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Abstract

Computer vision and image-based inference have pre-
dominantly focused on extracting scene information by as-
suming that the camera measures direct light transport (i.e.,
single-bounce light paths). As a consequence, strong multi-
bounce effects are treated typically as sources of noise and,
in many scenarios, the presence of such effects can result
in gross errors in the estimates of shape and reflectance.
This paper provides the theoretical and algorithmic founda-
tions for shape and reflectance estimation from two-bounce
light transients, i.e., scenarios where photons from a light
source interact with the scene exactly twice before reaching
the sensor. We derive sufficient conditions for exact recov-
ery of shape and reflectance given lengths and intensities
associated with two-bounce light paths. We also develop
algorithms for recovery of shape and reflectance, and vali-
date these on a range of simulated scenes.

1. Introduction
The vast majority of shape estimation techniques rely

on information derived from direct or single-bounce light
paths, where photons from a source are observed after a
single reflection/scattering event. This includes geomet-
ric triangulation [6], as used in stereo and structured light
[19], time of flight (ToF), as used in LIDAR, photonic
mixer devices, radar, and RF-based depth acquisition, as
well as photometric methods, such as photometric stereo
and polarization-based 3D. All of these methods, while ex-
tremely popular, are limited to settings where the multi-
bounce effects are minimal and can effectively be ignored.

Real-world scenes often exhibit spatial geometries and
reflectances that lead to strong multi-bounce interactions.
Even seemingly simple shapes like concave bowls, v-
grooves, and corners, as well as reflectances associated with
common materials like wood, metal, and ceramic, result in
multi-bounce interactions that can sometimes overwhelm
single-bounce photons. This corrupts the information en-
coded in single-bounce light paths, resulting in gross errors
in shape estimation [3, 4].

Traditional methods for shape estimation treat multi-path

effects as a source of noise that must be tolerated or mini-
mized. In contrast, we argue that multi-path effects pro-
vide a rich encoding of the 3D properties of the scene and
that this information can be exploited. Further, a framework
of shape and reflection estimation from multi-bounce light
paths can provide capabilities that are unprecedented and
not achievable using just single-bounce light paths. The fo-
cus of this paper is the estimation of shape and reflectance
information from the intensity and the time of flight of each
observed second-bounce light path.

Motivation. There are several important benefits to be ob-
tained by going beyond single-bounce light paths.

(i) Number of light-paths. There are significantly larger
number of light paths with two bounces than with a sin-
gle bounce. For a scene with N surface elements, there
are at most N single-bounce light paths while there can
potentially be as many as

(
N
2

)
individual second-bounce

light paths. Incorporating second-bounce information can
provide additional constraints on the depth recovery prob-
lem which often leads to increased robustness in shape esti-
mates.

(ii) Ability to handle arbitrary reflectance functions. Many
specular and shiny materials concentrate incident light
along certain directions. This often results in the absence of
single-bounce light paths between the source and the sensor
(commonly observed as holes in 3D scans). Here, the use
of second and higher-order bounces can potentially alleviate
the lack of information in the single-bounce light paths.

(iii) Angular sampling for reflectometry. Single-bounce
based reflectometry often requires light stages that com-
pletely encompass the target in order to obtain a diverse an-
gular sampling of the scene’s bidirectional reflectance dis-
tribution function (BRDF) [18]. In contrast, reflectometry
using two-bounce light paths can exploit the large angle
subtended by scene points with one another; hence, we can
potentially obtain reflectance estimates from two-bounce
light paths even with a collocated source and sensor.



Contributions. This paper provides the theoretical and
algorithmic foundations for shape and reflectance estima-
tion from two-bounce light paths, i.e., light paths where
photons from a light source interact with the scene exactly
twice before reaching the sensor. While there is a rich body
of work associated with all aspects of shape and reflectance
estimation from single-bounce light paths, little is known in
terms of the capabilities and limitations of two-bounce light
paths. This paper is among the very first to address this
problem. We assume that for each observed second-bounce
light path, the intensity and the time of travel along that path
is available. Our specific contributions are as follows.

• Two-bounce shape estimation. We propose a formulation
for the systematic study of shape estimation from two-
bounce light paths and develop a graph-based framework
to represent the information in such light paths.

• Uniqueness of shape estimation. We establish sufficient
conditions for uniqueness of shape estimation given only
second-bounce light paths. Our sufficient conditions are
intricately tied to the topology of the graph that charac-
terize the available second-bounce light paths.

• Algorithms for shape estimation. We provide novel al-
gorithms that estimate shape given lengths of second-
bounce light paths.

• Algorithms for reflectometry. Given the radiance associ-
ated with second-bounce light paths, we propose novel
algorithms for BRDF estimation.

While the focus of this paper is to exclusively character-
ize the shape and reflectance information embedded in the
two-bounce light paths, we believe that in the long term,
holistic methods that simultaneously exploit the single- as
well as multi-bounce ideas will result in significant perfor-
mance improvements.

2. Prior work
There are three areas of research that are intimately re-

lated to our results: ToF imaging, shape estimation from
ToF, and reflectometry.

Time-of-flight imaging. ToF sensors measure the time
that a pulse of light takes to travel from a source to the scene
and back. Since the velocity of light is large (3 × 108m/s),
the associated time scales of travel times are invariable
small, necessitating either ultra-fast streak cameras that pro-
vide direct measurement of travel time [22] or photonic
mixer devices (PMDs) that measure phase shift of the mod-
ulated light source signal with the received signal [7]. ToF
using PMDs is popular because of the longer exposure time
and low cost of the sensor; however, the maximum temporal
resolution achieved by these devices is currently limited to
about 100 picoseconds. More recently, Gkioulekas et al. [2]

use the interferometric techniques along with ToF measure-
ments to obtain depth measurements with resolution in tens
of microns.

Transient light transport. The ideas introduced in this
paper are intimately related to the transient light transport
operator. The concept of 5D transient light transport was
first introduced in [17]. For an arbitrary incident direction
(two dimensions), and an arbitrary exitant direction (two
dimensions), the transient light transport is the one dimen-
sional impulse response function of the scene. Thus, the
transient light transport matrix is five-dimensional and con-
tains information about all the multiple bounces of light be-
tween the illumination source and the camera sensor. The
availability of this 5D light transport matrix is the build-
ing block of our proposed shape and reflectance estimation.
While O’Toole et al. [17] use the direct component in the
5D matrix to estimate the shape of the scene, we explore
utilizing the second-bounce information from the 5D ma-
trix to estimate both shape and reflectance.

Mitigating multi-bounce effects. Most traditional com-
puter vision techniques assume that the light transport is
dominated by direct or single-bounce light paths. Scenes
and materials that contribute to multiple bounces (sub-
surface scattering, specular reflections, V-grooves, corners,
etc.) usually result in gross errors in traditional shape
estimation techniques. An early approach to mitigating
multi-bounce effects was to estimate the shape of a con-
cave object iteratively while progressively accounting for
inter-reflections [14]. Nayar et al. [15] propose an approach
to separate the direct components of light from global
(multi-bounce) components and show successful photomet-
ric stereo even under inter-reflections. Gupta et al. [4] show
that with an appropriate choice of spatial codes in struc-
tured light, the effects of both sub-surface scattering and
inter-reflections can be minimized resulting in robust shape
recovery for material exhibiting moderate global light trans-
port. In a similar approach, Gupta et al. [5] show that with
the appropriate choice of temporal modulation frequencies
in a ToF sensor, the effects of global light transport effects
can be significantly suppressed. While these methods focus
on reducing the impact of multi-bounce light transport on
the estimated shape, our approach is fundamentally differ-
ent: we show that second-bounce light transport actually
contains sufficient information to reliably estimate shape
from exclusively such light paths.

Shape from multi-bounce light paths. There has been
very little prior work in understanding the relationship be-
tween scene shape and the associated multi-bounce light
paths. Liu et al. [11] recover the shape of a Lambertian
scene from the form factor of two-bounce light paths. By
using local planarity and common elements in different two-
bounce light paths, the scene geometry can be recovered



without scaling ambiguity. For a transparent object, light
changes direction twice, Kutulakos and Steger [10] show
that the shape of the transparent object can be recovered. In
[9,21], three-bounce light paths, with first and third bounces
being visible, can be used to reconstruct a non-line-of-sight
object. From ToF imaging, the path length from the first
bounce to the third bounce is known. Therefore, by using
multiple three-bounce light paths, the shape of the hidden
surface can be revealed using elliptic tomography.

Reflectance from multi-bounce light paths. Naik et al.
[13] use three-bounce light paths to probe the BRDF of the
material. The availability of time-of-flight data limits the
location of participating patches, thus makes the BRDF es-
timation tractable. Also, the use of three-bounce light path
enlarges the coverage of the parameters of bi-variate model
of BRDF. However, in their setup, the first and third bounces
are assumed to be Lambertian, whereas in our setup, no re-
striction on the material is needed.

3. Overview
In this section, we provide a brief overview of the prob-

lem setup and formulate the “light-path graph”, a construct
critical to deriving the main results of this paper.

Problem setup. Given a scene, we first discretize the
scene into N points with 3D locations denoted as
{v1, . . . ,vN}, in a right-handed camera-centric coordinate
system. The principal point of the camera is at the origin
and its optical axis is aligned to the positive z-axis. The
3D location of each scene point can, hence, be expressed as
vk = dkik, where dk ≥ 0 is the depth of the scene point
and ik is the unit-norm vector that provides the orientation
of the scene point from the viewpoint of the camera.

Two-bounce light-path measurements. We assume that
we can measure the following two signals:

• Path lengths. We can measure the time taken for
light along single and two-bounce paths. Specifically,
τpk, p, k ∈ {1, . . . , N} measures the time taken to tra-
verse the two-bounce light path from the origin to scene
point p to scene point k and back to the origin (see Fig-
ure 1). Note that, by Helmholtz’s reciprocity, τpk = τkp.
Further, the length associated with these paths is simply
given as cτpk, where c is the speed of light.

• Light transport. We can measure light transport along
two-bounce paths; we can measure Lpk, the fraction of
light that is observed along ik via the two-bounce light
path defined by the scene points vp and vk, when a unit-
lux of light is shined along ip.

Obtaining light-path measurements. Both measure-
ments, path lengths and light transport associated with two-
bounce paths, can be acquired using an imaging system that
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Figure 1. Shape estimation using two-bounce time of flight in-
formation. A light path originates from a point q first bounces
off a scene point vp then traverses to another scene point vk and
enters the sensor at q. The variables labeled in blue are known and
form the inputs to the shape estimation problem.

is capable of measuring 5D transient light transport [17]. In
particular, depending upon the desired spatial and temporal
resolutions, we can either use a femto-second laser and a
streak camera (as in [21]) or use a laser diode and a photonic
mixer device (as in [8]). Consider a co-located projector-
camera system with the transient response observed at a
pixel p when a different pixel k is illuminated (with a tem-
poral dirac), the first peak of the received time profile of-
ten corresponds to a two-bounce path. This is because the
two-bounce path is the shortest path linking the patch illu-
minated by pixel p, and the patch observed by pixel k. The
same approach works for non-co-located systems as well.
However, the first peak could be from either a single or two-
bounce. Single-bounce paths can be identified using: (i)
projector pixel p and camera pixel k have to lie on epipolar
lines, (ii) the distance measured by triangulation should be
consistent with the time-of-flight for the first peak. If these
two are simultaneously satisfied, then that corresponds to a
single-bounce path between p and k; otherwise, it is most
likely to be a two-bounce light path.

Problem statement. Given the path lengths and light
transport associated with a collection of two-bounce light
paths, our goal is to estimate the scene depths {d1, . . . , dN}
as well as the reflectance function of the scene, under the
assumption that all scene points have the same BRDF. To
better describe the problem, we characterize the inputs us-
ing a graph.

Light-path graph. We construct a graph G = (V,E),
where the vertex set V = {1, . . . , N} corresponds to the
scene points. An edge (p, k) suggests that the path-length
and the light transport associated with the two-bounce path
involving the p and k can be observed. The edge (p, k) ∈ E
is also endowed with two observations: the path-length cτpk
and the light transport Lpk, both corresponding to the two-
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Figure 2. Sample light-path graph and BRDF half/difference angle coverage for objects with different shapes. Top row: observable two-
bounce light paths of different objects. Middle row: observable light paths can be represented by a light-path graph. Bottom row: the
BRDF coverage of one-bounce and two-bounce light paths.

bounce light path. Note that, by Helmholtz reciprocity, the
graph is non-directional, i.e., the observations associated
with the edge (a, b) are identical to that of (b, a). We re-
fer to the graph G as the light-path graph.

It is illustrative to consider the topology of light-path
graphs associated with a few classes of scenes (see Fig. 2).

• Convex objects. Convex objects have no two-bounce
light paths. Hence, the graph G is simply a collection
of vertices with no edges (see Fig. 2 (c)).

• Concave objects. For a generic concave shape — for ex-
ample a cup — a two-bounce light path can exist between
any two scene points. Hence, in the general setting, the
graph is fully-connected or a clique (see Fig. 2 (a)). How-
ever, in practice, in addition to the shape, the reflectance
of the scene also plays an important role in determin-
ing the topology. For example, for a concave shape with
mirror reflectance, the topology of G reduces to isolated
edges, i.e., if an edge (p, k) exists, then there are no other
edges involving the vertices p and k.

• V-grooves. For a generic V-groove, two-bounce light
paths can only exist between scene points that belong to
opposite sides of the groove. Hence, we can divide the
vertex set V into two non-intersecting sub-sets V1 and
V2 such that edges can only occur between a vertex in

V1 and a vertex in V2. Thus V-grooves result in bipartite
light-path graphs (see Fig. 2 (b)).

The light-path graph provides a succinct characterization
of all available inputs and its topology is central to the re-
sults derived in this paper.

4. Uniqueness of shape recovery
In this section, we provide guarantees for uniqueness

of shape recovery given lengths of two-bounce light paths.
Specifically, given a light-path graph (or equivalently, a col-
lection of two-bounce light paths and their lengths), can
there be multiple shapes that satisfy the path length con-
straints? The following theorem provides a sufficient con-
dition for uniqueness of shape given a light-path graph.

Theorem 1. If each connected component1 of the light-path
graphG contains either a cycle with odd number of vertices
or two cycles with even number of vertices, then the depth of
all vertices can be determined uniquely from the available
two-bounce path lengths.

The rest of this section is devoted to the proof of Theo-
rem 1. Note that this result is for the noiseless case where
the two-bounce light path lengths are known exactly.

1A connected component of a graph is defined as a maximally con-
nected sub-graph.



Encoding of depths in two-bounce path length. We now
derive the relationships between the depths of scene points
and the length of a two-bounce light path.

Consider the two-bounce light path associated with two
scene points vp and vk with unknown depths dp and dk,
and known directions ip and ik, respectively (see Fig. 1).
From law of cosines, the total light-path length is given as

cτpk = dp + dk +
√
d2
p + d2

k − 2dpdk cos θpk. (1)

Squaring and rearranging (1), we can find the following
constraint on dp and dk:

2dpdk(− cos θpk − 1) + 2cτpk(dp + dk) = c2τ2
pk. (2)

Therefore, dk can be expressed as a function of dp as

dk =
c2τ2

pk − 2cτpkdp

2dp(− cos θpk − 1) + 2cτpk
= fpk(dp), (3)

dk =
cτpk(cτpk − 2dp)

2(cτpk − dp(1 + cos θpk))
.

Since the light path of interest undergoes two bounces, the
total path length cτpk will be larger than 2dp or 2dk. That
is, we can bound dp using

dp <
cmink 6=p(τpk)

2
. (4)

From (4), both the numerator and the denominator of the
right-hand side of the expression in (3) is positive, so dk
is guaranteed to be positive. Also, the first derivative of
fpk(dp) defined in (3) is:

f ′pk(dp) =
2c2τ2

pk(cos θpk − 1)

[2τpk − 2dp(1 + cos θpk)]
2 .

Since we only consider two-bounce light path, where p 6= k,
and cos θpk 6= 1, we can conclude that

f ′pk(dp) < 0. (5)

Thus fpk(·) is a strictly decreasing function.
There are three important consequences to the deriva-

tion above. First, given dp, the value of dk is uniquely
known. Second, fpk is a fractional linear transformation
(FLT). Note that the composition of multiple FLTs remain
fractional linear. Third, there are infinite pairs of (dk, dp)
that satisfy the constraint in (3) that relates the two-bounce
path length of two individual points. Hence, we cannot
solve the depths of two scene points by considering a single
two-bounce light path connecting them. Further, it can be
shown that the ambiguity inherent in (3) cannot be resolved
if we consider a light-path graph whose topology is a tree

since the relationship between depths is an FLT. This mo-
tivates us to explicitly consider light-path graph topologies
that include cycles, with the hope that cycles in the graph
will help resolve these shape ambiguities. The following
Lemma provides a concrete result along this direction.

Lemma 2. There are at most two solutions for a connected
light-path graph whose topology is a single cycle.

Proof. Since the light-path graph is connected and has a
single cycle, all vertices must be part of the cycle. We as-
sume that the cycle in consideration is given by the follow-
ing edges: (q1, q2), (q2, q3), . . . , (qN−1, qN ), and (qN , q1).
By applying (3) to the edges in succession, we can obtain
the following relationship:

dq1 = fqNq1(· · · fq2,q3(fq1q2(dq1))) = T (dq1). (6)

Given that each fqiqj is an FLT, the RHS of (6) is also an
FLT of the form

dq1 =
C1 + C2dq1
C3 + C4dq1

, (7)

where C1, C2, C3, and C4 are dependent on the individual
two-bounce path lengths. We can rearrange (7) to obtain
a second-order polynomial equation in dq1 , which has two
roots and hence, two potential solutions for dq1 . For each
solution, we can estimate the depths of all other vertices
uniquely via (3).

The implications of Lemma 2 are promising since it re-
stricts the solution space associated with a cycle. Further,
while there are two potential solutions, it is entirely possible
that one of them is infeasible or both solutions are exactly
the same. We show that this is indeed the case for cycles
with odd number of vertices.

Proposition 3. There is exactly one solution for a light-path
graph whose topology is a single cycle with odd number of
vertices.

Proof. We prove the uniqueness of the solution by contra-
diction. Suppose there are two feasible solutions for dq1
from (7), d(1) and d(2) with d(1) < d(2). That is,

T
(
d(1)

)
= d(1), T

(
d(2)

)
= d(2). (8)

By chain rule, the first derivative of T (·) is

T ′(d) =f ′qNq1(· · · fq2q3(fq1q2(d))) · · · f
′
q1q2(d).

Since the cycle contains an odd number of edges and
f ′(d) < 0 from (5), T ′(d) < 0. Hence, T (dp) is a strictly
decreasing function. Recall that we assumed d(1) < d(2),
thus,

T (d(2)) < T (d(1)) = d(1)
p < d(2)

p . (9)

We see a contradiction in (8) and (9). Therefore, d(1) = d(2)

and hence, there is only one feasible solution.
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Figure 3. Sample graph to explain Proposition 4. We form one set
of estimation from cycle {v1, v2, v3, v4} and the other set from
cycle {v3, v5, v6, v7}. There will only be one common estimate
for d3, which is the true depth of vertex v3.

Proposition 4. For a connected light-path graph consisting
of two intersecting cycles, each with even number of ver-
tices, then depth of all vertices can be uniquely recovered.

Proof. From Lemma 2, we can find the two potential depths
for each of the vertices on the first cycle. Similarly, we
can obtain two potential depths for each of the vertices for
the second cycle. Since the cycles are intersecting, we can
intersect the solutions at a vertex that belongs to both cycles
and resolve the ambiguity.

As an example, consider the graph in Figure 3, the depth
of all scene patches can be uniquely recovered. We can first
find the two solutions of v3, {a3

1, b
3
1} by considering cycle

{v1, v2, v3, v4}. Similarly, from cycle {v3, v5, v6, v7}, we
find {a3

2, b
3
2}. One element from each set will be consis-

tent, which is the depth estimation for v3. After finding d3,
we can propagate the depth estimation to all vertices in the
graph.

Proof of Theorem 1. We now have all the components
for the proof of Theorem 1. From Lemma 2, the presence
of cycle in the light-path graph limits the solution space to
two. We further prove in Proposition 3 that for a cycle with
odd number of vertices, only one of the solution is feasi-
ble. In Proposition 4, when considering multiple cycles,
even though each cycle gives two solutions, we can find
the unique solution by intersecting the solution across cy-
cles. Therefore, Theorem 1 provides sufficient conditions
for shape recovery from light-path graph topology.

Implications of Theorem 1. The sufficient conditions in
Theorem 1 only depends on the the topology of the light-
path graph but not the actual light-path lengths. The topol-
ogy of the light-path graph depends only on the existence
of two-bounce light paths between surface patches, which
is completely determined by the geometry of the scene.
Hence, Theorem 1 infers uniqueness of shape estimates for
a broad class of scenes.

5. Two-bounce shape estimation

In this section, we introduce two algorithms to recover
shape from two-bounce light paths. Our goal is in leverag-
ing information over the entire light-path graph to robustly
estimate the depth of the scene in the presence of noise cor-
rupting the measured path lengths.

Algorithm 1 — Multi-cycle clustering algorithm. One
of the main results from Section 4 is that there are at most
two depth estimates associated with a cycle in the light-path
graph. With presence of noise, the depth estimation from
different sub-graphs will be different. Therefore, we pro-
posed a clustering method to find a solution that is most
consistent across different cycles.

We randomly select Q cycles from the light-path graph.
By Lemma 2, each cycle provides us with two candidate
depths for each of its vertices. We denote the candidate
depths for vertex k from cycle q as akq and bkq . Repeating
this process for each of the selected cycles, we have 2Q es-
timates for each vertex. In the absence of noise, Q out of
these 2Q solutions (one out of 2 solutions from each cycle
containing the vertex) would be identical and that would in-
dicate the correct solution for the depth of that vertex. In the
presence of noise, the 2Q solutions are all potentially differ-
ent and hence, we need an alternative technique to identify
the correct solution.

Let x = [x1, . . . , xQ] be a Q-dimensional indicator vec-
tor, where xq = 1 implies that, in cycle q, the candidates
in {akq} are selected as the estimate and xq = −1 implies
that the candidates {bkq} are selected. Therefore, the depth
estimate for vertex k provided by cycle q is

dkq =
1 + xq

2
akq +

1− xq
2

bkq .

We now minimize the variance of the depth estimates:

min
x∈{−1,1}Q

N∑
k=1

 1

Q

Q∑
q=1

(dkq )
2 −

(
1

Q

Q∑
q=1

dkq

)2


This is a combinatorial problem due to the feasible set being
x ∈ {−1, 1}Q. If we relax this constraint to let x take real
values, and observing that the objective is quadratic in x,
we can obtain a closed form solution for x. By thresholding
this solution at zero, we get our estimator of the indicator
vector x̂. We use the mean of candidate depths at each ver-
tex selected by x̂ as our estimate.

The clustering of estimates over a select few cycles is
sub-optimal since it does not simultaneously leverage infor-
mation in all the two-bounce light paths. This is addressed
by the second algorithm which exploits all the observed
two-bounce path lengths in a holistic framework to estimate
the scene depth.



Algorithm 2 — Rank-constrained optimization. Recall
that the relationship between length of a two-bounce light
path to the depth of scene points is bilinear (see (2)). A
common approach to handle bilinear systems is to over-
parameterize the unknowns using a rank-1 matrix D, as de-
scribed below. Specifically, defining d = [1, d1, · · · , dN ],
we formulate the depth estimation problem in terms of the
rank-1 matrix D = dTd. Denoting Di,j as the (i, j)-th en-
try of D, the path-length constraint associated with scene
points p and k in (2) can be expressed as

cτpk(D1,p+1+D1,k+1)−Dp+1,k+1(1+cos θpk) =
c2τ2

pk

2
.

The linearity of the relationship allows us to formulate the
depth estimation problem as:

min
D�0
‖A(D)− b‖2 s.t. rank(D) = 1, D1,1 = 1, (10)

whereA and b can be set from (2). We can also incorporate
single-bounce depth estimates into the optimization frame-
work above by associating them with the diagonal elements
of D. We use a projected gradient descent method to opti-
mize (10):

Dk+1 = PΩ(D
k − γAT (A(Dk)− b)),

where γ is the step size and PΩ(.) is a projection operator to
the space of rank-1 matrices. Since (10) is non-convex, the
solution is greatly affected by the initialization. We initial-
ize D by the results from shape from the multi-cycle clus-
tering method (Algorithm 1).

Simulations. In Figure 4, we show the recovery results
on a 1D slice of an object for varying amount of additive
Gaussian noise on the measured path lengths. We com-
pare single-bounce estimates, the multi-cycle clustering and
the rank-constrained method initialized with the multi-cycle
clustering estimates. We use Q = 100 cycles for the
multi-cycle method. Both two-bounce methods outperform
single-bounce techniques by a large margin, in part, due to
the availability of a larger number of light paths.

In Figure 5, we show the reconstruction signal-to-noise
ratio (SNR) when the observed total path-length is per-
turbed by different levels of noise for four different shapes.
For the U-shape object, the depth range is 49∼55cm. The
ToF for two-bounce paths is around 3ns. For SNRs of 40,
30, 20 dB, the standard deviations of the noise added to
the path length are 42, 133, 419 ps, respectively. Note that
the temporal resolution of streak cameras are around 1∼2
ps while those of PMD sensors are around 100 ps, mak-
ing these practical noise levels. From our numerical experi-
ments, we observed that light-path graph topology does af-
fect the quality of the reconstruction under noise. For a fully
connected light-path graph (U-shape objects), the results are

noise SNR

(a) no noise

(b) 40 dB

(c) 30 dB

(d) 20 dB

[i] single bounce [ii] multi-cycle  
       clustering

[iii] rank-constrained    
       optimization  
       initialized with [ii]

Figure 4. 2D shape recovery results. We perturbed the input us-
ing different level of noise. The blue line shows our reconstructed
surface and the red dotted line is the ground truth.

significantly better. However, for a bipartite graph (V-shape
object) which only has even cycles, the reconstruction qual-
ity is degraded when using multi-cycle clustering; surpris-
ingly, this happens only at higher measurement SNRs. This
indicates that the shape estimation algorithms purely from
even cycles can be unstable; however, an analysis of stabil-
ity under noise is beyond the scope of this paper.

6. Reflectance from two-bounce light paths
In this section, we describe how information from light

transport associated with the two-bounce light paths can be
used to recover the BRDF of the surface material. We as-
sume knowledge of the shape of the scene, in terms of its
depth and surface normals; this could be obtained by using
the techniques outlined in Section 5.

The main advantage of using two-bounce light paths to
recover reflectance is the coverage of different incident and
outgoing ray directions. This is because, the two-bounce
light paths increase the diversity of angular coverage both
for incident and exiting light paths. Note that this increase
in angular diversity depends upon the scene geometry. In
Figure 2, we show the coverage of bi-variate BRDF rep-
resentation [18] for two-bounce light paths. In contrast to
the single-bounce light paths that only include θd = 0 in-
stances, two-bounce light paths includes greater coverage
of the half/diff angle. Also, angle that is close to mirror
reflection direction θh = 0 is also covered.

Relationship between two-bounce light transport and
BRDF. Estimating the BRDF of the scene requires the
relative light transport strength for each of the two-bounce
light paths, i.e., given a two-bounce light path passing
through vertices p and k, we need to know the fraction of
light directed at the vertex p that eventually returns to the
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Figure 5. Shape recovery results. We compare the following three methods: [i] Shape from single-bounce. [ii] Multi-cycle clustering. [iii]
Rank-constrained optimization initialized with results from [ii]. Notice that [ii] and [iii] are using only two-bounce light paths information.
In second to fourth rows, we show the shape estimation results of 20dB added noise.

camera through vertex k. The two-bounce light transport
between two scene points can be given as product of the
two BRDF entries and a form factor term that is set by the
geometry of the scene [11]. The radiance of the two-bounce
light path involving two scene patches can be written as:

Lpk = LpB(p, k)V (p, k)G(p, k),

where Lp is the intensity of incident light at point p,B(p, k)
represents the multiplicative effect of the two BRDF terms,
V (p, k) represents a binary visibility term, and G(p, k) rep-
resents the geometric scaling term and these can be ex-
panded out as,

B(p, k) = ρp(−ip,np, ip→k)max(0,−iTp np)

ρk(ik→p,nk,−ik)max(0,−iTk→pnk)

G(p, k) =
(nT

p ip→k)(n
T
k ik→p)

‖vp − vk‖2
,

where ρp and ρk are the BRDFs at vp and vk, respec-

tively. Further, if the two-bounce path is visible, then

Ipk =
Lpk

Lp(−iTp np)(−iTk→pnk)

1

G(p, k)

= ρp(−ip,np, ip→k)ρk(ik→p,nk,−ik)
=M−ip,np,ip→k

ρpM−ik,nk,ik→p
ρk,

whereMv,n,l is a linear operator that probes BRDF entry
corresponding to the incident direction, l, normal, n, and
viewing direction, v.

Parametric reflectance model. Similar to [13], we use
the Ashikhmin-Shirley model [1], which is composed of
Lambertian diffuse term and specular lobe term, to parame-
terize the scene BRDF.

ρ(v,n, l) = ρd(n, l) + ρs(v,n, l)

ρd(n, l) =
kd
π



ρs(v,n, l) =ks
kn + 1

8π

〈n,h〉kn

〈v,h〉max(〈n, l〉 , 〈n,v〉)
F (F0, 〈v,h〉)

Here, h is the half vector. The Fresnel effect term [20] is
used to improve the accuracy of the model.

F (F0, 〈v,h〉) = F0 + (1− F0)(1− 〈v,h〉)5,

Thus, the parameters of this model are kd, ks, kn and F0.
Estimating the material BRDF now amounts to estimating
the 4 parameters of the Ashikhmin-Shirley model for each
color channel of the scene patch.

The image formation for a two-bounce light path can be
rewritten as:

Ipk = [ρd(np,−ip) + ρs(ip→k,np,−ip)]
[ρd(nk, ik→p) + ρs(−ik,nk, ik→p)] , (11)

where hpk and hkp are the half vector. The unknowns for
each surface patch are kd, ks, kn and F0. We make two
more assumptions that further simplify the model. First,
similar to [16], we assume the three color channels of the
material share the same specular lobe and Fresnel effect co-
efficient. This reduces the number of parameters to 8 per
scene patch. In addition, if the object of interest only con-
tains one material, we only need to recover 8 parameters to
estimate the reflectance for that material.

Simulations. Collecting all two-bounce light path inten-
sity, we use the lsqcurvefit function from Matlab to find the
8 BRDF parameters of the non-linear least squares problem
defined in (11). In Fig. 6(b-e), we show the reconstructed
BRDF rendered as a sphere and illuminated using the Grace
Cathedral environment map.2 We model two sources of
noise, read noise and photon noise, thus the added noise to
each observed intensity is ν = νread + νphoton. The read
noise is νread = 0.001max(I)ξ and the photon noise is
νphoton = ηIpkξ, where ξ is a random number from the nor-
mal distribution and η is a noise parameter. In the paper, we
set η = 0.1. In Fig. 6(f), we show the estimation error over
all the materials in the MERL BRDF database [12]. Given
the ground truth BRDF ρ and the estimate ρ̂, the BRDF er-
ror is computed as

E =

√∑
i w[(ρ̂i − ρi) cos θi]2∑

i w
,

where θi is the elevation angle of the incident ray. In our
experiment, we set w = 1.

From Fig. 6(b-e), we observe that when using two-
bounce light paths, the mirror direction is covered, thus
the parameter controlling the specular lobe will be updated.

2http://www.pauldebevec.com/Probes/

While when only single-bounce light paths are used, the
specular lobe shape is not updated at all, only the diffuse
term will be updated to fit the observed intensity. This is es-
pecially clear when viewing the polar graph of BRDF. From
Fig. 6(f), we observe that the performance of our proposed
work is roughly the same as the parameter fitting using the
whole BRDF [16].

7. Conclusions

In this paper, we have developed a framework for the
study of shape and reflectance information encoded in the
two-bounce light paths. While the focus of our results have
been reliant exclusively on the two-bounce light paths, we
hope that hybrid methods for 3D shape and reflectance esti-
mation that use the results in this paper in conjunction with
other techniques that rely on single-bounce light paths will
emerge and be able to overcome the limitations of tradi-
tional techniques to complex reflectance and geometries.
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(f) BRDF estimation as a function of material BRDF
Figure 6. BRDF estimation results. (a) We present reflectance estimation results for a 3D V-groove. (b-e) We show the BRDF estimation
when setting η = 0.1 by rendering the material as a sphere and illuminate it with the Grace Cathedral environment map. Also, we
show the polar graph of incident directions at 20◦, 40◦, 60◦ with cubic root applied. (b-e) First row: ground truth rendering using the
full 4374000-dimensional BRDF measurement. Second row: Ashikhmin-Shirley parameters from [16]. Third row: Ashikhmin-Shirley
parameters estimated using single-bounce light paths. Last row: our proposed parametric reflectance estimation using two-bounce light
paths. (f) BRDF estimation error over materials in the MERL BRDF database.
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