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Abstract

While deep learning methods have achieved state-of-the-
art performance in many challenging inverse problems like
image inpainting and super-resolution, they invariably in-
volve problem-specific training of the networks. Under this
approach, each inverse problem requires its own dedicated
network. In scenarios where we need to solve a wide variety
of problems, e.g., on a mobile camera, it is inefficient and
expensive to use these problem-specific networks. On the
other hand, traditional methods using analytic signal priors
can be used to solve any linear inverse problem; this often
comes with a performance that is worse than learning-based
methods. In this work, we provide a middle ground between
the two kinds of methods — we propose a general framework
to train a single deep neural network that solves arbitrary
linear inverse problems. We achieve this by training a net-
work that acts as a quasi-projection operator for the set
of natural images and show that any linear inverse prob-
lem involving natural images can be solved using iterative
methods. We empirically show that the proposed framework
demonstrates superior performance over traditional methods
using wavelet sparsity prior while achieving performance
comparable to specially-trained networks on tasks including
compressive sensing and pixel-wise inpainting.

1. Introduction
At the heart of many image processing tasks is a linear 

inverse problem, where the goal is to reconstruct an image
x ∈ Rd from a set of measurements y ∈ Rm of the form 
y = Ax + n, where A ∈ Rm×d is the measurement op-
erator and n ∈ Rm is the noise. For example, in image 
inpainting, A is the linear operation of applying a pixelwise
mask to the image x. In super-resolution, A downsamples
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Figure 1: The same network is used to solve the following
tasks: compressive sensing problem with 10× compression,
pixelwise random inpainting with 80% dropping rate, scat-
tered inpainting, and 2×-super-resolution. Note that even
though the nature and input dimensions of the problems are
very different, the proposed framework is able to use a single
network to solve them all without retraining.

high-resolution images. In compressive sensing, A is a short-
fat matrix with fewer rows than columns and is typically a
random sub-Gaussian or a sub-sampled orthonormal matrix.
Linear inverse problems are often underdetermined, i.e., they
involve fewer measurements than unknowns. Such under-
determined systems are extremely difficult to solve since
the operator A has a non-trivial null space and there are an
infinite number of feasible solutions; however, only a few of
the feasible solutions are valid natural images.
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Solving linear inverse problems. There are two broad ap-
proaches for solving linear underdetermined problems. The
first approach regularizes the inverse problem with signal
priors that identify the true solution from the infinite set of
feasible solutions [9, 18, 19, 31, 39]. However, most hand-
designed signal priors provide limited identification ability,
i.e., many non-image signals can satisfy the constraints and
be falsely identified as natural images. The second approach
learns a direct mapping from the linear measurement y to the
solution x, with the help of large training datasets and deep
neural nets. Such methods have achieved state-of-the-art per-
formance in many challenging image inverse problems like
super-resolution [17, 29], inpainting [38], compressive sens-
ing [28, 35, 36], and image debluring [49]. Despite their su-
perior performance, these methods are designed for specific
problems and usually cannot solve other problems without
retraining the mapping function — even when the problems
are similar. For example, a 4×-super-resolution network
cannot be easily readapted to solve 2× super-resolution prob-
lems; a compressive sensing network for Gaussian random
measurements is not applicable to sub-sampled Hadamard
measurements. Training a new network for every single mea-
surement operator is a wasteful proposition. In comparison,
traditional methods using hand-designed signal priors can
solve any linear inverse problems but they often have poorer
performance on an individual problem. Clearly, a middle
ground between these two classes of methods is needed.

One network to solve them all. We ask the following
question: if we have a large dataset of natural images, can
we learn from the dataset a signal prior that can deal with
any linear inverse problem involving images? Such a signal
prior can significantly lower the cost to incorporate inverse
algorithms into consumer products, for example, via the
form of specialized hardware design. To answer this ques-
tion, we observe that in optimization algorithms for solving
linear inverse problems, signal priors usually appears in the
form of proximal operators. Geometrically, the proximal op-
erator projects the current estimate closer to the feasible sets
(natural images) constrained by the signal prior. Thus, we
propose to learn the proximal operator with a deep projection
model. Once learned, the same network can be integrated
into many standard optimization frameworks for solving
arbitrary linear inverse problems of natural images.

Contributions. We make the following contributions.

• We propose a general framework that, for large image
datasets, implicitly learns a signal prior in the form of a
projection operator. When integrated into an alternating
direction method of multipliers (ADMM) algorithm, the
same proposed projection operator can solve challenging
linear inverse problems.

• We identify the convergence conditions of the nonconvex
ADMM with the proposed projection operator, and we use

these conditions as the guidelines to design the proposed
projection network.

• We empirically show that specially-trained networks are
indeed sensitive to changes in the linear operators and
noise in the linear measurements, and require retraining
for effective usage. In contrast, the proposed method
can be easily repurposed to small and big changes in the
measurement operator without any retraining.

Limitations. A limitation of our method is its reliance on
iterative methods; this is often computationally expensive
when compared to specially-trained networks that are often
non-iterative. Using a learned projection network also limits
our ability to fine-tune the weight of the signal prior on-the-
fly. Our convergence analysis is based on a perfectly learned
projection network, which may not occur in practice. For
very challenging problems like image inpainting with large
missing regions, our current projection network may fail to
produce satisfying results (see Figure 7).

2. Related Work
Given noisy linear measurements y and the corresponding

linear operatorA, which is usually underdetermined, the goal
of linear inverse problems is to find a solution x, such that
y ≈ Ax and x be a signal of interest, in our case, an image.
Based on their strategies to deal with the underdetermined
nature of the problem, algorithms for linear inverse problems
can be roughly categorized into those using hand-designed
signal priors and those learning from datasets. In this section,
we briefly review some of these methods.

Hand-designed signal priors. Linear inverse problems
are usually regularized by signal priors in a penalty form:

min
x

1

2
‖y −Ax‖22 + λφ(x), (1)

where φ : Rd → R is the signal prior and λ is the non-
negative weighting term. Signal priors constraining the
sparsity of x in some transformation domain have been
widely used in literatures. For example, since images are
usually sparse after wavelet transformation or after taking
gradient operations, a signal prior φ can be formulated as
φ(x) = ‖Wx‖1, where W is a operator representing either
wavelet transform, taking image gradient, or other hand-
designed linear operation that produces sparse features from
images [20]. Using signal priors of `1-norms provides two
advantages. First, it forms a convex optimization problem
and provides global optimality. The optimization problem
can be solved efficiently with a variety of algorithms for con-
vex optimization. Second, `1 priors enjoy many theoretical
guarantees, thanks to results in compressive sensing [8]. For
example, if the linear operator A satisfies conditions like the
restricted isometry property and Wx is sufficiently sparse,
the optimization problem (1) provides the sparsest solution.



Despite their algorithmic and theoretical benefits, hand-
designed priors are often too generic to constrain the solution
set of the inverse problem (1) to be natural images — we can
easily generate noise-like signals that have sparse wavelet
coefficients or gradients.

Learning-based methods. The ever-growing number of
images on the Internet enables state-of-the-art algorithms
to deal with challenging problems that traditional methods
are incapable of solving. For example, image inpainting and
restoration can be performed by pasting image patches or
transforming statistics of pixel values of similar images in a
large dataset [15, 24]. Image denoising and super-resolution
can be performed with dictionary learning methods that re-
construct image patches with sparse linear combinations
of dictionary entries learned from datasets [4, 50]. Large
datasets can also help learn end-to-end mappings from the
linear measurement domain to the image domain. Given
a linear operator A and a dataset M = {x1, . . .,xn},
the pairs {(xi, Axi)}ni=1 can be used to learn an inverse
mapping f ≈ A−1 by minimizing the distance between
xi and f(Axi), even when A is underdetermined. State-
of-the-art methods usually parametrize the mapping func-
tions with deep neural nets. For example, stacked auto-
encoders and convolutional neural nets have been used
to solve compressive sensing and image deblurring prob-
lems [28, 35, 36, 49, 51]. Recently, adversarial learning [21]
has been demonstrated for its ability to solve many chal-
lenging image problems, such as image inpainting [38] and
super-resolution [14, 29].

Despite its ability to solve challenging problems, learning
end-to-end mappings has a major disadvantage — the num-
ber of mapping functions scales linearly with the number of
problems. Since the datasets are generated based on specific
operators As, these end-to-end mappings can only solve the
given problems. Even if the problems change slightly, the
mapping functions (neural nets) need to be retrained. For
example, a mapping to solve 2×-super-resolution cannot be
used directly to solve 3×- or 4×-super-resolution with satis-
factory performance; it is even more difficult to re-purpose
a mapping for image inpainting to solve super-resolution
problems. This specificity of end-to-end mappings makes it
costly to incorporate them into consumer products that need
to deal with a variety of image processing applications.

Deep generative models. Another thread of research
learns generative models from image datasets. Suppose we
have a dataset containing samples of a distribution P (x). We
can estimate P (x) and sample from the model [27,43,44], or
directly generate new samples from P (x) without explicitly
estimating the distribution [21, 40]. Dave et al. [16] use a
spatial long-short-term memory network to learn the distri-
bution P (x); to solve linear inverse problems, they solve a
maximum a posteriori estimation — maximizing P (x) over

x subject to y = Ax. Nguyen et al. [37] use a discriminative
network and denoising autoencoders to implicitly learn the
joint distribution between the image and its label P (x, y),
and they generate new samples by sampling the joint dis-
tribution P (x, y), i.e., the network, with an approximated
Metropolis-adjusted Langevin algorithm. To solve image in-
painting, they replace the values of known pixels in sampled
images and repeat the sampling process. As the proposed
framework, these methods can be used to solve a wide vari-
ety of inverse problems. They use a probability framework
and thereby can be considered orthogonal to the proposed
framework, which is motivated by a geometric perspective.

3. One Network to Solve Them All
Signal priors play an important role in regularizing under-

determined inverse problems. As mentioned earlier, tradi-
tional priors constraining the sparsity of signals in gradient
or wavelet bases are often too generic, in that we can easily
create non-image signals satisfying these priors. Instead of
using traditional signal priors, we propose to learn a prior
from a large image dataset. Since the prior is learned directly
from the dataset, it is tailored to the statistics of images in
the dataset and, in principle, provide stronger regularization
to the inverse problem. In addition, similar to traditional
signal priors, the learned signal prior can be used to solve
any linear inverse problems pertaining to images.

3.1. Problem formulation

The proposed framework is motivated by the optimiza-
tion technique, alternating direction method of multipliers
(ADMM) [7], that is widely used to solve linear inverse prob-
lems as defined in (1). A typical first step in ADMM is to
separate a complicated objective into several simpler ones
by variable splitting, i.e., introducing an additional variable
z that is constrained to be equal to x. This gives us the
following optimization problem:

min
x,z

1

2
‖y −Az‖22 + λφ(x) s.t. x = z, (2)

that is equivalent to the original problem (1). The scaled
form of the augmented Lagrangian of (2) can be written as

L(x, z,u) = 1

2
‖y −Az‖22+λφ(x) +

ρ

2
‖x− z+ u‖22,

where ρ > 0 is the penalty parameter of the constraint x =
z, and u represents the dual variables divided by ρ. By
alternately optimizing L(x, z,u) over x, z, and u, ADMM
is composed of the following steps:

x(k+1) ← argmin
x

ρ

2

∥∥∥x− z(k) + u(k)
∥∥∥2

2
+ λφ(x) (3)

z(k+1) ← argmin
z

1

2
‖y −Az‖22+

ρ

2

∥∥∥x(k+1)−z+u(k)
∥∥∥2

2
(4)

u(k+1) ← u(k) + x(k+1) − z(k+1).



Figure 2: Given a large image dataset, the proposed framework
learns a classifier D that fits a decision boundary of the natural
image set. Based on D, a projection network P(x):Rd→Rd is
trained to fit the proximal operator of D, which enables one to
solve a variety of linear inverse problems using ADMM.

The update of z in (4) is a least squares problem and can be
solved efficiently via conjugate gradient descent. The update
of x in (3) is the proximal operator of the signal prior φ with
penalty ρ

λ , denoted as proxφ, ρλ (v), where v=z(k)−u(k).
When the signal prior uses `1-norm, the proximal operator is
simply a soft-thresholding on v. Notice that the ADMM al-
gorithm separates the signal prior φ from the linear operator
A. This enables us to learn a signal prior that can be used
with any linear operator.

3.2. Learning a proximal operator

Since signal priors only appears in the form of proximal
operators in ADMM, instead of explicitly learning a signal
prior φ and solving the proximal operator in each step of
ADMM, we propose to directly learn the proximal operator.

Let X represent the set of all natural images. The best
signal prior is the indicator function of X , denoted as IX (·),
and its corresponding proximal operator proxIX ,ρ(v) is a
projection operator that projects v onto X from the geomet-
ric perspective— or equivalently, finding a x ∈ X such that
‖x− v‖ is minimized. However, we do not have the oracle
indicator function IX (·) in practice, so we cannot evaluate
proxIX ,ρ(v) to solve the projection operation. Instead, we
propose to train a classifier D with a large dataset whose
decision function approximates IX . Based on the learned
classifier D, we can learn a projection function P that maps
a signal v to the set defined by the classifier. The learned pro-
jection functionP can then replace the proximal operator (3),
and we simply update x via

x(k+1) ← P(z(k) − u(k)). (5)

An illustration of the idea is shown in Figure 2.
There are some caveats for this approach. First, when the

decision function of the classifier D is non-convex, the over-
all optimization becomes non-convex. For solving general
non-convex optimization problems, the convergence result
is not guaranteed. Based on the theorems for the conver-

gence of non-convex ADMM [47], we provide the following
theorem to the proposed ADMM framework.

Theorem 1. Assume that the function P solves the proximal
operator (3). If the gradient of φ(x) is Lipschitz continuous
and with large enough ρ, the ADMM algorithm is guaranteed
to attain a stationary point.

The proof follows directly from [47] and we omit the
details here. Although Theorem 1 only guarantees conver-
gence to stationary points instead of the optimal solution
as other non-convex formulations, it ensures that the algo-
rithm will not diverge after several iterations. Second, we
initialize the scaled dual variables u with zeros and z(0)

with the pseudo-inverse of the least-square term. Since
we initialize u0 = 0, the input to the proximal operator
v(k)=z(k)−u(k) = z(k) +

∑k
i=1

(
x(i) − z(i)

)
≈ z(k) re-

sembles an image. Thereby, even though it is in general
difficult to fit a projection function from any signal in Rd to
the natural image space, we expect that the projection func-
tion only needs to deal with inputs that are close to images,
and we train the projection function with slightly perturbed
images from the dataset. Third, techniques like denoising
autoencoders learn projection-like operators and, in princi-
ple, can be used in place of a proximal operator; however,
our empirical findings suggest that ignoring the projection
cost ‖v−P(v)‖2 and simply minimizing the reconstruction
loss ‖x0 −P(v)‖2, where v is a perturbed image from x0,
leads to instability in the ADMM iterations.

3.3. Implementation details

An overview of the framework is illustrated in Figure 3.
The projection operatorP is implemented by a typical convo-
lutional autoencoder, the classifier D and an auxiliary latent-
space classifier D` (whose use will be discussed below) are
implemented by residual nets [25]. The architectures of
the networks are discussed in the supplemental materials.
Our code and trained models are online [1]. Below, we will
discuss the choices made when designing the framework.

Choice of activation function. We use cross entropy loss
as the discriminative loss to the classifiers. Since φ is the
decision function of D, we have φ(x) = log(σ(D(x))),
where σ is the sigmoid function. According to Theorem 1,
we need the gradient of φ to be Lipschitz continuous. Thus,
in order to make D differentiable, we choose the smooth
exponential linear unit [12] as its activation function, instead
of rectified linear units. To bound the gradients of D w.r.t. x,
we truncate the weights of the network after each iteration.

Image perturbation. While adding Gaussian noise may
be the simplest method to perturb an image, we found that
the projection network will easily overfit the Gaussian noise
and become a dedicated Gaussian denoiser. Since during
the ADMM process, the inputs to the projection network,



z(k) − u(k), do not usually follow a Gaussian distribution,
an overfitted projection network may fail to project the gen-
eral signals produced by the ADMM process. To avoid
overfitting, we generate perturbed images with two methods
— adding Gaussian noise with spatially-varying standard
deviations and smoothing the input images. The detailed
implementation of image perturbation can be found in the
supplemental material. We only use the smoothed images
on ImageNet and MS-Celeb-1M datasets.

Training procedure. One way to train the classifier D is
to feed D natural images from a dataset and their perturbed
counterparts. Nevertheless, we expect the projected images
produced by the projectorP be closer to the datasetM (natu-
ral images) than the perturbed images. Therefore, we jointly
train two networks using adversarial learning. The projector
P is trained to minimize (3), that is, confusing the classifier
D by projecting v to the natural image set defined by the
decision boundary of D. When the projector improves and
generates outputs that are within or closer to the boundary,
the classifier can be updated to tighten its decision boundary.
Although we start from a different perspective from [21], the
joint training procedure described above can also be under-
stood as a two player game in adversarial learning, where
the projector and the classifier have adversarial objectives.

Specifically, we optimize the projection network with the
following objective function:

min
θP

∑
x∈M,v∼f(x)

λ1‖x− P(x)‖2+λ2‖x− P(v)‖2+ · · ·

· · ·λ3‖v − P(v)‖2−λ4 log (σ(D` ◦ E(v)))− λ5 log (σ(D ◦ P(v))),
(6)

where θP is the parameters of the projection network P , f
is the function we used to generate perturbed images, and
the first two terms in (6) are similar to (denoising) autoen-
coders and are added to help the training procedure. The
remaining terms in (6) form the projection loss as we need
in (3). We use two classifiers D and D`, for the output
(image) space and the latent spaces of the projector (E(v)
in Figure 3), respectively. The latent-space classifier D` is
added to further help the training procedure. Essentially, D`
encourages the perturbed images and their corresponding
clean images to share the same encoding. More intuition
about the latent-space classifier can be found in [32]. We
also find that adding D` helps the projector avoid overfitting.
In all of our experiments, we set λ1 = 0.01, λ3 = 0.005,
λ2 = 1.0, λ4 = 0.0001, and λ5 = 0.001.

3.4. Relationship to other techniques

Many recent works solve linear inverse problems by un-
rolling the optimization process into the network architec-
ture [3,6,22,26]. Since the linear operator A is incorporated
in the architecture, these networks are problem-specific. The

Figure 3: Block diagram of the framework. The adversarial learn-
ing is conducted on both image and latent spaces of P .

proposed method is also similar to the denoising-based ap-
proximate message passing algorithm [34] and plug-and-
play priors [45], which replace the proximal operator with
an image denoiser.

Adversarial learning and denoising autoencoder. In
terms of architecture, the proposed framework is very simi-
lar to adversarial learning [10, 21] and denoising autoen-
coder [38, 46]. Compared to adversarial learning, that
matches the probability distributions of the dataset and the
generated images, the proposed framework is based on the
geometric perspective and the ADMM framework. Our use
of the adversarial training is simply for learning a tighter
decision boundary, based on the hypothesis that images gen-
erated by P should be closer, in terms of `2 distance, to X
than the arbitrarily perturbed images. Compared to denois-
ing autoencoder, the projection network P is encouraged
to project perturbed images x0 + n to the closest x in X ,
instead of the original image x0. In our empirical experience,
the difference helps stabilize the ADMM process.

Other related methods. Many concurrent works also pro-
pose to solve generic linear inverse problems by learning
proximal operators [33,48]. Meinhardt et al. [33] replace the
proximal operator with a denoising network. Xiao et al. [48]
use a modified multi-stage non-linear diffusion process [11]
to learn the proximal operator.

Dave et al. [16] and Bora et al. [5] learn generative mod-
els of natural images and solve linear inverse problems by
performing maximum a posteriori inference. Their algo-
rithms need to compute the gradient of the networks in each
iteration, which can be computationally expensive when
the networks are very deep and complex. In contrast, the
proposed method directly provides the solution to the x-
update (5) and is thus computationally efficient.

3.5. Limitations

Unlike traditional signal priors whose weights λ can be
adjusted at the time of solving the optimization problem (1),
the prior weight of the proposed framework is fixed once
the projection network is trained. While an ideal projection
operator should not be affected by the value of the prior
weights, sometimes, it may be preferable to control the effect
of the signal prior to the solution. In our experiments, we find
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Figure 4: Convergence of the ADMM algorithms for compressive
sensing (left) and scattered inpainting (right) of Figure 1.

that adjusting ρ sometimes has similar effects as adjusting λ.
The convergence analysis of ADMM in Theorem 1 is

based on the assumption that the projection network can
provide global optimum of (3). However, in practice the
optimality is not guaranteed. While there are convergence
analyses with inexact proximal operators, the general prop-
erties are too complicated to analyze for deep neural nets. In
practice, we find that for problems like pixelwise inpainting,
compressive sensing, 2× super-resolution and scattered in-
painting the proposed framework converges gracefully, as
shown in Figure 4, but for more challenging problems like
image inpainting with large blocks and 4×-super-resolution
on ImageNet dataset, we sometimes need to stop the ADMM
procedure early (by monitoring the residual ‖x(k) − z(k)‖).

4. Experiments
We evaluate the proposed framework on the MNIST

dataset [30], MS-Celeb-1M dataset [23], ImageNet
dataset [41], and LabelMe dataset [42], whose descriptions
are listed in Table 1.

For each of the datasets, we perform the following tasks:
(i) Compressive sensing. We use m× d random Gaussian

matrices of different compression (md ) as the linear op-
erator A. The images are vectorized into d-dimensional
vectors x and multiplied with the random Gaussian
matrices to form y.

(ii) Pixelwise inpainting and denoising. We randomly drop
pixels (independent of channels) by filling zeros and
add Gaussian noise with different standard deviations.

(iii) Scattered inpainting. We randomly drop 10 small
blocks by filling zeros. Each block is of 10% width
and height of the input.

(iv) Blockwise inpainting. We fill the center 30% region of
the input images with zeros.

(v) Super resolution. We downsample the images into 50%
and 25% of the original width and height using box-
averaging algorithm.

Configurations of specially-trained networks. For each
task (except for 4×-super resolution and for scattered inpaint-
ing), we train a deep neural net using context encoder [38]
with adversarial training. For compressive sensing, we de-
sign the network based on the work of [35], which applies

dataset # of samples resolution

MNIST (hand-written digits) 60k + 10k 28×28×1
MS-Celeb (faces of 100k people) 8 million 64×64×3
ImageNet (natural images on the web) 1.2 million + 100k 64×64×3
LabelMe (natural images on the web) 2, 920 + 1, 133 64×64×3

Table 1: Datasets used to examine the proposed framework. For
MS-Celeb-1M, we randomly select images of 73, 678 people as the
training set and use the rest as the test set. The images are resized
to the listed resolution before the training procedure.

A> to the linear measurements and resize it into the image
size to operate in image space. The measurement matrix
A is a random Gaussian matrix and is fixed. For pixelwise
inpainting and denoise, we randomly drop 50% of the pixels
and add Gaussian noise with σ = 0.5 for each training in-
stances. For blockwise inpainting, we drop a block with 30%
size of the images at a random location in the images. For
2×-super resolution, we follow the work of Dong et al. [17]
which first upsamples the low-resolution images to the target
resolution using bicubic interpolation. We do not train a
network for 4×-super resolution and for scattered inpainting
— to demonstrate that the specially-trained networks do not
generalize well to similar tasks. Since the inputs to the 2×-
super resolution network are bicubic-upsampled images, we
also apply the upsampling to 1

4 -resolution images and feed
them to the same network. We also feed scattered inpainting
inputs to the blockwise inpainting network.

Configurations of wavelet sparsity prior. We compare
the proposed framework with the traditional signal prior
using `1-norm of wavelet coefficients. We tune the weight
of the `1 prior, λ, based on the dataset. For pure image
denoising task, we will compare with the state-of-the-art
algorithm BM3D [13] in the supplementals.

Results. For each of the experiments, we use ρ = 0.3 if
not mentioned. The results on MNIST, MS-Celeb-1M, and
ImageNet dataset are shown in Figures 5, 6, and 7, respec-
tively. We also apply the same projection network trained on
ImageNet dataset on the test set of LabelMe dataset. We list
the statistics of peak-to-noise ratio (PSNR) values of the re-
construction outputs in Table 2. In addition, we use the same
projection network on the image shown in Figure 1, which
was not from any of the datasets above and can be found
in [2]. To deal with the 384× 512 image, when solving the
projection operation (3), we apply the projection network on
64 × 64 patches and stitch the results. The reconstruction
outputs are shown in Figure 1, and their statistics of each
iteration of ADMM are shown in Figure 4.

As can be seen from the results, using the proposed pro-
jection operator/network learning from datasets enables us to
solve more challenging problems than using the traditional
wavelet sparsity prior. In Figures 5 and 6, while the tradi-
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= 0.1. For pixelwise inpainting, we drop 50% of the pixels and add Gaussian noise with σ = 0.1. We use ρ = 1.0 on both

super resolution tasks.

tional `1-prior of wavelet coefficients is able to reconstruct
images from compressive measurements with m

d = 0.3,
it fails to handle larger compression ratios like m

d = 0.1
and 0.03. Similar observations can be seen on pixelwise
inpainting of different dropping probabilities and scattered
and blockwise inpainting. In contrast, since the proposed
projection network is tailored to the images in the datasets,
it enables the ADMM algorithm to solve challenging prob-
lems like compressive sensing with small md and blockwise
inpainting on MS-Celeb dataset.

Robustness to changes in linear operator and to noise.
Even though the specially-trained networks are able to gen-
erate state-of-the-art results on their designing tasks, they
are unable to deal with similar problems, even with a slight
change of the linear operator A. For example, as shown in
Figure 6, the blockwise inpainting network is able to deal
with much larger vacant regions; however, it overfits the prob-
lem and fails to fill contents to smaller blocks in scattered
inpainting problems. The 2×-super resolution network also
fails to reconstruct higher resolution images for 4×-super

task `1 prior proposed specially-trained

compressive sensing (10×) 13.01 (±2.75) 25.43 (±3.74) 25.18 (±2.82)
pixelwise inpaint, denoise 20.68 (±1.65) 26.29 (±1.98) 30.13 (±1.66)
2× super-resolution 27.30 (±2.50) 27.11 (±3.21) 22.59 (±2.89)
scattered inpaint 27.85 (±2.58) 25.69 (±3.45) 18.30 (±2.55)

(a) ImageNet

task `1 prior proposed specially-trained

compressive sensing (10×) 13.79 (±3.67) 27.34 (±5.15) 27.49 (±4.16)
pixelwise inpaint, denoise 21.72 (±2.17) 27.71 (±3.05) 30.93 (±1.96)
2× super-resolution 29.00 (±4.08) 28.52 (±4.64) 20.79 (±4.08)
scattered inpaint 30.17 (±3.96) 28.71 (±5.26) 18.65 (±3.12)

(b) LabelMe

Table 2: Average and standard deviation of PSNR values on 100k
randomly chosen test images from ImageNet and the whole La-
belMe test dataset. Note that we apply the same projection net-
work trained with ImageNet on LabelMe. The similarity in the
performance across the two datasets shows the robustness of the
projection network.
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Figure 7: Results on ImageNet dataset. The PSNR values are shown in the lower-right corner of each image. Compressive sensing uses
m
d

= 0.1. For pixelwise inpainting, we drop 50% of the pixels and add Gaussian noise with σ = 0.1. We use ρ = 0.05 on scattered
inpainting and ρ = 0.5 on super resolution.

ground truth orignal result resample 1% resample 5% resample 10% resample 20% noise σ=0.1 noise σ=0.2 noise σ=0.3 noise σ=0.4 noise σ=0.5

24.45 22.48 17.95 14.48 11.51 23.67 21.72 19.26 17.10 15.47

24.14 24.17 24.47 23.18 24.66 24.44 23.49 22.37 20.39 20.50

Figure 8: Comparison on the robustness to the linear operator A and noise on compressive sensing. The results of the specially-trained
network and the proposed method are shown at the top and bottom row, respectively, along with their PSNR values. We use ρ = 0.5 for
σ = 0.2, ρ = 0.7 for σ = 0.3, ρ = 1.0 for σ = 0.4, ρ = 1.1 for σ = 0.5, and ρ = 0.3 for all other cases.

resolution tasks, even though both inputs are upsampled
using bicubic algorithm beforehand. We extend this argu-
ment with a compressive sensing example. We start from the
random Gaussian matrix A0 used to train the compressive
sensing network, and we progressively resample elements in
A0 from the same distribution constructing A0. As shown in
Figure 8, once the portion of resampled elements increases,
the specially-trained network fails to reconstruct the inputs,
even though the new matrices are still Gaussian. The net-
work also shows lower tolerance to Gaussian noise added to
the clean linear measurements y = A0x0. In comparison,
the proposed projector network is robust to changes of linear
operators and noise.

Failure cases. The proposed projection network can fail
to solve very challenging problems like the blockwise in-
painting on ImageNet dataset, which has higher varieties in
image contents than the other two datasets we test on. As
shown in Figure 7, the proposed projection network tries to
fill in random edges in the missing regions. In these cases,
the projection network fails to project inputs to the natural
image set, and thereby, violates our assumption in Theorem 1
and affects the overall ADMM framework. Even though in-

creasing ρ can improve the convergence, it may produce
low-quality, overly smoothed outputs.

5. Conclusion
In this paper, we propose a general framework to implic-

itly learn a signal prior — in the form of a projection operator
— for solving generic linear inverse problems. The learned
projection operator enjoys the flexibility of deep neural nets
and wide applicability of traditional signal priors. With the
ability to solve generic linear inverse problems like denois-
ing, inpainting, super-resolution and compressive sensing,
the proposed framework resolves the scalability of specially-
trained networks. This characteristic significantly lowers
the cost to design specialized hardware (ASIC for example)
to solve image processing tasks. Thereby, we envision the
projection network to be embedded into consumer devices
like smart phones and autonomous vehicles to solve a variety
of image processing problems.
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