-conditioned system.
Our goal is to design a mask that produces a matrix Φ
that is well conditioned and hence can be stably inverted
without excessive noise amplification. We now discuss how
we navigate among three inter-related design decisions: the
mask pattern, the placement d and feature size ∆ of the mask,
and the image recovery (demultiplexing) algorithm.

B. Mask pattern
The design of mask patterns plays an important role in

coded-aperture imaging. An ideal pattern would maximize the
light throughput while providing a well-conditioned scene-
to-sensor transfer functions. In this regard, notable examples
of mask patterns include URA, MURA, and pseudo noise
patterns [2], [3], [32]. URAs are particularly useful because of
two key properties: (1) almost half of the mask is open, which
helps with the signal-to-noise ratio; (2) the autocorrelation
function of the mask is close to a delta function, which helps
in image reconstruction. URA patterns are closely related to
the Hadamard-Walsh pattern and the MLS that are maximally
incoherent with their own cyclic shifts [33], [35], [36].

In FlatCam design we consider three parameters to select the
mask pattern: the light throughput, the complexity of system
calibration and inversion, and the conditioning of the resulting
multiplexing matrix Φ.

Light throughput. In the absence of the mask, the amount of
light that can be sensed by the bare sensor is limited only by
its CRA. Since the photosensitive element in a CMOS/CCD
sensor array is situated in a small cavity, a micro-lens array
directly on top of the sensor is used to increase the light
collection efficiency. In spite of this, only light rays up to
a certain angle of incidence reach the sensor, and this is
the fundamental light collection limit of that sensor. Placing
an amplitude-modulating mask very close to (and completely
covering) the sensor results in a light-collection efficiency that
is a fraction of the fundamental light collection limit of the
sensor. In our designs, half of the binary mask features are
transparent, which halves our light collection ability compared
to the maximum limit.

To compare mask patterns with different types of transpar-
ent features, we present a simulation result in Fig. 4a. We
simulated the transfer matrix, Φ, for a 1D system with four
different types of masks and compared the singular values
of their respective Φ. Ideally, we want a mask for which the
singular values of Φ are large and they decay at a slow rate. We
generated one-dimensional mask patterns using random binary
patterns with 50% and 75% open features, uniform random
pattern with entries drawn from the unit interval, [0, 1], and
an MLS pattern with 50% open features. We observed that
MLS pattern outperforms random patterns and increasing the
number of transparent features beyond 50% deteriorates the
conditioning of the system.

As described above, while it is true that the light collection
ability of our FlatCam design is one-half of the maximum
achievable with a particular sensor, the main advantage of
the FlatCam design is that it allows us to use much larger
sensor arrays for a given device thickness constraint, thereby
significantly increasing the light collection capabilities of
devices under thickness constraints.

Computational complexity. The (linear) relationship be-
tween the scene irradiance x and the sensor measurements
y is contained in the multiplexing matrix Φ. Discretizing the
unknown scene irradiance into N×N pixel units and assuming
an M × M sensor array, Φ is an M2 × N2 matrix. Given
a mask and sensor, we can obtain the entries of Φ either by
modeling the transmission of light from the scene to the sensor
or through a calibration process. Clearly, even for moderately
sized systems, Φ is prohibitively large to either estimate
(calibration) or invert (image reconstruction), in general. For
example, to describe a system with a megapixel resolution
scene and a megapixel sensor array, Φ will contain on the
order of 106 × 106 = 1012 elements.

One way to reduce the complexity of Φ is to use a separable
mask for the FlatCam system. If the mask pattern is separable
(i.e., an outer product of two 1D patterns), then the imaging
system in (1) can be rewritten as

Y = ΦLXΦT
R + E, (2)

where ΦL,ΦR denote matrices that correspond to 1D convo-
lution along the rows and columns of the scene, respectively,
X is an N × N matrix containing the scene radiance, Y
in an M × M matrix containing the sensor measurements,
and E denotes the sensor noise and any model mismatch.
For a megapixel scene and a megapixel sensor, ΦL and ΦR

have only 106 elements each, as opposed to 1012 elements in
Φ. Similar idea has been recently proposed in [10] with the
design of doubly Toeplitz mask. In our implementation, we
also estimate the system matrices using a separate, one-time
calibration procedure (see Sec. III-D).

Numerical conditioning. The mask pattern should be chosen
to make the multiplexing matrices ΦL and ΦR as numerically
stable as possible, which ensures a stable recovery of the
image X from the sensor measurements Y . Such ΦL and ΦR

should have low condition numbers, i.e., a flat singular value
spectrum. For Toeplitz matrices, it is well known that, of all
binary sequences, the so-called maximum length sequences,
or M-sequences, have maximally flat spectral properties [34].
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Therefore, we use a separable mask pattern that is the outer
product of two 1D M-sequence patterns. However, because of
the inevitable non-idealities in our implementation, such as the
limited sensor CRA and the larger than optimal sensor-mask
distance due to the hot mirror, the actual ΦL and ΦR we obtain
using a separable M-sequence based mask do not achieve a
perfectly flat spectral profile. Nevertheless, as we demonstrate
in our prototypes, the resulting multiplexing matrices enable
stable image reconstruction in the presence of sensor noise
and other non-idealities. All of the visible wavelength, color
image results shown in this paper were obtained using normal,
indoor ambient lighting and exposure times in 10–20ms range,
demonstrating that robust reconstruction is possible.

To compare separable and non-separable mask patterns,
we present the results of a simulation study in Fig. 4b. We
simulated the Φ matrices for a 2D scene at 64× 64 resolution
using two separable and two non-separable mask patterns and
compared the singular values of their respective Φ. For the
non-separable mask patterns, we generated a random binary
2D pattern with an equal number of 0,1 entries and a uniform
2D pattern with entries drawn uniformly from the unit interval.
For the separable mask patterns, we generated an MLS pattern
by first computing an outer product of two 2D M-sequences
with ±1 entries and setting all −1s to zero, and a separable
binary pattern by computing the outer product of two 1D
binary patterns so that the number of 0s and 1s in the resulting
2D pattern is the same. Even though the non-separable binary
pattern has better singular values compared to the separable
MLS pattern, calibrating and characterizing such a system for
high-dimensional images is beyond our current capabilities.

C. Mask placement and feature size
The multiplexing matrices ΦL,ΦR describe the mapping of

light emanating from the points in the scene to the pixels on
the sensor. Consider light from a point source passing through
one of the mask openings; its intensity distribution recorded
at the sensor forms a point-spread function (PSF) that is due
to both diffraction and geometric blurs. The PSF acts as a
low-pass filter that limits the frequency content that can be
recovered from the sensor measurements. The choice of the
feature size and mask placement is dictated by the tradeoff
between two factors: reducing the size of the PSF to minimize
the total blur and enabling sufficient multiplexing to obtain a
well-conditioned linear system.

The total size of the PSF depends on the diffraction and
geometric blurs, which in turn depend on the distance between
the sensor and the mask, d, and the mask feature size, ∆.
The size of the diffraction blur is approximately 2.44λd/∆,
where λ is the wavelength of light waves. The size of the
geometric blur, however, is equal to the feature size ∆. Thus,
the minimum blur radius for a fixed d is achieved when the
two blur sizes are approximately equal: ∆ =

√
2.44λd. One

possible way to reduce the size of the combined PSF is to
use larger feature size ∆. However, the extent of multiplexing
within the scene pixels reduces as ∆ increases. Therefore, if
we aim to keep the amount of multiplexing constant, then the
mask feature size ∆ should shrink proportionally to the mask-
sensor distance d.

In practice, physical limits on the sensor-mask distance d
or the mask feature size ∆ can dictate the design choices. In
our visible FlatCam prototype, for example, we use a Sony
ICX285 sensor. The sensor has a 0.5 mm thick hot mirror
attached to the top of the sensor, which restricts the potential
spacing between the mask and sensor surface. Therefore, we
attach the mask to the hot mirror, resulting in d ≈ 500µm
(distance between the mask and the sensor surface). For a
single pinhole at this distance, we achieve the smallest total
blur size using a mask feature size of approximately ∆ =
30µm, which is also the smallest feature size for which we
were able to properly align the mask and sensor on the optical
table. Of course, in future implementations, where the mask
pattern is directly etched on top of the image sensor (direct
fabrication) such practical constraints can be alleviated and
we can achieve much higher resolution images by moving the
mask closer to the sensor and reducing the mask feature size
proportionally.

To compare the effect of feature size on the conditioning of
the sensing matrix, Φ, we present a simulation result in Fig. 4c.
We simulated the Φ matrices for an MLS mask and a single
pinhole for three different values of ∆ = {5, 10, 30}µm. For
a pinhole pattern, we observe that reducing the pinhole size,
∆, degrades conditioning of Φ in two ways: (1) The largest
singular value of Φ reduces as lesser light passes through the
pinhole. (2) The singular values decay faster as the total blur
increases because of smaller pinholes. For an MLS pattern,
we observed that reducing the feature size, ∆, improves the
conditioning of the system matrix Φ.

D. Camera calibration
We now provide the details of our calibration procedure

for the separable imaging system modeled in (2). Instead of
modeling the convolution shifts and diffraction effects for a
particular mask-sensor arrangement, we directly estimate the
system matrices.

To align the mask and sensor, we adjust their relative
orientation such that a separable scene in front of the camera
yields a separable image on the sensor. For a coarse alignment,
we use a point light source, which projects a shadow of the
mask onto the sensor, and align the horizontal and vertical
edges on the sensor image with the image axes. For a fine
alignment, we align the sensor with the mask while projecting
horizontal and vertical stripes on a monitor or screen in the
front of the camera.

To calibrate a system that can recover N×N images X , we
estimate the left and right matrices ΦL,ΦR using the sensor
measurements of 2N known calibration patterns projected on
a screen as depicted in Fig. 5. Our calibration procedure relies
on an important observation. If the scene X is separable, i.e.,
X = abT where a,b ∈ RN , then

Y = ΦLab
T ΦT

R = (ΦLa)(ΦRb)T .

In essence, the image formed on the sensor is a rank-1 matrix,
and by using a truncated singular value decomposition (SVD),
we can obtain ΦLa and ΦRb up to a signed, scalar constant.
We take N separable pattern measurements for calibrating
each of ΦL and ΦR.
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(a) Singular values of 1D systems (N = 256)
simulated for patterns with different levels of
transparent features.

(b) Singular values of 2D systems (N = 64)
simulated for separable and non-separable
patterns.

(c) Singular values of 1D systems (N =
256) simulated for single pinholes and coded
masks.

Fig. 4: Analysis of singular values of sensing matrix simulated for coded aperture systems with different masks placed at d = 500µm.
(a) Increasing the number of transparent features beyond 50% may increase light collection, but it degrades the conditioning of the system.
(b) A non-separable pattern may provide better reconstruction compared to a separable pattern, but calibrating and characterizing such a
system requires a highly sophisticated calibration procedure. (c) A single pinhole-based system degrades as we reduce the feature size because
lesser light reaches the sensor and the blur size increases. In contrast, a coded mask-based system improves as we reduce the feature size.

Specifically, to calibrate ΦL, we capture N images
{Y1, . . . , YN} corresponding to the separable patterns
{X1, . . . , XN} displayed on a monitor or screen. Each Xk is
of the form Xk = hk1

T , where hk ∈ RN is a column of the
orthogonal Hadamard matrix H of size N×N and 1 is an all-
ones vector of length N . Since the Hadamard matrix consists
of ±1 entries, we record two images for each Hadamard
pattern; one with hk1

T and one with −hk1
T while setting

the negative entries to zero in both cases. We then subtract the
two sensor images to obtain the measurements corresponding
to Xk. Let Ỹk = ukv

T be the rank-1 approximation of the
measurements Yk obtained via SVD, where the underlying
assumption is that v ≈ ΦR1, up to a signed, scalar constant.
Then, we have

[u1 u2 · · ·uN ] = ΦL[h1 h2 · · ·hN ] ≡ ΦLH, (3)

and we compute ΦL as

ΦL = [u1 u2 · · ·uN ]H−1, (4)

where H−1 = 1
NH

T . Similarly, we estimate ΦR by projecting
N patterns of the form 1hT

k .
Figure 5 depicts the calibration procedure in which we

projected separable patterns on a screen and recorded sensor
measurements; the sensor measurements recorded from these
patterns are re-ordered to form the left and right multiplexing
operators shown in (b).

A mask can only modulate light with non-negative trans-
mittance values. M-sequences are defined in terms of ±1
values and hence cannot be directly implemented in a mask.
The masks we use in our prototype cameras are constructed
by computing the outer-product of two M-sequences and
then setting the resulting −1 entries to 0. This produces a
mask that is optically feasible but no longer mathematically
separable. We can resolve this issue in post-processing, since
the difference between the measurements using the theoretical
±1 separable mask and the optically feasible 0/1 mask is
simply a constant bias term. In practice, once we acquire a
sensor image, we correct it to correspond to a ±1 separable

(b)!
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yield!

Vertical 
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yield!

Right system !
matrix!
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Ỹ = ΦLXΦT
RSensor measurements: !

Screen!
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Fig. 5: Calibration procedure for measuring the left and right multi-
plexing matrices ΦL and ΦR corresponding to a separable mask. (a)
Display separable patterns on a screen. The patterns are orthogonal,
1D Hadamard codes that are repeated along either the horizontal or
vertical direction. (b) Estimated left and right system matrices.

mask (described as Y in (2)) by forcing the column and row
sums to zero, as explained below.

Recall that if we use a separable mask, then we can describe
sensor measurements as Y = ΦLXΦT

R. If we turn on a single
pixel in X , say Xij = 1, then the sensor measurements would
be a rank-1 matrix φiφTj , where φi, φj denote the ith and jth
columns in ΦL,ΦR, respectively. Let us denote ψ as a 1D M-
sequence of length N and Ψ±1 = ψψT as the separable mask
that consists of ±1 entries; it is optically infeasible because
we cannot subtract light intensities. We created an optically
feasible mask by setting all the −1s in Ψ±1 to 0s, which can
be described as

Ψ0/1 = (Ψ±1 + 11T )/2.

Therefore, if we have a single point source in the scene,
the sensor image will be a rank-2 matrix. By subtracting
the row and column means of the sensor image, we can
convert the sensor response back to a rank-1 matrix. Only after
this correction can we represent the superposition of sensor
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3rd	  component	  
σ3=0.044	  

Fig. 6: Singular value decomposition of the point spread function
(PSF) for our proposed separable MLS mask before and after mean
subtraction. σ1, σ2, and σ3 denote the first three singular values of the
PSF. Note that σ2 diminishes after mean subtraction, which confirms
that the PSF is well approximated using a rank-one matrix.

measurements from all the light sources in the scene using
the separable system Y = ΦLXΦT

R. We present an example
of this mean subtraction procedure for an image captured with
our prototype and a point light source in Fig. 6.

IV. IMAGE RECONSTRUCTION

Given a set of M ×M sensor measurements Y , our ability
to invert the system (2) to recover the desired N ×N image
X primarily depends on the rank and the condition number of
the system matrices ΦL, ΦR.

If both ΦL and ΦR are well-conditioned, then we can
estimate X by solving a simple least-squares problem

X̂LS = arg min
X
‖ΦLXΦT

R − Y ‖22, (5)

which has the closed form solution: X̂LS = Φ+
LY Φ+

R, where
Φ+

L and Φ+
R denote the pseudoinverse of ΦL and ΦR, re-

spectively. Consider the SVD of ΦL = ULΣLV
T
L , where UL

and VL are orthogonal matrices that contain the left and right
singular vectors and ΣL is a diagonal matrix that contains the
singular values. Note that this SVD need only be computed
once for each calibrated system. The pseudoinverse can then
be efficiently pre-computed as Φ+

L = VLΣ−1
L UT

L .
When the matrices ΦL, ΦR are not well-conditioned or are

under-determined (e.g., when we have fewer measurements
M than the desired dimensionality of the scene N , as in
compressive sensing [15]–[17]), some of the singular values
are either very small or equal to zero. In these cases, the
least-squares estimate X̂LS suffers from noise amplification.
A simple approach to reduce noise amplification is to add an
`2 regularization term in the least-squares problem in (5)

X̂Tik = arg min
X
‖ΦLXΦT

R − Y ‖22 + τ‖X‖22, (6)

where τ > 0 is a regularization parameter. The solution of (6)
can also be explicitly written using the SVD of ΦL and ΦR

as we describe below.

The solution of (6) can be computed by setting the gradient
of the objective in (6) equal to zero and simplifying the
resulting equation:

ΦT
L(ΦLXΦT

R − Y )ΦR + τX = 0

ΦT
LΦLXΦT

RΦR + τX = ΦT
LY ΦR.

Replacing ΦL and ΦR with their SVD decompositions yields

VLΣ2
LV

T
L XVRΣ2

RV
T
R + τX = VLΣLU

T
L Y URΣRV

T
R .

Multiplying both sides of the equation with V T
L from the left

and VR from the right yields

Σ2
LV

T
L XVRΣ2

R + τV T
L XVR = ΣLU

T
L Y URΣR.

Denote the diagonal entries of Σ2
L and Σ2

R using the vectors
σL and σR, respectively, to simplify the equations to

V T
L XVR � (σLσ

T
R) + τV T

L XVR = ΣLU
T
L Y URΣR

V T
L XVR � (σLσ

T
R + τ11T ) = ΣLU

T
L Y URΣR

V T
L XVR = (ΣLU

T
L Y URΣR)./(σLσ

T
R + τ11T ),

where A � B and A./B denote element-wise multiplication
and division of matrices A and B, respectively. The solution
of (6) can finally be written as

X̂Tik = VL[(ΣLU
T
L Y URΣR)./(σLσ

T
R + τ11T )]V T

R . (7)

Thus, once the SVDs of ΦL and ΦR are computed and stored,
reconstruction of an N × N image from M × M sensor
measurements involves a fixed cost of two M × N matrix
multiplications, two N ×N matrix multiplications, and three
N ×N diagonal matrix multiplications.

In many cases, exploiting the sparse or low-dimensional
structure of the unknown image significantly enhances re-
construction performance. Natural images and videos exhibit
a host of geometric properties, including sparse gradients
and sparse coefficients in certain transform domains. Wavelet
sparse models and total variation (TV) are widely used regu-
larization methods for natural images [37], [38]. By enforcing
these geometric properties, we can suppress noise amplifica-
tion as well as obtain unique solutions. A pertinent example
for image reconstruction is the sparse gradient model, which
can be represented in the form of the following total-variation
(TV) minimization problem:

X̂TV = arg min
X
‖ΦLXΦT

R − Y ‖2 + λ‖X‖TV. (8)

The term ‖X‖TV denotes the TV of the image X given by the
sum of magnitudes of the image gradients. Given the scene
X as a 2D image, i.e., X(u, v), we can define Gu = DuX
and Gv = DvX as the spatial gradients of the image along
the horizontal and vertical directions, respectively. The total
variation of the image is then defined as

‖X‖TV =
∑
u,v

√
Gu(u, v)2 +Gv(u, v)2.

Minimizing the TV as in (8) produces images with sparse
gradients. The optimization problem (8) is convex and can be
efficiently solved using a variety of methods. Many extensions
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Fig. 7: Visible FlatCam prototype and results. (a) Prototype consists
of a Sony ICX285 sensor with a separable M-sequence mask placed
approximately 0.5mm from the sensor surface. (b) The sensor mea-
surements are different linear combinations of the light from different
points in the scene. (c) Reconstructed 512 × 512 color images by
processing each color channel independently.

and performance analyses are possible following the recently
developed theory of compressive sensing.

In addition to simplifying the calibration task, separability
of the coded mask also significantly reduces the computational
burden of image reconstruction. Iterative methods for solving
the optimization problems described above require the re-
peated application of the multiplexing matrix and its transpose.
Continuing our numerical example from above, for a non-
separable, dense mask, both of these operations would require
on the order of 1012 multiplications and additions for mega-
pixel images. With a separable mask, however, the application
of the forward and transpose operators requires only on the
order of 2 × 109 scalar multiplications and additions—a
tremendous reduction in computational complexity.

V. EXPERIMENTAL RESULTS

We present results on two prototypes. The first uses a
Silicon-based sensor to sense in visible wavelengths and the
second uses an InGaAs sensor for sensing in short-wave
infrared.

A. Visible wavelength FlatCam prototype

We built this FlatCam prototype as follows.
Image sensor: We used a Sony ICX285 CCD color sensor
that came inside a Point Grey Grasshopper 3 camera (model
GS3-U3-14S5C-C). The sensor has 1036× 1384 pixels, each
6.45µm wide, arranged in an RGB Bayer pattern. The physical
size of the sensor array is approximately 6.7mm × 8.9mm.
Mask material: We used a custom-made chrome-on-quartz
photomask that consists of a fused quartz plate, one side of
which is covered with a pattern defined using a thin chrome
film. The transparent regions of the mask transmit light, while
the chrome film regions of the mask block light.
Mask pattern and resolution: We created the binary mask
pattern as follows. We first generated a length-255 M-sequence
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Fig. 8: Masks used in both our visible and SWIR FlatCam
prototypes. M-sequences with ±1 entries that we used to create the
binary masks for (a) the visible camera and (b) the SWIR camera.
Binary masks created from the M-sequences for (c) the visible camera
and (d) the SWIR camera.

consisting of ±1 entries. The actual 255-length M-sequence is
shown in Fig. 12. We repeated the M-sequence twice to create
a 510-length sequence and computed the outer product with
itself to create a 510 × 510 matrix. Since the resulting outer
product consist of ±1 entries, we replaced every −1 with a 0
to create a binary matrix that is optically feasible. An image
showing the final 510×510 mask pattern is shown in Fig. 12.
We printed a mask from the 510 × 510 binary matrix such
that each element corresponds to a ∆ = 30µm square box
(transparent, if 1; opaque, if 0) on the printed mask. Images
of the pattern that we used for the mask and the printed mask
are presented in Fig. 12. The final printed mask is a square
approximately 15.3mm on a side and covers the entire sensor
area. Even though the binary mask is not separable as is, we
can represent the sensor image using the separable system
described in (2) by subtracting the row and column mean from
the sensor images (see Sec. III-D for details on calibration).
Mask placement: We opened the camera body to expose the
sensor surface and placed the quartz mask on top of it using
mechanical posts such that the mask touches the protective
glass (hot mirror) on top of the sensor. Thus the distance
between the mask and the sensor d is determined by thickness
of the glass, which for this sensor is 0.5mm.
Data readout and processing: We adjusted the white balance
of the sensor using Point Grey FlyCapture software and
recorded images in 8-bit RGB format using suitable exposure
and frame rate settings. In most of our experiments, the
exposure time was fixed at 10ms, but we adjusted it according
to the scene intensity to avoid excessively bright or dark
sensor images. For the static scenes we averaged 20 sensor
images to create a single set of measurements to be used for
reconstruction.

We reconstructed 512×512 RGB images from our prototype
using 512× 512 RGB sensor measurements. Since the sensor
has 1086 × 1384 pixels, we first cropped and uniformly
subsampled the sensor image to create an effective 512× 512
color sensor image; then we subtracted the row and column
means from that image. The resulting image corresponds



9
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Fig. 9: Images reconstructed at 512×512 resolution using the visible
FlatCam prototype and three different reconstruction methods. (a)
SVD-based solution of (6); average computation time per image =
75ms. (b) SVD/BM3D reconstruction; average computation time per
image = 10s. (c) Total variation (TV) based reconstruction; average
computation time per image = 75s.

to the measurements described by (2), which we used to
reconstruct the desired image X . Some example sensor images
and corresponding reconstruction results are shown in Fig. 7.
In these experiments, we solved an `2-regularized least-squares
problem in (6), followed by BM3D denoising [39]. Solving the
least-squares recovery problem for a single 512× 512 image
using pre-computed SVD requires a fraction of a second on a
standard laptop computer.

We present a comparison of three different methods for
reconstructing static scenes in Fig. 9. We used MATLAB
for solving all the computational problems. For the results
presented in Fig. 9, we recorded sensor measurements while
displaying test images on an LCD monitor placed 28cm away
from the camera and by placing various objects in front of the
camera in ambient lighting.

We used three methods for reconstructing the scenes from
the sensor measurements:

1) We computed and stored the SVD of ΦL,ΦR and solved
the `2-regularized problem in (6) as described in (7). The
average computation time for the reconstruction of a single
512×512 image on a standard laptop was 75ms. The results
of SVD-based reconstruction are presented in Fig. 9(a).
The reconstructed images are slightly noisy, with details
missing around the edges.

2) To reduce the noise in our SVD-estimated images, we
applied BM3D denoising to each reconstructed image.
The results of SVD/BM3D reconstruction are presented
in Fig. 9(b). The average computation time for BM3D
denoising of a single image was 10s.

3) To improve our results further, we reconstructed by solving
the TV minimization problem (8). The results of TV re-
construction are presented in Fig. 9(c). While, as expected,
the TV method recovers more details around the edges,
the overall reconstruction quality is not appreciably very
different from SVD-based reconstruction. The computation
time of TV, however, increases to 75s per image.

(a)!

(b)!

Fig. 10: Dynamic scenes captured by a FlatCam at video rates and
reconstructed at 512 × 512 resolution. (a) Frames from the video of
hand gestures captured at 30 frames per second. (b) Frames from the
video of a toy bird captured at 10 frames per second.

To demonstrate the flexibility of FlatCam design, we also
captured and reconstructed dynamic scenes at typical video
rates. We present selected frames1 from two videos in Fig. 10.
The images presented in Fig. 10A are reconstructed frames
from a video of a hand making counting gestures, recorded
at 30 frames per second. The images presented in Fig. 10B
are reconstructed frames from a video of a toy bird dipping
its head in water, recorded at 10 frames per second. In
both cases, we reconstructed each video frame at 512 × 512
pixel resolution by solving (6) using the SVD-based method
described in (7), followed by BM3D denoising.

B. SWIR FlatCam prototype

This FlatCam prototype consists of a Goodrich 320KTS-
1.7RT InGaAs sensor with a binary separable M-sequence
mask placed at distance d = 5mm. The sensor-mask distance
is large in this prototype because of the protective casing on
top of the sensor. We used a feature size of ∆ = 100µm for
the mask, which was constructed using the same photomask
process as for the visible camera. The sensor has 256 × 300
pixels, each of size w = 25µm, but because of the large
sensor-to-mask distance and mask feature size, the effective
system resolution is limited. Therefore, we binned 4×4 pixels
on the sensor (and cropped a square region of the sensor)
to produce sensor measurements of effective size 64 × 64.
We reconstructed images with the same 64 × 64 resolution;
example results are shown in Fig. 11.

VI. COMPARISON OF SEPARABLE MASK PATTERNS

In this section we present some simulation results to
highlight the advantages of using separable maximum length
sequence (MLS) masks compared to the separable masks
proposed in [10].

In our simulations, the imaging system consists of a coded
mask and a sensor array, placed parallel to each other and
separated by distance d, as depicted in Figure 3. We assumed
that the sensor consists of 1024 × 1024 pixels, where each
pixel is a 6.45µm wide square and the total sensor width is
approximately 6.6 mm. We fixed the chief ray angle (CRA) of

1Complete videos are available at http://bit.ly/FlatCam.
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Fig. 11: Short wave infrared (SWIR) FlatCam prototype and results.
(a) Prototype consists of a Goodrich 320KTS-1.7RT sensor with a
separable M-sequence mask placed approximately 5mm from the
detector surface. (b) Reconstructed 64 × 64 images.

the sensor to θCRA = 25 degrees in all the simulations. We
compared the following three binary, separable masks:
1) 02 mask: We generated this mask according to the specifi-

cations in [10]. We used the following 31-element pattern:
1110001011100100001111111111111, where 1 and 0 cor-
respond to transparent and opaque mask features, respec-
tively. We generated a 2D separable mask by computing
the outer product of the 31-element pattern with itself and
appending additional zeros at the boundaries. The mask
pattern can be seen in the first row of Figure 12. Each
element in the 02 mask is a 62µm wide square.

2) 04 mask: This mask is an enlarged version of the 02 mask;
the pattern is identical but each element is 124µm wide.
As before, we follow the specifications in [10].

3) MLS mask: We created the MLS mask using a 511-
element M-sequence that consists of ±1 entries. We com-
puted the outer product to the pattern with itself and
replaced every −1 entry with a 0. The binary mask pattern
within the field-of-view of the center sensor pixel can be
seen in the first row of Figure 12. Each element in our
mask is a 30µm wide square.

We represent the sensor measurements with a separable
mask according to (2) as Y = ΦLXΦT

R +E, where Y denotes
M ×M sensor measurements, X denotes an N × N scene
at a fixed plane, E denotes sensor noise, and ΦL,ΦR denote
system matrices that we simulated using ray tracing and Fres-
nel diffraction. The outer product of the ith column in ΦL and
jth column in ΦR encode sensor measurements corresponding
to a single point source at location (i, j) in the scene X .
To estimate the image X from the sensor measurements, we
solved the `2-regularized least-squares problem in (6). We
selected the regularization parameter τ > 0 that minimized
the mean squared error for a given mask.

We present the simulation results for the three masks and
three test images in Figure 13 and Figure 14. In all simulations,
we fixed M = 1024 and N = 512. We added the same amount
of Gaussian noise E to the sensor measurements for all the
mask patterns and reconstructed images by solving (6). We
simulated the system in two thickness configurations using

two different values of d: 1) a “thin” configuration with d =
500µm, for which the results are presented in Figure 13, and
2) a “thick” configuration with d = 6500µm, for which the
results are presented in Figure 14.

Thin configuration: Since the main focus of this paper is
in making a thin imaging device, a comparison of masks in
thin configuration is the most relevant. In a thin configuration,
the 02 and 04 masks cover a small portion of the sensor; thus,
only a small number of sensor pixels record the incoming
light rays, while a large portion of the sensor remains unused
(see center row in Figure 12). Since our proposed MLS mask
has transparent features distributed across the entire mask
surface, we utilize all the sensor pixels. The results in Figure
13 demonstrate that our proposed mask offers a significant
resolution improvement over the 02 and 04 masks proposed in
[10]. Note that our proposed mask recovers fine image details
that are lost using the 02 and 04 masks.

Thick configuration: It is important to note that thick
imaging devices are not the focus of this paper. In spite of
this fact, our mask still performs better than the 02 and 04
masks proposed in [10] in a thick configuration. In a thick
configuration, the incoming light rays reach almost the entire
sensor surface for the 02 and 04 masks (see the center row in
Figure 12). The results in Figure 14 demonstrate that images
reconstructed with all the masks are visually comparable;
however, the images provided by the MLS mask are slightly
better than those provided by the 02 and 04 masks.

Noise Analysis: To further study the effects of noise on the
performance of a mask-based imaging system with different
masks, we performed the above simulations several times with
different levels of sensor noise. The performance curves for
three test images at d = 500µm (“thin”) and d = 6500µm
(“thick”) are presented in Figure 15. Each point on the
curves corresponds to the peak signal-to-noise ratio (PSNR)
of the reconstruction error at a given PSNR of sensor noise,
averaged over 10 independent experiments. The PSNR of the
reconstruction error is defined as

PSNR = 20 log10

N max(X)

‖X − X̂‖2
,

where X and X̂ denote the original and reconstructed images,
respectively. In each experiment, we added sensor noise E
(recall (2)) whose entries were generated independently at
random according to N (0, σ2), where σ at Q dB PSNR
(sensor noise) was selected as σ = N10−Q/20. These curves
demonstrate that our MLS masks are distinctly superior to the
02 and 04 masks from [10].

VII. DISCUSSION

The mask-based, lens-free FlatCam design proposed here
can have a significant impact in imaging, since high-
performance, broad-spectrum cameras can be monolithically
fabricated instead of requiring cumbersome post-fabrication
assembly. The thin form factor and low cost of lens-free
cameras makes them ideally suited for many applications
in surveillance, large surface cameras, flexible or foldable
cameras, disaster recovery, and beyond, where cameras are
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02 mask 04 mask MLS mask

Mask patterns

d = 500µm

d = 6500µm

Fig. 12: Top row: Three separable mask patterns used in simulations.
Middle row: Simulated sensor measurements for a test image in the
“thin” configuration with d = 500µm. Since the transparent features
in the 02 and 04 masks lie above only a small portion of the sensor,
a large number of sensor pixels do not record any light. Bottom
row: Simulated sensor measurements in the “thick” configuration
with d = 6500µm. As the masks move farther from the sensor, the
light rays reach almost all the sensor pixels with the 02 and 04 masks.

either disposable resources or integrated in flat or flexible
surfaces and therefore have to satisfy strict thickness con-
straints. Emerging applications like wearable devices, internet-
of-things, and in-vivo imaging could also benefit from the
FlatCam approach.

A. Advantages of FlatCam

We make key changes in the FlatCam design to move
away from the cube-like form-factor of traditional lens-based
and coded aperture cameras while retaining their high light
collection abilities. We move the coded mask extremely close
to the image sensor, which results in a thin, flat camera. We use
a binary mask pattern with 50% transparent features, which,
when combined with the large surface area sensor, enables
large light collection capabilities. We use a separable mask
pattern, similar to the prior work in coded aperture imaging
[10], which enables simpler calibration and reconstruction.
The result is a radically different form factor from previous
camera designs that can enable integration of FlatCams into
large surfaces and flexible materials such as wallpaper and
clothes that require thin, flat, and lightweight materials [40].

Flat form factor. The flatness of a camera system can be
measured by its thickness-to-width ratio (TWR). The form
factor of most cameras, including pinhole and lens-based cam-
eras, conventional coded-aperture systems [2], and miniature
diffraction grating-based systems [28], is cube-like; that is, the
thickness of the device is of the same order of magnitude as
the sensor width, resulting in TWR ≈ 1. Cube-like camera
systems suffer from a significant limitation: if we reduce
the thickness of the camera by an order of magnitude while
preserving its TWR, then the area of the sensor drops by two
order of magnitude. This results in a two orders of magnitude
reduction in light collection ability. In contrast, FlatCams are

Reconstruction in “thin” configuration (d = 500µm)
Test image 02 mask 04 mask MLS mask

Barbara PSNR =
22.22 dB

PSNR =
22.22 dB

PSNR =
24.54 dB

USAF target PSNR =
19.27 dB

PSNR =
20.47 dB

PSNR =
24.66 dB

Toys PSNR =
25.43 dB

PSNR =
25.39 dB

PSNR =
29.1 dB

Fig. 13: Comparison of images reconstructed in the “thin” configu-
ration using the three separable masks placed d = 500µm from the
sensor plane in a low-noise setting (sensor noise at 70 dB PSNR).
Each row shows the test image and images reconstructed from the
sensor measurements for each mask (selected areas are enlarged to
show the image details). The MLS mask provides better results than
the 02 and 04 masks and preserves image details that are lost with
the 02 and 04 masks.

endowed with flat form factors; by design, the thickness of
the device is an order of magnitude smaller than the sensor
width. Thus, for a given thickness constraint, a FlatCam can
utilize a large sensing surface for light collection. In our visible
FlatCam prototype, for example, the sensor-to-mask distance
is 0.5mm, while the sensor width is about 6.7mm, resulting
in TWR ≈ 0.075. While on-chip lensless microscopes can
also achieve such low TWRs, such systems require complete
control of the illumination and the subject to be less than
1 mm from the camera [30]. We are unaware of any other
far-field imaging system that has a comparable TWR of the
FlatCam while providing reasonable light capture and imaging
resolution.

High light collection. The light collection ability of an
imaging system depends on two factors: its sensor area and the
square of its numerical aperture. Conventional sensor pixels
typically have an angular response of 40–60 degrees, which
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Reconstruction in “thick” configuration (d = 6500µm)
Test image 02 mask 04 mask MLS mask

Barbara PSNR =
27.91 dB

PSNR =
27.29 dB

PSNR =
39.02 dB

USAF target PSNR =
31.12 dB

PSNR =
28.22 dB

PSNR =
44.52 dB

Toys PSNR =
34.99 dB

PSNR =
34.61 dB

PSNR =
44.98 dB

Fig. 14: Comparison of images reconstructed in the “thick” config-
uration using the three separable masks placed d = 6500µm from
the sensor plane in a low-noise setting (sensor noise at 70 dB PSNR).
Each row shows the test image and images reconstructed from the
sensor measurements for each mask (selected areas are enlarged to
show the image details). The results for all the masks are visually
comparable; however, the images provided by the MLS mask are
slightly better than those provided by the 02 and 04 masks.

is referred to as the sensors chief ray angle (CRA). The total
amount of light that can be sensed by a sensor is often limited
by the CRA, which in turn determines the maximum allowable
numerical aperture of the system. Specifically, whether we
consider the best lens-based camera, or even a fully exposed
sensor, the cone of light that can enter a pixel is determined
by the CRA.

Consider an imaging system with a strict constraint on
the device thickness Tmax. The light collection L of such
an imaging device can be described as L ∝ W 2N2

A, where
W denotes the width of the (square) sensor and NA denotes
the numerical aperture. Since Wmax = Tmax/TWR, we have
L ∝ W 2N2

A ≤ (NATmax/TWR)2. Thus, given a thickness
constraint Tmax, the light collection of an imaging system is
directly proportional to the square of the numerical aperture
and inversely proportional to the square of its TWR. Thus,
smaller TWR leads to better light collection.

(a) Barbara image at d = 500µm (b) Barbara image at d = 6500µm

(c) USAF target at d = 500µm (d) USAF target at d = 6500µm

(e) Toys image at d = 500µm (f) Toys image at d = 6500µm
Fig. 15: PSNR curves for image reconstructions using the three
different masks for three test images in the “thin” (d = 500µm)
and “thick” (d = 6500µm) configurations.

The numerical aperture of our prototype FlatCams is limited
by the CRA of the sensors. Moreover, half of the features in
our mask are opaque and block one half of the light that would
have otherwise entered the sensor. Realizing that the numerical
aperture of such a FlatCam is reduced only by a factor of

√
2

compared to an open aperture, yet its TWR is reduced by an
order of magnitude leads to the conclusion that a FlatCam
collects approximately two orders of magnitude more light
than a cube-like miniature camera of the same thickness.

B. Limitations of FlatCam

FlatCam is a radical departure from centuries of research
and development in lens-based cameras, and as such this
radical departure has its own limitations.

Achievable image/angular resolution. Our current proto-
types have low spatial resolution which is attributed to two
factors. First, it is well known that angular resolution of
pinhole cameras and coded aperture cameras decreases when
the mask is moved closer to the sensor [7]. This results
in an implicit tradeoff between the achievable thickness and
the achievable resolution. Second, the image recorded on the
image sensor in a FlatCam is a linear combination of the
scene radiance, where the multiplexing matrix is controlled by
the mask pattern and distance between mask and sensor. This
means that recovering the scene from sensor measurements
requires demultiplexing. Noise amplification is an unfortunate
outcome of any linear demultiplexing based system. While
the magnitude of this noise amplification can be controlled by
careful design of the mask patterns, they cannot be completely
eliminated in FlatCam. In addition, the singular values of the
linear system are such that the noise amplification for higher
spatial frequencies is larger, which consequently limits the
spatial resolution of the recovered image. We are currently



13

working on several techniques to improve the spatial resolution
of the recovered images.

Direct-view and real-time operation. In traditional lens-
based cameras, the image sensed by the image sensor is
the photograph of the scene. In FlatCam, a computational
algorithm is required to convert the sensor measurements
into a photograph of the scene. This results in a time-lag
between the sensor acquisition and the image display, a time-
lag that depends on processing time. Currently, our SVD-
based reconstruction operates at near real-time (about 10 fps)
resulting in about a 100 ms delay between capture and display.
While this may be acceptable for certain applications, there
are many other applications such as augmented reality and
virtual reality, where such delays are unacceptable. Order
of magnitude improvements in processing times are required
before FlatCam becomes amenable to such applications.
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