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NuMax: A Convex Approach for Learning
Near-Isometric Linear Embeddings

Chinmay Hegde, Aswin C. Sankaranarayanan, Wotao Yin, Richard G. Baraniuk

Abstract—We propose a novel framework for the deterministic
construction of linear, near-isometric embeddings of a finite set of
data points. Given a set of training points X ⊂ RN , we consider
the secant set S(X ) that consists of all pairwise difference vectors
of X , normalized to lie on the unit sphere. We formulate an
affine rank minimization problem to construct a matrix Ψ that
preserves the norms of all the vectors in S(X ) up to a distortion
parameter δ. While affine rank minimization is NP-hard, we
show that this problem can be relaxed to a convex formulation
that can be solved using a tractable semidefinite program (SDP).
In order to enable scalability of our proposed SDP to very large-
scale problems, we adopt a two-stage approach. First, in order
to reduce compute time, we develop a novel algorithm based on
the Alternating Direction Method of Multipliers (ADMM) that
we call Nuclear norm minimization with Max-norm constraints
(NuMax) to solve the SDP. Second, we develop a greedy, ap-
proximate version of NuMax based on the column generation
method commonly used to solve large-scale linear programs. We
demonstrate that our framework is useful for a number of signal
processing applications via a range of experiments on large-scale
synthetic and real datasets.

Index Terms—Dimensionality reduction, compressive sensing,
approximate nearest neighbors, classification

I. INTRODUCTION

In many applications, we seek a low-dimensional repre-
sentation (or embedding) of data that are elements of a
high-dimensional ambient space. The classical approach to
constructing such an embedding is principal components anal-
ysis (PCA) [2], which involves linearly mapping the N -
dimensional data into the K-dimensional subspace spanned by
the dominant eigenvectors of the data covariance matrix, typi-
cally with K � N . A key appeal of PCA is its computational
efficiency; it can be very efficiently performed using a singular
value decomposition (SVD) on the data. Another key appeal is
its generalizability; PCA produces a smooth, globally defined
mapping that can be easily applied to unseen, out-of-sample
test data points. Nevertheless, PCA has an important draw-
back: the produced embedding can arbitrarily distort pairwise
distances between sample data points. This phenomenon is
exacerbated when the data arises from a nonlinear submanifold
of the signal space [3]. Due to this, PCA can potentially map
two distinct points in the ambient signal space to a single
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point in the low-dimensional embedding space, rendering them
indistinguishable. This hampers the application of PCA-like
techniques to important signal processing problems such as
reconstruction and parameter estimation.

An alternative to PCA is the approach of random projec-
tions. Consider X , a cloud of Q points in a high-dimensional
Euclidean space RN . The Johnson-Lindenstrauss Lemma [4]
states that X can be linearly mapped to a subspace of
dimension M = O (logQ) with minimal distortion of the
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2

)
pairwise distances between the Q points (in other words, the
mapping is near-isometric). Further, this linear mapping can be
easily implemented in practice; one simply constructs a matrix
Φ ∈ RM×N whose elements are drawn randomly from a
certain probability distribution. Then, with high probability, Φ
is near-isometric under a certain lower-bound on M [3, 4]. This
approach can be extended to signal classes beyond finite point
clouds including points that lie on compact, differentiable low-
dimensional manifolds [5, 6] as well as pairwise distances
between all sparse signals [7]. This intuition is a fundamental
component of compressive sensing (CS), an emergent frame-
work for signal acquisition and reconstruction [8]. Despite
their simplicity, random projections are oblivious of the data
under consideration and hence cannot leverage any special
geometric structure of the data if present.

In this paper, we propose a novel deterministic framework
for constructing linear, near-isometric embeddings of a fi-
nite high-dimensional dataset. Given a set of training points
X ⊂ RN , we consider the secant set S(X ) consisting of
all pairwise difference vectors of X normalized to lie on
the unit sphere. We formulate an affine rank minimization
problem (3) to construct a matrix Ψ that preserves the norms
of all of the vectors in S(X ) up to a desired distortion
parameter δ. We perform a convex relaxation to obtain a
trace-norm minimization (4), which is equivalent to a tractable
semidefinite program (SDP). The SDP (4) can be solved using
any generic interior-point method for convex programming
(for example, the solvers SDPT3 [9] and SeDuMi [10]).
However, the convergence of such generic solvers is typically
very slow, even for small problem sizes. Further, the presence
of the max-norm constraints in (4), though convex, negates
the direct application of existing first-order methods for large-
scale SDP [11].

Our specific contributions are three-fold. First, we derive
a convex optimization framework based on SDPs for learn
near-isometric linear embeddings for finite datasets. Second,
to solve this SDP, we develop a novel algorithm that we call
Nuclear norm minimization with Max-norm constraints (Nu-
Max). NuMax is based on the Alternating Direction Method of
Multipliers (ADMM); it decouples the complex SDP formu-
lation into a sequence of easy-to-solve subproblems. Third,
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in order to achieve scalability to large-scale problems, we
propose a modified, greedy version of NuMax that mirrors the
column generation approach commonly used to solve large-
scale linear programs [12]. With this modification, NuMax
can efficiently solve problems where the number of elements
in the secant set S(X ), i.e., the number of constraints in (4),
is extremely large (e.g., 107 or greater).

Via numerical experiments, we demonstrate that NuMax
is useful for a number of signal processing applications.
First, if the training set X comprises sufficiently many points
that are uniformly drawn from a low-dimensional smooth
manifold M, then we show that the matrix Ψ satisfies the
restricted isometry property (RIP) for signals belonging to
M and hence enables the design of efficient measurement
matrices for the compressive sensing of manifold-modeled
datasets. Second, since the embedding Ψ (approximately)
preserves all pairwise secants in the training set X , it is
also guaranteed to (approximately) preserve nearest-neighbors
of all points of X . Therefore, NuMax produces an efficient
method to design linear hash functions for high-dimensional
data retrieval. Third, by carefully pruning the secant set S(X ),
we can tailor Ψ for more general signal inference tasks, such
as supervised binary classification.

II. BACKGROUND

A. Notation

In this paper, we will exclusively work with real-valued
vectors and matrices. We use lowercase boldface to denote
vectors, uppercase boldface to denote matrices, and calli-
graphic letters to denote sets or set-valued operators. Given
a symmetric matrix X ∈ RN×N , we write X � 0 if X is
positive semidefinite (PSD). Denote the singular value decom-
position (SVD) of a matrix X ∈ RN×N as X = UΣVT ,
where Σ = diag(σ) is a diagonal, non-negative matrix where
σ is the vector of (sorted) singular values. The Frobenius norm
of X, denoted by ‖X‖F , is the square root of the sum of
squared entries of X, or equivalently, the `2-norm of σ. The
rank of X is equal to the number of nonzero entries in σ. The
nuclear norm of X, denoted by ‖X‖∗, is equal to the sum of
its singular values, or equivalently, the `1-norm of σ.

B. PCA and MDS

Consider a set of Q data vectors X = {x1,x2, . . . ,xQ} ⊂
RN , where N,Q are potentially very large. We group the
elements of X as columns in the matrix X ∈ RN×Q, which we
term the data matrix. Given a data matrix, a natural question
is whether the Q points can be embedded into a lower-
dimensional space RM , M < N with minimal distortion.

One such embedding can be obtained via a popular statisti-
cal technique known as principal components analysis (PCA).
PCA obtains an embedding as follows; given X, we perform
an SVD of X, i.e., compute X = UΣVT , and then linearly
project the columns of X onto the subspace spanned by the
r leftmost columns of U (termed the PCA basis vectors).
The projected data points provide the optimal r− dimensional
approximation to X in terms of the Frobenius norm. Further-
more, PCA can be adapted to account for problem-specific

requirements. For example, if the data vectors originate from
one of two classes, then PCA can be modified to maintain class
separability using related techniques such as Fisher’s Linear
Discriminant Analysis (LDA) or Factor Analysis [13, 14].

PCA can be viewed as a special case of the more general
technique of multi-dimensional scaling (MDS). Given a high-
dimensional dataset X ∈ RQ×N , MDS constructs a Q × Q
matrix D(X ) of pairwise dissimilarities and tries to construct a
lower-dimensional dataset f(X ) ∈ RM×N , M < N such that
D(f(X )) ≈ D(X ). If the pairwise dissimilarities correspond
to Euclidean distances, then MDS is equivalent to PCA [15]
and f(X ) is simply a linear projection of X . If the pairwise
dissimilarities are captured by some other distance metric, then
the embedding is nonlinear in general.

PCA and MDS are conceptually simple. However, the
convenience of PCA-like techniques are balanced by certain
drawbacks. Crucially, their optimality is not accompanied by
any guarantees regarding the local geometric properties of the
resulting embedding [3]. Therefore, any information contained
in the geometric inter-relationships between data points is
irrevocably lost. In other words, PCA and MDS are not
guaranteed to be isometric (i.e., distance-preserving) or even
invertible.

C. Nonlinear Embeddings

While the focus of this paper is primarily on linear embed-
dings, we point out that several sophisticated nonlinear data
embedding methods have emerged over the last decade; see,
for example, [16–20]. These methods are sometimes referred
to as manifold learning algorithms. The list of manifold learn-
ing methods in the literature is far too long to enumerate in
full, so we will simply discuss a few representative approaches.

Our approach bears some resemblance to the Whitney
Reduction Network (WRN) approach for computing auto-
associative graphs [21, 22]. The WRN is a heuristic that is
algorithmically similar to PCA. An important notion in the
WRN approach is the normalized secant set of X :

S(X ) =

{
x− x′

‖x− x′‖2
, x,x′ ∈ X ,x 6= x′

}
. (1)

The approach initializes an estimate of the desired embedding
and iteratively refines the embedding so as to ensure that the
norms of the secants in S(X ) deviate from unity as little
as possible. Unfortunately, the WRN algorithm only makes
locally optimal decisions and cannot ensure that the final
mapping is (near) isometric.

Our approach has connections to Locally Linear Embedding
(LLE), proposed in [17]. LLE takes as input an arbitrary
dataset X and outputs a set of (possibly overlapping) M -
dimensional subspaces, each of which approximates a small
subset of X according to a Euclidean error criterion. Therefore,
the embedding is locally linear (as specified by the orthogonal
projection onto the corresponding subspace), but is globally
nonlinear. It is unknown whether or not the LLE ensures a
(near)-isometry. The more recent Sparse Manifold Learning
and Clustering (SMCE) approach, proposed in [23] aims to
address this issue by constructing an embedding by directly



3

operating on the normalized secant set S(X ); however, SMCE
relies on a spectral decomposition that does not seem to enjoy
isometry guarantees.

Finally, we note that using semidefinite programming (SDP)
to construct low-dimensional embeddings of data have been
explored before; see, for example, the algorithms of [20]
and [24]. Such approaches construct a low-dimensional rep-
resentation of an input data set X by performing a trace-
norm optimization, subject to a set of distance constraints.
It is likely that these approaches can be modified to produce
near-isometric (nonlinear) embeddings of datasets. However,
as above, the mappings obtained are highly nonlinear and
consequently are not easily generalizable to out-of-sample
data points. Further, it is unclear if the corresponding SDP
formulations can be modified to scale to large datasets.

D. Random Projections

The problem of constructing a low-dimensional isometric
embedding of a dataset, i.e., embeddings that preserves all
pairwise distances between the data points, has been studied
in depth and is quickly becoming classical (for an excellent
introduction to this subject, see [25]). Concretely, we seek
an embedding that satisfies the following relaxed notion of
isometry:

Definition 1: Suppose M ≤ N and consider X ⊂ RN .
An embedding operator P : X → RM satisfies the restricted
isometry property (RIP) with constant δ > 0 on X if, for every
x,x′ in X , the following relations hold:

(1− δ)‖x− x′‖22 ≤ ‖Px− Px′‖22 ≤ (1 + δ)‖x− x′‖22. (2)

The quantity δ encapsulates the deviation from perfect isome-
try and is called the isometry constant. We (trivially) observe
that the identity operator on X always satisfies the RIP with
δ = 0; however, in this case M = N . For the range M < N ,
the celebrated Johnson-Lindenstrauss (JL) Lemma confirms
the existence of such operators [4].

Lemma 1: [4] Consider a dataset X = {x1, . . . ,xQ} ⊂ RN .
Let M = Ω(δ−2 logQ). Construct a matrix Φ ∈ RM×N by
drawing each element of Φ independently from a Gaussian
distribution with zero mean and variance 1/M . Then, with
high probability, the linear operator Φ : RN → RM satisfies
the RIP on X .

The method of random projections can be extended to more
general signal classes beyond finite point clouds. For example,
random linear projections provably satisfy the RIP for data
modeled as compact, differentiable low-dimensional subman-
ifolds [5, 6]. A particularly interesting connection has been
made with compressive sensing (CS), an emergent paradigm
for efficient acquisition and processing of K-sparse signals,
i.e., signals that can be expressed as the sum of only K
elements from a basis [7]. The central result of CS asserts
that if a matrix Φ ∈ RM×N satisfies the RIP on the set of all
K-sparse signals, then it is possible to stably recover a sparse
signal x from the linear embedding (or “measurements”)
y = Φx, even when M is only proportional to K log(N/K).

Random projections provide a simple method to construct
embeddings that satisfy the RIP for arbitrary datasets. It can

be shown that, in the worst case for a given isometry constant
δ, there exist datasets that cannot be embedded into any M -
dimensional space where M ≤ δ−2 log−1(δ−1) logQ [26].
However, this worst case only occurs for a specific configu-
ration of points that seldom occurs in practice. Further, the
universality property of random projections negates its ability
to leverage the intrinsic geometry of a given data set.

E. Metric learning

Related to the ideas proposed in this paper is a framework
known as metric learning. Given a dataset and an intended task
(for example, classification), the goal of metric learning is to
learn a distance metric that is better than (or at least as good
as) the Euclidean distance. There has been significant recent
work in this context for learning Mahalanobis distances, i.e,
metrics of the form d2(x,y) = (x− y)TΣ(x− y). Here, the
metric is fully specified by the positive semi-definite matrix
Σ. See the paper [27] and references therein.

There are some apparent similarities between metric learn-
ing and NuMax. For example, both approaches try to learn
task-driven embeddings of datasets, and use convex opti-
mization techniques to estimate a positive semi-definite ma-
trix. However, there are some differences. First, we consider
NuMax to be a dimensionality reduction technique at its
core, and this is not necessarily the primary goal of metric
learning. Second, NuMax is geared towards producing linear
embeddings that are nearly isometric with respect to a set of
vectors, and this requirement motivates specific computational
challenges and solutions. Lastly, our focus is on designing
computationally efficient schemes for learning embeddings in
various contexts. We leave open as future work the exploration
of deeper connections between the two frameworks.

III. NEAR-ISOMETRIC LINEAR EMBEDDINGS

A. Optimization Framework

Given a dataset X ⊂ RN , our goal is to find a linear
embedding P : RN → RM , M � N, that satisfies the RIP
(2) on X with parameter δ > 0. Following [5], we will refer
to δ as the isometry constant. We form the secant set, a set of
S =

(
Q
2

)
unit vectors S(X ) = {v1,v2, . . . ,vS} as defined in

(1). Then, we seek a projection matrix Ψ ∈ RM×N with as
few rows as possible that satisfies the RIP on S(X ).

We cast this problem in terms of an optimization over the
space of symmetric PSD matrices. Define P

.
= ΨTΨ ∈

RN×N ; then, rank(P) = M . We also have the constraints
that | ‖Ψvi‖22 − 1| =

∣∣vTi Pvi − 1
∣∣ is no greater than δ for

every secant vi in S(X ). Let 1S denote the S-dimensional
all-ones vector, and let A denote the linear operator that
maps a symmetric matrix X to the S-dimensional vector
A : X → (vTi Xvi)

S
i=1. Then, we seek the solution to the

optimization problem

min
PT=P�0

rank(P) subject to ‖A(P)− 1S‖∞ ≤ δ. (3)

Rank minimization is both non-convex and NP-hard, in
general. Therefore, following [28], we propose to instead solve
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a nuclear-norm relaxation of (3):

min
PT=P�0

‖P‖∗ subject to ‖A(P)− 1S‖∞ ≤ δ. (4)

Since P is a PSD symmetric matrix, the nuclear norm of
P is equal to its trace. Thus, the problem (4) consists of
minimizing a linear objective function subject to linear in-
equality constraints over the cone of PSD symmetric matrices.
Hence, it is equivalent to a semidefinite program (SDP) and
can be solved in polynomial time [29]. Once the solution
P∗ = UΛUT to (4) is found, rank(P∗) determines the value
of M , the dimensionality of the linear embedding. The desired
linear embedding Ψ can then be calculated using a simple
matrix square root

Ψ = Λ
1/2
M UT

M , (5)

where ΛM = diag{λ1, . . . ,λM} denotes the M leading
(non-zero) eigenvalues of P∗, and UM denotes the set of
corresponding eigenvectors.In this manner, we obtain a low-
rank matrix Ψ ∈ RM×N that satisfies the RIP on the secant
set S(X ) with isometry constant δ. The convex optimization
formulation (4) is conceptually very simple, the only inputs
being the input dataset X and the desired isometry constant
δ > 0.

B. Analysis
Since we seek an embedding matrix Ψ with a minimal

number of rows, a natural question to ask is whether the
nuclear-norm relaxation (4) is guaranteed to produce solu-
tions P∗ of minimum rank. The efficiency of nuclear-norm
minimization for low-rank matrix recovery has been studied
in a number of settings [30, 31]. However, we highlight two
unique aspects of the optimization problem (4). First, the `∞-
norm constraints in (4) are non-standard. Second, the best
known theoretical results make certain restrictive assumptions
on the linear operator A in (4); for example, one common
assumption is that the entries of the matrix representation of A
are independently drawn from a standard normal distribution.
This assumption is clearly violated in our case, since A is a
function of the secant set S(X ), which depends heavily on
the geometry of the data at hand. Nevertheless, a classical
result from SDP provides an upper bound on the rank of the
optimum P∗ in (4).

Proposition 1: [32, 33] Let r∗ be the rank of the optimum
to the SDP (4). Then,

r∗ ≤
⌈√

8|S(X )|+ 1− 1

2

⌉
. (6)

In essence, the rank of P∗ grows as the square root of the
cardinality of the secant set S(X ). Note that the upper bound
on the optimal rank r∗ provided in (6) can be very loose, since
the cardinality of S(X ) is potentially large. i

A full analytical characterization of the optimal rank ob-
tained by the program (4) is of considerable interest both
in theory and practice. However, this seems to an extremely
challenging analytical problem for a generic point set X . The
main question is to verify the efficiency of the convex relax-
ation (4), which is essentially an SDP with rank-1 constraints

(1� �)  vT
i PviuT

i Pui  1 + �

Fig. 1. A desirable objective for classification is to promote nearest neighbors
of a point to come from its own class. We achieve this by altering the near-
isometric constraints. First, we relax the upper bound on the near-isometry for
the inter-class secants; hence, they can expand in length unconstrained. Second,
we relax the lower-bound on the intra-class secants; hence, they can shrink in
length unconstrained. For the same distortion parameters, we observe lower-
rank solutions with higher-classification rates.

(specified by the secant set S(X )). The PhaseLift approach
proposed by [34] has addressed this question in a somewhat
different context. the desired low-rank solution. However,
the underlying assumption in their work is that the rank-1
constraint vectors are independently and randomly generated
from a Gaussian distribution. This assumption does not hold
for an arbitrary dataset X , and therefore that theory does not
apply in our case.

We also note that the recent results by [35] and [36]
address the theoretical properties of a convex program that
resembles (4), albeit under more stringent assumptions on the
target embedding matrix Φ.

C. Class-specific Linear Dimensionality Reduction

We observe that the inequality constraints in (4) are de-
rived by enforcing an approximate isometry condition on
all pairwise secants {vi}Si=1. While the need to enforce
the (approximate) isometry of all pairwise secants might be
important in applications such as signal reconstruction, such
a criterion could prove to be too restrictive for other tasks.

For example, consider a supervised classification scenario,
where the points in X arise from two classes of interest.
Suppose that we wish to use the classical nearest neighbor
(NN) classifier to classify data points based on the labeled
training data. In this scenario, preserving the lengths of the
secants is no longer the goal; instead we really need an
embedding matrix Ψ that tries to separate the two classes.
It would not really affect classification performance if two
data points from the same class somehow were mapped to the
same lower-dimensional point, as long as pairs of points from
different classes were mapped to points sufficiently far apart.

There are many ways for translating this idea into a precise
criterion for optimization. Here is one intuitive approach.
Suppose that we have labeled training data from multiple
classes. We can identify two flavors of secants — inter-class
secants vi which connect points from different classes, and
intra-class secants ui which connect points from the same
class. A simple extension to (4) applies different constraints
to the inter and intra-class secants (see Fig. 1). Specifically, we
let the length of inter-class secants to expand by an arbitrary
factor while not allowing their length to shrink; this enables
points from different classes to move apart from one another.
Similarly, we let the length of intra-class secants to shrink by
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an arbitrary factor while not allowing their lengths to expand;
this is formulated as

min
PT=P�0

‖P‖∗ (7)

subject to vTi Pvi ≥ 1− δ, ∀ vi ∈ inter-class
uTi Pui ≤ 1 + δ ∀ ui ∈ intra-class

This convex program has the same objective as the one in
(4); however, the feasible set is vastly expanded since the
near-isometric constraints are significantly weakened. Hence,
we can hope not just to obtain a low-rank solution (since
our feasibility set has been expanded) but also to promote
improved classification (since we can expect points from
different classes to be embedded differently). We examine
this type of “class-specific” linear embeddings further in our
numerical experiments.

IV. ALGORITHMS FOR DESIGNING EMBEDDINGS

The SDP (4) admits a tractable solution in polynomial time
using interior-point methods. However, for a generic SDP with
S constraints and a matrix variable of size N × N , interior-
point methods incur memory costs that scale as O

(
S2
)

and
time-complexity costs that scale asO

(
N6
)
. Therefore, solving

(4) using traditional SDP solvers [9, 10] quickly becomes
infeasible. Here, we develop two algorithms that exploit the
special structure of the optimization problem (4) to produce
very efficient solutions at vastly reduced costs.

A. ADMM

We develop an efficient algorithm to solve (4) based on
the Alternating Direction Method of Multipliers (ADMM). We
dub our algorithm NuMax, an abbreviation for Nuclear norm
minimization with Max-norm constraints. We rewrite (4) by
introducing the auxiliary variables L ∈ SN×N and q ∈ RS to
obtain the optimization problem

min
P�0,L,q

‖P‖∗ (8)

subject to P = L, A(L) = q, ‖q− 1S‖∞ ≤ δ.
This approach can be viewed as an instance of the Douglas-
Rachford variable splitting method in convex program-
ming [37]. Next, we relax the linear constraints and form an
augmented Lagrangian of (8) as follows:

min
P�0,L,q

‖P‖∗ +
β1
2
‖P− L−Λ‖2F (9)

+
β2
2
‖A(L)− q− ω‖22

subject to ‖q− 1S‖∞ ≤ δ.
Here, the symmetric matrix Λ ∈ SN×N and vector ω ∈ RS
represent the scaled Lagrange multipliers. The optimization
in (9) is carried out over the variables P,L ∈ SN×N and
q ∈ RS , while Λ and ω are iteratively updated as well. Instead
of jointly optimizing over all three variables, we optimize the
variables one at a time while keeping the others fixed. That is,
we can solve the optimization (9) via a sequence of three sub-
problems, each of which admits a computationally efficient

solution. Let the subscript k denote the estimate of a variable
at the kth iteration of the algorithm. The following steps are
performed until convergence.

Update q: Isolating the terms that involve q, we obtain a new
estimate qk+1 in closed form. Denote z = A(Lk)−ωk−1S .
Then, it is seen that

qk+1 = 1S + sign(z) ·min(|z|, δ), (10)

where the sign and min operators are applied component-wise.
This step can be performed in O (S) operations.

Update P: Isolating the terms that involve P, we obtain a new
estimate Pk+1 via the eigenvalue shrinkage operator (similar
to the approach described in [38]). Denote P′ = Lk + Λk

and perform the eigen decomposition P′ = VΣVT , where
Σ = diag(σ). Then, the optimum Pk+1 can be expressed as

Pk+1 = VDα(Σ)VT , Dα(Σ) = diag({(σi − α)+}), (11)

where α = 1
β and t+ represents the positive part of t, i.e.,

t+ = max(t, 0). The dominant computational cost for this
update is incurred by performing the eigendecomposition of
P′ ∈ SN×N ; in general this step can be carried out in O

(
N3
)

operations. This step can potentially be made even faster
by using randomized numerical linear algebra (RandNLA)
techniques [39].

Update L: Isolating the terms that involve L, we obtain a
new estimate Lk+1 as the solution of the unconstrained least-
squares problem whose minimum is achived by solving the
following linear system of equations.

β1(Pk − L−Λj) = β2A∗(A(L)− qk+1 − ωk), (12)

where A∗ represents the adjoint of A. The dominant cost
in this step arises due to the linear operator A∗A. A single
application of this operator incurs a complexity of O

(
N2S2

)
.

The least-squares solution to (12) can be calculated using
a number of existing methods for solving large-scale linear
equations, such as conjugate gradients [40, 41].

Update Λ,ω: Finally, as is standard in augmented Lagrange
methods, we update the parameters Λ,ω according to the
equations

Λk+1 ← Λk − η(Pk −Lk), ωk+1 ← ωk − η(A(Lk)− qk).

The overall NuMax method is summarized in pseudocode
form in Algorithm 1. The convergence properties of NuMax,
both in terms of precision as well as speed, are affected
by the user-defined parameters η, β1, and β2. In all of the
experiments below in Section V, we set η = 1.618 and
β1 = β2 = 1.

B. Column Generation

NuMax (Algorithm 1) dramatically decreases the time-
complexity of solving the SDP (4). However, for a problem
with S input secants, the memory complexity of NuMax still
remains O

(
S2
)
, and this could be prohibitive in applications

involving millions (or billions) of secants. We now develop a



6

Algorithm 1 NuMax
Inputs: Secant set S(X ) = {vi}Si=1, parameter δ
Parameters: Weights β1, β2, step size η
Output: Symmetric PSD matrix P̂
Initialize: P0,L0,ω0,q0, k ← 0, b← 1S ,
set A : X 7→ {vTi Xvi}Si=1

while not converged do
z← A(Lk)− ωk − b
qk+1 ← b + sign(z) ·min(|z|, δ)
P′ ← Lk + Λk, P′ = VΣVT

Pk+1 ← VDα(Σ)VT

Z← β2A∗(qk+1 + ωk), Z′ ← β1(Pk −Λk)
Lk+1 ← β2(A∗A+ I)†(Z + Z′)
Λk+1 ← Λk − η(Pk − Lk)
ωk+1 ← ωk − η(A(Lk)− qk)
k ← k + 1

end while
return P̂← Pk

Algorithm 2 NuMax-CG
Inputs: Secant set S = {vi}Si=1, parameter δ
Parameters: Size of selected secant sets S′, S′′

Output: Symmetric PSD matrix P̂
Initialize: Select a subset of S′ secants and call it S0,
set A : X 7→ {vTi Xvi}S

′

i=1

Obtain initial estimate P← NuMax(S0, δ)
while not converged do

Ŝ ← {vi ∈ S0 : |vTi Pvi − 1| = δ}
S1 ← {vi ∈ S : vi /∈ S0}S

′′

i=1

Ŝ ← Ŝ ⋃ {vi ∈ S1 : |vTi Pvi − 1| ≥ δ}
P← NuMax(Ŝ, δ)

estimate}
S0 ← Ŝ

end while
return P̂← P

heuristic optimization method that only approximately solves
(4) but that scales very well to such problem sizes.

Our key idea is based on the Karush-Kuhn-Tucker (KKT)
conditions describing the optimum of (4). Recall that (4)
consists of optimizing a linear objective subject to inequality
constraints over the cone of PSD matrices. Suppose that strong
duality holds, i.e., the primal and dual optimal values of (4)
are equal. Then, by complementary slackness [42], the optimal
solution is entirely specified by the set of those constraints that
hold with equality. Such constraints are also known as active
constraints.

We propose a simple, greedy method to rapidly find the
active constraints of (4).

1) Solve (9) with only a small subset S0 of the input secants
S(X ) using NuMax (Algorithm 1) to obtain an initial
estimate P̂. Identify the set Ŝ of secants that correspond
to active constraints, i.e.,

Ŝ ← {vi ∈ S0 : |vTi P̂vi − 1| = δ}.

2) Select additional secants S1 ⊂ S that were not selected
previously and identify all the secants among S1 that vi-
olate the infinity norm constraints at the current estimate
P̂. Append these secants to the set of active constraints
Ŝ to obtain an augmented set Ŝ

Ŝ ← Ŝ
⋃
{vi ∈ S1 : |vTi Pvi − 1| ≥ δ}.

3) Solve (4) with the augmented set Ŝ using NuMax (Alg.
1) to obtain an new estimate P̂.

4) Identify the secants that correspond to active constraints.
Repeat Steps 2 and 3 until convergence is reached in the
estimated optimal matrix P̂.

Instead of performing a large numerical optimization proce-
dure on the entire set of secants S(X ), we perform a sequence
of optimization procedures on small subsets of S(X ). When
the number of active constraints is a small fraction of the
overall secants, the computational gains are significant. This
approach is analogous to the column generation (CG) method
used to solve very large-scale linear programs [12]. Therefore,
we dub our overall algorithm NuMax-CG; this algorithm is
listed in pseudocode form in Algorithm 2.

A key benefit of NuMax-CG is that the set of secants upon
which NuMax acts upon within each iteration never needs to
be explicitly stored in memory and can in fact be generated on
the fly. This can potentially lead to significant improvements
in terms of memory complexity of the overall procedure.
An important caveat is that we are no longer guaranteed to
converge to the optimal solution of (4); nevertheless, as we
see below in Section V, NuMax-CG yields excellent results
on massively-sized, real-world datasets.

In practice, evaluating the KKT conditions for NuMax (and
NuMax-CG) is computationally expensive. As a consequence,
we use a notion of infeasibility as our main halting criterion.
Specifically, we measure the errors in the strict enforcement
of the equality constraints P = L and q = A(L)

e1 =
2‖P− L‖F
‖P‖F + ‖L‖F

, e2 =
2‖q−A(L)‖2
‖q‖2 + ‖A(L)‖2

.

When max(e1, e2) is smaller than a user-specified parameter
η, we proclaim convergence. For the numerical experiments
below in Section V, we use η = 5× 10−5.

C. Convergence

The convergence of NuMax can be understood in terms
of the convergence properties of a more general ADMM. An
important distinction is that although there are three variables
L,P,q in (8), NuMax is indeed a standard ADMM (that
is, with two blocks of variables) rather than a three-block
ADMM, whose convergence is not guaranteed without extra
assumptions or additional computation. In (8), one block of
variables is (P,q), and the other is L. In the standard ADMM,
when one of the two blocks is fixed, the subproblem is
minimized over the entire other block. In NuMax, when L
is fixed, the subproblem is minimized over P,q jointly. But
since P,q do not together appear any single objective term or
constraint, the subproblem can be decoupled into minimizing
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over P and q separately. This observation allows us to invoke
the existing convergence results of standard ADMM.

For certain types of convex problems, ADMM converges at
a rate of O(1/k) [43] (more recently, the rate has been slightly
improved to o(1/k) [44]). Although we have observed NuMax
to have a rate of convergence that appears to be linear, we have
not been able to establish its linear convergence for arbitrary
data. In particular, recent results in [45], [46], and [47] prove
the linear convergence of ADMM under assumptions such as a
strongly convex objective function or the underlying problem
being a quadratic program. Unfortunately, these results do
not appear to apply to the problem formulation (8), and
establishing linear convergence remains open.

NuMax-CG calls NuMax to solve a sequence of instances
of (8) with increasingly many constraints. Since there are
finitely many secants and thus finitely many constraints in
total, NuMax-CG is guaranteed to terminate after a finite
number of iterations. However, it is difficult to estimate the
actual number of iterations, since it will vary significantly
depending on data, parameter choices, and the specific order
in which the column generation procedure adds constraints to
(8).

D. Class-specific NuMax

We now discuss how to solve the classification optimization
problem (7) using minor modifications to NuMax and NuMax-
CG. Given the inter-class secants {vi, i = 1, . . . , Sv}, the
intra-class secants {ui, i = 1, . . . , Su}, and the distortion δ,
we can define a linear operator Ac : RN×N 7→ RSv+Su , and
the vector bc ∈ RSv+Su as follows:

Ac(P) =



...
−vTi Pvi

...
uTi Pui

...


, bc =



...
−(1− δ)

...
1 + δ

...


(13)

The convex program (7) can now be succinctly represented as

minimize
P�0

‖P‖∗ subject to Ac(P) ≤ bc. (14)

Here, the Ac operator captures the specifics of the modi-
fied/relaxed isometry constraints on the intra- and inter-class
secants. Note that (14) is a more general form of the convex
program in (4) and hence, solvers for (4) can be easily
modified to solve (14). For example, Algorithm 1 can be
modified to solve (14), simply, by modifying the truncation
step to

qk+1 ← min(b, z).

We refer to this class-sensitive version of NuMax as NuMax-
Class. Similarly, a CG version of NuMax-Class can be easily
derived with minor modifications.

V. NUMERICAL EXPERIMENTS

We illustrate the performance of the NuMax framework
and algorithms via a number of numerical experiments and

show that our approach enables improved performance in
machine learning applications such as approximate nearest
neighbor (ANN)-based data retrieval and supervised binary
classification. We use η = 1.6 and β1 = β2 = 1 for
all our numerical simulations. Further, we use Algorithm 1
(NuMax) when S, the number of secants, is smaller than 5000,
and Algorithm 2 (NuMax-CG) for larger sized problems. For
the rest of this section, we interchangeably use the terms
“projections” and “measurements” whenever the context is
clear.

A. Linear Low-Dimensional Embeddings

We first demonstrate that NuMax can be used to design
linear, low-dimensional embeddings of possibly complicated
image datasets. We first consider a synthetic dataset X com-
prised of N = 16 × 16 = 256-dimensional images of
translations of a white square on a black background. We
construct a training set S(X ) of S = 1000 secants by
randomly sampling pairs of images from X , and normalizing
the secants using (1). We are interested in quantitatively
studying the performance of different types of linear as well
as low-dimensional embeddings.

We begin with an empirical estimation of isometry con-
stants using PCA, random Gaussian projections and NuMax.
For each technique, we are interested in characterizing the
variation of the isometry constant δ with the number of
measurements M . For PCA, for a given dimensionality M , we
project the secant set S(X ) onto the M PCA basis functions
learned from the S(X ) itself. We observe the worst-case
deviation from unity in the norm of the projected secants;
this gives the estimate of the isometry constant δ. We also
perform a similar isometry constant calculation using M
random Gaussian projections. Each entry of the M × N
linear embedding matrix is sampled independently from a
Gaussian distribution with zero mean and variance 1/M .
Third, for a desired value of isometry constant δ, we solve (4)
using NuMax (Algorithm 1) to obtain a positive semidefinite
symmetric matrix P∗. We measure the rank of P∗ and denote
it by M .

Figure 2(a) plots the variation of the number of mea-
surements M as a function of the isometry constant δ. We
observe that the NuMax embedding Ψ achieves the desired
isometry constant on the secants using by far the fewest
number of measurements. For example, NuMax attains a
distortion of δ = 0.1 with 4 times fewer measurements than
the next best algorithm (PCA). In Fig. 2(b), we include
the numerical performance by several other techniques, such
as Kernel-PCA (with an radial basis function kernel), metric
MDS, locality preserving projections (LPP), and neighborhood
preserving embedding (NPE). As in the comparison with linear
techniques, NuMax outperforms the nonlinear techniques by
achieving the desired isometric embedding using the fewest
number of measurements.

Figures 2(a) and (b) can be viewed as analogous to the rate-
distortion curve commonly studied in information theory; here,
δ represents the distortion and the undersampling factor M/N
represents the compression rate. For practical applications, it
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Fig. 2. (a) Empirical isometry constant δ vs. number of measurements M
using NuMax, PCA, and random embeddings. (b) Empirical isometry constant
vs. number of measurements using various other embeddings. NuMax ensures
global approximate isometry using by far the fewest measurements.
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Fig. 3. Histograms of secant distortions using various embedding methods, for
the translating squares dataset and an embedding dimension of r = 30. The
input distortion to NuMax is δ = 0.03.

is often more instructive to consider how the distortions look
like, when all but a fraction of the S secant constraints are
satisfied. Therefore, in Fig. 2(a), we have also included curves
for PCA and Random Projections which indicate the number
of measurements at which all but 1% of the secants achieve
a distortion δ. It is clear that NuMax outperforms the other
algorithms even in this less restrictive setting.

This phenomenon can be better understood by considering
Figure 3. For an embedding dimension of r = 30, we
record the norms of the projected secants using NuMax, PCA,
and random projections, and plot histograms of the secant
distortions. We observe that for NuMax, the norms of the (em-
bedded) secants are sharply concentrated at 1 ± δ, δ = 0.03.
On the other hand, the norms of the embedded secants using
PCA are more spread-out (in fact, they are all smaller than
1, since PCA is a contractive mapping). Finally, the norms of
the secants under random projections are much more widely
distributed.

Next, we consider a more challenging real-world dataset.
The MNIST dataset [48] contains a large number of digital
images of handwritten digits and is commonly used as a
benchmark for machine learning algorithms. The images ex-
hibit rich variations (see Figure 4(a)) and presumably lie on a
highly nonlinear submanifold of the image space. We construct
a training dataset S(X ) comprising S = 3000 secants and
estimate the variation of the isometry constant δ with the
number of measurements M . The results of this experiment are
plotted in Figure 4(b). Once again, we observe that NuMax
provides the best linear embedding for a given value of δ
in terms of reduced dimensionality and that both NuMax
and PCA outperform random projections. For instance, for a
distortion parameter δ = 0.2, NuMax produces an embedding
with 8× fewer measurements than PCA. In essence, NuMax
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Fig. 4. (a) Example “5” images from the MNIST dataset. Each image is a
point in N = 28 × 28 = 784–dimensional space. (b) Empirical isometry
constant δ vs. number of measurements M using NuMax, PCA, and random
embeddings. NuMax ensures global approximate isometry using the fewest
number of measurements; for example, for a distortion parameter δ = 0.2,
it produces an embedding with 8× fewer measurements than PCA.

provides the best possible rate-distortion curve in terms of
compressing the given image database.

Next, we compare runtime performance of NuMax and
NuMax-CG by testing them on subsets of the MNIST dataset.
We use the training dataset associated with the letter “5”. We
generate problems of different sizes by varying the number of
secants. For each ensuing collection of secants, we solve both
NuMax and NuMax-CG and observe the individual running
times as well as the fraction of constraints that are active at
the solution of NuMax-CG. For each problem size, we perform
10 trials and compile average statistics.

Figure 5(a) demonstrates that the fraction of active secants
can be significantly smaller than the total number of secants,
suggesting that NuMax-CG can be considerably faster than
NuMax. Figure 5(b) confirms this fact: for a problem size
with S = 5 × 104, NuMax-CG outperforms NuMax in terms
of running time by a full order of magnitude. Moreoever,
despite the heuristic nature of NuMax-CG, we observed in
practice that the solutions obtained NuMax and NuMax-CG
are virtually identical. Table II provides runtime values on
the entire MNIST dataset for different values of δ. MNIST
dataset has 60,000 datapoints; thereby, producing a total of
1.8 billion secants/constraints. On this dataset, for values of
δ ∈ [0.1, 0.4], NuMax-CG and NuMax-Class-CG converge
within a few hours.

B. Approximate Nearest Neighbors (ANN)

The notion of nearest neighbors is vital to numerous
problems in estimation, classification, and regression [49]; the
ubiquity of NN-based machine learning in part stems from its
conceptual simplicity and good performance. Suppose that a
large dataset of training examples is available. Then, given a
query data point, nearest neighbor-based techniques identify
the k points in the training dataset closest to the query point
and use these points for further processing.

Suppose that the data points are modeled as elements of
a vector space. As the dimension N of the data grows, the
computational cost of finding the k nearest neighbors becomes
challenging [50]. To counter this challenge, as opposed to
computing nearest neighbors of the query data point, one can
instead construct a near-isometric embedding of the data into
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Fig. 5. Performance of NuMax-CG on the MNIST handwritten digit
database [48]. (a) Ratio of active secants to total number of secants for problems
of different sizes. As the problem size (number of secants) increases, the ratio
of active secants decreases exponentially; this implies dramatic improvements
in computational cost for NuMax-CG over NuMax. (b) Timing plots comparing
NuMax-CG and NuMax for problems of different sizes.

an M -dimensional space and estimate approximate nearest
neighbors (ANN) in the embedded space. By carefully control-
ling the distortion in distance caused by the lower-dimensional
embedding, efficient inference techniques can be performed
with little loss in performance.

The ANN principle forms the core of locality sensitive
hashing (LSH), a popular technique for high-dimensional
pattern recognition and information retrieval [51, 52]. Given a
fixed dataset, the time complexity of a particular ANN method
directly depends upon the dimension M of the embedded
space; the smaller the embedding dimension, the faster the
ANN method. Most existing ANN methods (including LSH)
either compute a randomized linear dimensionality reduction
or a PCA decomposition of the data. In contrast, we imme-
diately observe that NuMax provides a linear near-isometric
embedding that achieves a given distortion δ while minimizing
M . In other words, NuMax can potentially enable far more
efficient ANN computations over conventional approaches.

We test the efficiency of our approach on a set of Q = 4000
images taken from the LabelMe database [53]. This database
consists of high-resolution photographs of both indoor and
outdoor scenes. We compute GIST feature descriptors [54]
for every image. In our case, the GIST descriptors are vectors
of size N = 512 that coarsely express the dominant spatial
statistics of the scene; such descriptors have been shown to
be very useful for image retrieval purposes. Therefore our
“ground truth” data consists of a matrix of size N ×Q. Since
the number of pairwise secants in this case is extremely high
(S =

(
Q
2

)
≈ 8×106), we use NuMax-CG to estimate the linear

embedding of lowest rank for a given distortion parameter
δ. We record M , the rank of the optimal linear embedding,
and for comparison purposes we also compute M -dimensional
random linear projections of the data as well as the best M -
term PCA approximation of the data. We perform subsequent
ANN computations for a set of 1000 test query points in the
corresponding M -dimensional space.

Figure 6 displays the benefits of using the linear embedding
generated by NuMax-CG in ANN computations. For a given
neighborhood size k, we plot the fraction of k-nearest neigh-
bors computed using the full (ground truth) N -dimensional
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(a) M = 38
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(b) M = 46
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(c) M = 59
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(d) M = 86

Fig. 6. Approximate Nearest Neighbors (ANN) for the LabelMe dataset
using various linear embedding methods. We choose a set of 4000 images and
compute GIST features of size N = 512 for every image. For a given number
of nearest neighbors k, we plot the average fraction of k-nearest neighbors that
are retained in anM -dimensional embedding relative to the fullN -dimensional
data. NuMax-CG provides the best embedding results for a wide range of
measurements M and neighborhood sizes k.

data that are also k-nearest neighbors in the corresponding M -
dimensional embedding. We observe from Figure 6 that the
linear embedding obtained by NuMax-CG provides the best
results for a wide range of measurements M and neighborhood
sizes k. In particular, for embedding dimensions of M > 45,
NuMax-CG outperforms both PCA and random projections
for all values of k by a significant margin.

C. Compressive Sensing of Manifold-Modeled Signals

We demonstrate the utility of our framework for designing
efficient compressive sensing (CS) measurement matrices. As
discussed in Section II, the canonical approach in CS theory
and practice is to construct matrices Φ ∈ RM×N , with as
small M as possible, that satisfy the RIP (with distortion
parameter δ) on the set of signals of interest. Typically, such
matrices are constructed simply by drawing elements from,
say, a standard normal probability distribution. Our proposed
framework and NuMax algorithm suggests an alternate ap-
proach for constructing CS measurement matrices that are
tailored to specific signal models.

We perform the following numerical experiment. Given a
set of example signals originating from a low-dimensional
manifold, we divide it into training and test datasets. Using
the training dataset, we learn a measurement matrix Ψ that
satisfies the RIP for all secants generated from the training
dataset using NuMax-CG for a pre-chosen value of δ. Given
such a measurement matrix, we are interested in (a) character-
izing the RIP of the matrix Ψ when applied to secants from
the test dataset, and (b) characterizing the efficiency of CS
recovery using Ψ on signals belonging to the test dataset.
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Fig. 7. (a) Number of measurements M vs. input isometry constant δlearn. (b)
Empirical (observed) isometry constant δtest vs. input isometry constant δlearn
for NuMax and random projections.

Figure 7 displays the results of this experiment on an image
dataset corresponding to a two-dimensional (2D) manifold of
a translating Gaussian blob. Each element on this 2D-manifold
corresponds to an image of size N = 32 × 32 = 1024
pixels. The standard deviation of the blob is chosen as 6
pixels. As the training dataset, we select images where the
center pixel of the Gaussian blob is on an even row and
column. All other images are considered to comprise the test
dataset. Figure 7(a) compares the number of measurements
required to reach a specified isometry constant δlearn. As
in earlier experiments, NuMax requires significantly fewer
measurements, as compared to more conventional (random)
CS matrices, to achieve the same value of δlearn.

Figure 7(b) demonstrates the variation of the empirical
isometry constant of both on new, unseen secants from the test
dataset. In Figure 7(b), δlearn is the parameter used for applying
NuMax to the training dataset, while δtest is the worst-case
distortion among all pairwise secants from the test dataset.
Thanks to their universality, we observe that random matrices
enjoy the same isometry constant on both training and test
datasets. However, we observe that for the matrix Ψ generated
by NuMax, δtest is marginally greater than δlearn. This suggests
a moderate loss of universality using Ψ, but a significant gain
in terms of lowering the number of measurements.

Finally, we demonstrate the improved performance of CS
recovery using NuMax embeddings. We obtain (noisy) com-
pressive measurements using both random Gaussian matrices
and the matrices obtained by NuMax for different values of
measurement SNR and M . Using the noisy measurements, we
perform CS recovery via Manifold Iterative Pursuit (MIP), a
projected-gradient type method for the recovery of manifold-
modeled signals [55]. Figure 8 compares the recovery perfor-
mance for different SNRs and different number of measure-
ments. We observe that in terms of recovered signal MSE,
NuMax outperforms random Gaussian measurements for all
values of SNR and for all values of M .

D. Supervised Classification

1) MNIST digit classification: The MNIST handwritten
digits dataset consists of 10 classes, one for each digit from
0 − 9, with 60,000 training data points and 10,000 test data
points. We used the N = 400-dimensional version of the
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Fig. 8. Compressive sensing recovery performance for NuMax and random
projections. NuMax outperforms random Gaussian projections in terms of
recovered signal MSE for all ranges of measurements M as well as signal-
to-noise ratios.

TABLE I
Mis-classification rates on the MNIST dataset for all 10 classes. We compare

the performance of NuMax, Gaussian matrices, and PCA for the same
dimensionality of the lower-dimensional space. We used a nearest neighbor

classifier for all dimensionality reduction techniques.

Rank of NuMax solution M 72 97 167
Distortion δ 0.40 0.25 0.1

Mis-classification
rate in %

NuMax 2.99 3.11 3.31
Gaussian 5.79 4.51 3.88

PCA 4.40 4.38 4.41

dataset that does not include extra space at the boundaries.
The number of secants (or equivalently, constraints for the
SDP) is extraordinarily large, up to

(
60000

2

)
= 1.6×109 = 1.6

billion secants.
Table I shows NN classification performance of NuMax,

PCA and Gaussian projections for various lower-dimensional
embedding dimensions, corresponding to several values of
δ in NuMax. We used the rank of the NuMax solution to
set the value of M for PCA and Gaussian embeddings. As
we see from Table I, NuMax outperforms both methods by
a significant margin achieving a mis-classification rate of
2.99% at a dimensionality of M = 72; in contrast, for
the same dimensionality, Gaussian and PCA produce a mis-
classification rate of 5.79% and 4.40%.

We now illustrate the improvements in classification perfor-
mance provided by NuMax-Class. In particular, we allow for
inter-class secants to expand and intra-class secants to shrink
without qualifications. As a consequence, in comparison to
(8), NuMax-Class optimizes over a (somewhat) larger feasible
set. First, we wish to verify if this larger feasibility set indeed
translates into a solution of lower rank. Second, we wish to
verify if the asymmetric isometry conditions lead to improved
classification performance.

We compare the classification performance of NuMax and
NuMax-Class in Table II. For the same value of δ, not only
does NuMax-Class produce a lower-rank solution, but it also
provides a lower mis-classification rate as compared to NuMax
thereby outperforming all the linear DR techniques. Specifi-
cally, for M = 52, NuMax-Class achieves a mis-classification
rate of 2.68%, while that NuMax achieves a mis-classification
rate of 2.99% at M = 72. This demonstrates the considerable
potential gains using class-specific dimensionality reduction.
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TABLE II
Comparison of the classification rates of NuMax and NuMax-Class over the MNIST dataset (see Table I for comparisons with other linear DR techniques). Note
that for the value of distortion δ, NuMax-Class provides both lower-rank solution as well as lower misclassification rates. The last two rows provides run-time in
hours and the total number of active secants/constraints at the final solution for various values of δ. The number of active secants is a tiny fraction of the total 1.8

billion secant set; this demonstrates the scalability of the CG version of the algorithms.

Distortion δ = 0.4 δ = 0.25 δ = 0.1
Algorithm NuMax NuMax-Class NuMax NuMax-Class NuMax NuMax-Class

Rank 72 52 97 69 167 116
Prob. error 2.99 2.68 3.11 2.72 3.31 3.09
Time (hrs) 2.35 1.90 4.85 5.57 10.64 9.73

Active secants 6950 4068 12121 6746 29702 17323
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Fig. 9. Performance of NuMax, its classification variant, PCA and Random
projections on the ISOLET dataset.

Table II also reports MATLAB processing times required
to obtain NuMax and NuMax-Class solutions. We used the
CG version of the algorithms for this dataset; both algorithms
scale gracefully to large-scale problems. For larger values of
δ, it takes approximately 2 hours to obtain the solution. The
runtime increases by a factor of 5× when we decrease the
distortion parameter δ to 0.1. This reflects the general intuition
that smaller values of δ result in a larger number of active
constraints, which leads to more computationaly intensive sub-
problems.

2) Spoken letter recognition: We tested NuMax and its
classification variant, NuMax-Class, on the Isolet dataset
obtained from the UCI Machine learning repository.1 This
dataset comprises of 26 classes, one for each alphabet in
English language. The dataset set consists of 617-dimensional
datapoints, with 6238 training points and 1559 test points. In
Fig. 9, we compare the performance of NuMax, NuMax-Class,
PCA, and random Gaussian embeddings in k nearest neighbor
classification. To determine the optimal number of neighbors
(k) to be used in the classifier, we used a cross-validation
approach. Specifically, 10% of the training dataset was used
as a cross-validation dataset, and was used to select the optimal
parameter k. Figures 9(a) and (b) show cross-validation and
test performance, respectively, for varying dimension of the
embedded space. On the whole, NuMax-Class significantly
outperforms other linear dimensionality reduction techniques;
specifically, when projected to a 105−dimensional space, the
mis-classification rate offered by NuMax is merely 6%.

1http://archive.ics.uci.edu/ml/datasets/ISOLET

VI. DISCUSSION

In this paper, we have taken some initial steps towards
constructing a comprehensive algorithmic framework that
creates a linear, isometry-preserving embedding of a high-
dimensional dataset. Our framework is based on a convex
optimization formulation (in particular, the SDP (4)) that
approximately preserves the norms of all pairwise secants
of the given dataset. We have developed efficient algorithms,
NuMax and NuMax-CG, that efficiently construct the desired
embedding with considerably smaller computational complex-
ity than existing approaches. Our NuMax methods can be
easily adapted to perform more complicated machine learning
tasks, such as approximate nearest neighbors (ANN) as well
as supervised binary classification. In addition, the NuMax
embeddings can be successfully used in CS applications where
the signals of interest can be modeled as elements lying on a
smooth, low-dimensional manifold.

Since the initial appearance of this manuscript, several
works have pursued similar goals of learning norm-preserving
linear embeddings using optimization methods. The authors
of [35] discuss the specialized problem of learning orthonor-
mal linear embeddings, and develop polynomial-time algo-
rithms with provable approximation guarantees. The authors
of [36] also propose learning measurement operators into low-
dimensions under a Frobenius norm constraint, and propose
a different optimization approach with provable convergence
guarantees. We point out that surprisingly little is known about
(near) isometric linear embeddings in Euclidean space beyond
the Johnson-Lindenstrauss Lemma [56]. While we fall short
of a rigorous analytical characterization for our framework,
the techniques of this paper might lead to some interesting
progress in this regard.

Several concrete challenges remain. First, our approach
relies on the efficiency of the nuclear norm as a proxy for
the matrix rank in the objective function in (4). A natural
question is under what conditions the optimum of the convex
relaxation (4) equals the optimum of the nonconvex problem
(3). Moreover, while the speed of convergence of our proposed
algorithms (NuMax and NuMax-CG) have been shown to
empirically shown to be far better than traditional methods, a
rigorous convergence analysis of our algorithms remains open.
Finally, from a practical perspective, it is common nowadays
to encounter datasets that involve millions (or even billions) of
training signals, and optimization on such datasets is only fea-
sible when performed in a highly decentralized and distributed
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fashion. How, then, to extend our proposed algorithms to such
scenarios? We defer such important challenges to future work.
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