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ABSTRACT

We propose a novel signal model, based on sparse rep-
resentations, that captures cross-scale features for visual
signals. We show that cross-scale predictive model enables
faster solutions to sparse approximation problems. This is
achieved by first solving the sparse approximation problem
for the downsampled signal and using the support of the
solution to constrain the support at the original resolution.
The speedups obtained are especially compelling for high-
dimensional signals that require large dictionaries to provide
precise sparse approximations. We demonstrate speedups in
the order of 10 − 20× for denoising and up to 9× speed-ups
for compressive sensing of images and videos.

Index Terms— sparse approximation, orthogonal match-
ing pursuit, K-SVD, dictionary, multi-scale

1. INTRODUCTION
Visual signals exhibit strong correlation across scales that can
often be modeled and exploited to enhance image processing
algorithms. An important example of this idea is the multi-
scale coding of images using the wavelet-tree model which
provides both a sparse as well as a predictive model for the oc-
currence of non-zero wavelet coefficients across scales [19].
Specifically, the wavelet tree model arranges the wavelet co-
efficients of an image onto a rooted subtree. Under such an
organization, the dominant non-zero coefficients form a con-
nected rooted ub-tree[4], i.e., children of a node with small
wavelet coefficients are expected to take small values as well.
The wavelet tree model is central to many compression [16],
sensing [6, 7], and processing algorithms [4]. In spite of the
elegant results for images, there are no known predictive as
well as sparsifying transforms for visual signals like videos.

Dictionary learning provides an alternate approach to
wavelets in terms of enabling sparse representations [15].
The goal here is to learn an overcomplete dictionary such
that the training dataset can be expressed as a sparse linear
combination of the elements/atoms of the dictionary. An
example of this approach is the K-SVD algorithm [2]. The
reliance on machine learning, as opposed to analytic construc-
tions as in the case of wavelets, provides immense flexibility
towards obtaining a dictionary that is tuned to the specifics of
a particular signal class or application.

Fig. 1: Left to right: Bayer image, image reconstructed using
OMP, and image reconstructed using our proposed method.
While OMP takes 16 minutes, our proposed method takes
only 1.5 minutes, a speed-up of 10×.

In spite of a large body of work devoted to learning sparse
representations, there is little work devoted to learning pre-
dictive models — similar to the wavelet tree model — that
exploit correlations across spatial and temporal scales. We
address this gap by proposing a novel multi-scale dictionary
model for videos that naturally enables cross-scale prediction.
Given the set of sparsifying dictionaries – one for each scale
– the non-zero support patterns of a signal and its downsam-
pled counterparts are constrained to only exhibit specific pre-
determined patterns. Hence, we show that this naturally en-
ables cross-scale prediction that can be used to speed-up algo-
rithms like OMP. We term our algorithm zero tree OMP. Fur-
ther, we propose a simple training method, which is a mod-
ified form of K-SVD training method, to obtain dictionaries
that are consistent with our model. Finally, we empirically
verify that the model works through simulations on images
and videos.

Prior work. Sparse representation of visual signals is
widely used in compressive sensing (CS), where a signals
is sensed from far-fewer measurements than its dimension-
ality [5]. Most relevant to our paper is the work of Hitomi
et al. [11] where a sparsifying dictionary is used on video
patches to recover high-speed videos from low-frame rate
sensors. Hitomi et al. also demonstrated the accuracy enabled
by large dictionaries; specifically, they obtain remarkable re-
sults with a dictionary with 100, 000 atoms for video patches
of dimension N = 7 × 7 × 36 = 1764. As expected, sparse
approximation using algorithms like orthogonal matching
pursuit (OMP) with such large dictionaries is slow.

A number of techniques have been devoted to speeding
up different aspects of the problem. For problems in high-



dimensionality, i.e. large N , one approach is to embed to
work on random projections of the dictionary [18]. In the
context of high-dimensional data, it is typical to have dictio-
naries with a very large number of atoms [11], i.e., T � N .
Here, the search for the atom closest to the residue becomes
the most time-consuming step. One approach to speeding up
OMP is by using approximate nearest neighbors and shallow-
tree based matching [3, 10]. Another approach is to restrict
the search space by imposing a tree structure on sparse co-
efficients [13]. Speed up in OMP has also been obtained
through parallel implementation of the search for atoms [8],
and through tweaking the least squares step [9]. However,
such methods only improve the constants in complexity, thus
providing lesser improvements for larger dictionaries.

There also exist a few multi-scale dictionary models in lit-
erature. Jayaraman et al. [17] provide a multi-level represen-
tation of images patches which provides speed-ups by pick-
ing frequently used dictionary atoms first. Jenatton et al. [12]
present a hierarchical dictionary learning mechanism, where
they impose a tree structure on the sparsity, but not much has
been said about speed ups obtained.

2. PROPOSED SIGNAL MODEL
Notation. We denote vectors in bold font and
scalars/matrices in capital letters. A vector is said to be
K-sparse if it has at most K non-zero entires. The list of
indices of non-zero entries of a sparse vector is termed its
support; the support of a vector s is denoted as Ωs. The
`0-norm of a vector is the number of non-zero entries.
Finally, given a dictionary D ∈ RN×T and a support set Ω,
D|Ω refers to the matrix of size N × |Ω| formed by selecting
columns of D corresponding to the elements of Ω; similarly,
given a vector s, s|Ω refers to an |Ω|-dimensional vector
formed by selecting entries in s corresponding to Ω.
Proposed cross-scale predictive sparse model. We pro-
pose a signal model that predicts the support of a signal across
scales (see Figure 2). For simplicity, we first present the
model for a two-scale scenario.

Given a collection of signals, X ⊂ RN , our proposed
signal model consists of two sparsifying dictionaries Dhigh ∈
RN×Thigh and Dlow ∈ RNlow×Tlow that satisfy the following
three properties.

• Sparse approximation at the finer scale. A signal x ∈ X
enjoys a Khigh-sparse representation in Dhigh, i.e, x ≈
Dhighshigh with ‖shigh‖0 ≤ Khigh.

• Sparse approximation at the coarser scale. Given x ∈ X
and a known downsampling operator W : RN 7→ RNlow ,
the downsampled signal xlow = Wx enjoys a sparse rep-
resentation in Dlow, i.e., xlow ≈ Dlowslow with ‖slow‖0 ≤
Klow. The downsampling operator W is domain specific.

• Cross-scale prediction. The support of shigh is constrained
by the support of slow; specifically, Ωshigh ⊂ f(Ωslow), where
the mapping f(·) is known a priori.

Fig. 2: Proposed cross-scale signal model with sparse coeffi-
cients across scales forming a rooted subtree. A child can be
nonzero only if the parent is non-zero.

We make a few observations. First, Thigh � Tlow since
N � Nlow. With the increase of dimension of the signal,
more complex patterns emerge which require larger number
of redundant elements. Second, since the computational time
for OMP is proportional to the number of atoms in the dictio-
nary, constraining the search space can help speed-up the al-
gorithm. Armed with this insight, the proposed model obtains
speed-ups by first solving a sparse approximation problem at
the coarser scale and subsequently exploiting the cross-scale
prediction property to constrain the support at finer scales.

Cross-scale mapping. We use a simple strategy for the
cross-scale mapping f . Let Q = Thigh/Tlow (assuming Thigh
and Tlow are chosen to ensureQ is an integer). The cross-scale
prediction map is defined using this simple rule

i ∈ Ωslow =⇒ (i− 1)Q+ {1, 2, . . . , Q} ⊂ f(Ωslow)

Each element of the support Ωslow in the coarser scale con-
trols the inclusion/exclusion of a non-overlapping block of
locations for the sparse vector in the finer scale. As a conse-
quence, the cardinality of f(Ωslow) is simply QKlow.

Solving inverse problems under the proposed signal
model. We now detail the procedure for solving a sparse
approximation problem using the proposed signal model (see
Figure 2). Specifically, we seek to recover x ∈ X from a set
of linear measurements y ∈ RM of the form

y = Φx + e = ΦDhighshigh + e,

where Φ ∈ RM×N is the measurement matrix and e is the
measurement noise. As indicated earlier, we obtain shigh using
a two-step procedure.

Step1 — Sparse approximation at the coarser scale. We
first solve the following sparse approximation problem:

(Plow) ŝlow = arg min
slow
‖y − ΦUDlowslow‖2

s.t. ‖slow‖0 ≤ Klow.

Here, U : RNlow 7→ RN is an upsampling operator such that
WU is an identity map on RNlow . In all our experiments,
we used a uniform down sampler and a nearest neighbour up
sampler specific to the domain of the signal.



This first step recovers a low-resolution approximation to
the signal, xlow = Dlowŝlow.

Step 2 — Sparse approximation at the finer scale. Armed
with the support Ω̂ = Ωŝlow , we can solve for shigh by solving:

(Phigh) (ŝhigh)|f(Ω) = arg min
α
‖y − Φ(Dhigh)|f(Ω)α‖2

s.t. ‖α‖0 ≤ Khigh.

The sparse approximation problems in both steps are solved
using OMP. The proposed mapping across scales for the
sparse support forms a zero tree, where a coefficient is zero if
the corresponding coefficient at coarser scale is zero. Hence
we refer to our algorithm as zero tree OMP.

Theoretical speed-up. Let C(N,T,K) be the amount of
time required to solve a sparse-approximation problem using
OMP for a dictionary of size N × T and sparsity level K,
given by [14]

C(N,T,K) = O(NTK + TK +K4 +K3N).

Hence, obtaining shigh directly from x would require
C(N,Thigh,Khigh) computations. In contrast, our proposed
two-step solution using cross-scale prediction has a computa-
tional cost of C(N,Tlow,Klow) + C(N,QKlow,Khigh).

For dictionaries with a large number of atoms, i.e., large
T , and small values for sparsity level K, the linear depen-
dence on N dominates the total computation time. Here,
the speed-up provided by our algorithm is approximately
Thigh/(Tlow +KlowQ).

Learning cross-scale sparse models. We can learn the
dictionaries (Dhigh, Dlow) with a simple modification to the
K-SVD algorithm. We first learn the coarse-scale dictio-
nary Dlow by applying K-SVD to downsampled training
data Xlow = [Wx1, . . .Wxn], by-product of which are
{Ωslow,Klow}. We then learn the fine-scale dictionary Dhigh by
replacing OMP with zero tree OMP in the K-SVD algorithm.

Figure 3 shows an example of the learned low resolution
atoms and the corresponding high resolution atoms. Observe
that constraining the sparse support of the high resolution ap-
proximation alone learns patches which are very similar in
appearance to the low resolution patches, which is in strong
favor of our signal model.

3. EXPERIMENTAL RESULTS

We compare zero tree OMP using our proposed two-scale dic-
tionaries against traditional OMP on dictionaries learnt using
K-SVD. We used uniform downsampling operator specific to
images and videos, which avoided any aliasing artifacts. We
compare both the run time and approximation accuracy for
images and videos. We quantify approximation accuracy us-
ing recovered SNR that is defined as follows: given a signal
x and its estimate x̂, SNR = 20 log10(‖x‖/‖x− x̂‖).

Fig. 3: Visualization of select low resolution atoms and their
corresponding atoms in the high resolution dictionary.
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Fig. 4: Approximation accuracy for image applications. The
left plot is for denoising and the right plot is for image inpaint-
ing(N/M is the number of unknown pixels per each known).

Fig. 5: Visualization of results for image denoising. From left
to right: noisy image with SNR of 10dB, recovered image
using proposed method, and recovered image using K-SVD
learned dictionary. We obtain a speed-up of 22× with hardly
any reduction in accuracy.

Images. Figure 1 shows demosaicing of the Bayer pattern
using both, OMP and zero tree OMP. We trained an 8192 atom
high resolution dictionary on 24× 24 Kodak True color RGB
images [1] and 512 atom low resolution dictionary on the
patches downscaled to 12×12. We compare this against 8192
atom single scale dictionary. It took 16 minutes for the single
scale, whereas only 1.5 minutes for the two scale dictionary.
Figure 4 shows performance metrics in terms of recovered
SNR for denoising and inpainting, as compared against tra-
ditional OMP. Figure 5 shows image denoising at an SNR of
10dB. We perform denoising with the trained RGB dictionar-
ies of 24 × 24 patch and with a patch overlap of 18 pixels.



Signal Class N Nlow Tlow Thigh Klow Khigh Speedup Model Accuracy 
(dB) 

K-SVD Accuracy 
(dB) 

Images 
8x8 4x4 64 1024 8 8 4.10 20.67 21.98 

24x24x3 12x12x3 512 8192 8 8 22.6 19.64 20.57 

Videos 

8x8x16 4x4x8 512 8192 16 16 15.87 22.62 24.09 

8x8x16 4x4x8 512 8192 14 16 15.80 22.75 24.09 

8x8x32 4x4x16 512 8192 16 16 23.81 20.72 21.36 

8x8x16 4x4x8 512 16384 16 16 16.89 21.84 23.27 

       Legend 
N Size of the high resolution signal 

Nlow Size of the low resolution signal 

Tlow Number of atoms in low resolution dictionary 

Thigh Number of atoms in high resolution dictionary 

Klow Sparsity used in low resolution dictionary 

Khigh Sparsity used in high resolution dictionary 

Speed up Ratio of time taken for single scale 
approximation by time taken for two scale 
approximation 

Table 1: Table with speed-up for various dictionary sizes, patch sizes and sparsity. The speed-up shown are for solving sparse
approximation problems and quantify the ratio of time taken by OMP using a K-SVD learnt dictionary to zero tree OMP on the
proposed model. Also shown are approximation errors on training dataset for both K-SVD and the proposed algorithm.
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Fig. 6: Approximation accuracy for video applications. The
left plot is for denoising and the right plot is for video com-
pressive sensing(N/M is the number of frames recovered from
each coded image).

Fig. 7: Visualization of video compressive sensing. We sim-
ulated the architecture proposed in Hitomi et al. [11] where
a single coded image is obtained by temporal sampling of 8
frames. Given this single coded image, we recover 8 frames
(at 8× frame-rate) by solving an inverse problem. Clockwise
from top left: ground truth video frame; coded image from
8 frames; recovered video frame using proposed method; re-
covered frame using K-SVD learned dictionary. We obtain a
speed-up of 9× with a small increase in accuracy.

Our method is 22× faster, with little difference in accuracy.

Videos. We trained an 8192 atom high resolution dictio-
nary for 8 × 8 × 16 video patches and 512 atom low reso-
lution dictionary for the patches downscaled to 4× 4× 8. We
compared the trained dictionaries against an 8192 atom sin-
gle scale dictionary obtained using K-SVD. We maintained
the same sparsity across all the dictionaries. Figure 6 shows
the performance of our proposed method and conventional
K-SVD+OMP for denoising and video compressive sensing
where we implemented the temporal sampling method pro-
posed in Hitomi et al. [11]. Visualization of the recovered
frames is shown in Figure 7. The increase in accuracy can
be attributed to the video having low frequency components
which is better captured by the low resolution dictionary.

Summary. Table 1 and Figures 4 and 6 quantify the perfor-
mance of the proposed signal model and those obtained us-
ing K-SVD for a wide range of parameters as well as signals.
Across the board, we observe that the proposed framework
provides approximations that are as good as those obtained
with K-SVD, but with speed-ups of 4− 20×. The speed-ups
obtained are comparable to results in [3] with higher approx-
imation accuracies for our proposed method.

As a result of speed-up of the sparse coding step, we get
significant speed-ups during the training phase (2− 10×) us-
ing modified K-SVD, which makes it feasible to deal with
very large scale problems.

4. CONCLUSION AND DISCUSSIONS
We presented a signal model that enables the cross-scale pre-
dictability for visual signals. Our method is appealing be-
cause of the simple extension to OMP and K-SVD algorithms
while providing significant speed-ups at little or no loss in
accuracy. The computational gains provided by our algo-
rithm are especially significant for problems involving high-
dimensional dictionaries with a large number of atoms.
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