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ABSTRACT

We address the following problem in refractive shape estima-
tion: given a single light-ray correspondence, what shape in-
formation of the transparent object is revealed along the path
of the light-ray, assuming that the light-ray refracts twice. We
answer this question in the form of two depth-normal ambi-
guities. First, specifying the surface normal at which refrac-
tion occurs constrains the depth to a unique value. Second,
specifying the depth at which refraction occurs constrains the
surface normal to lie on a 1D curve. These two depth-normal
ambiguities are fundamental to shape estimation of transpar-
ent objects and can be used to derive additional properties.
For example, we show that correspondences from three light-
rays passing through a point are needed to correctly estimate
its surface normal. Another contribution of this work is that
we can reduce the number of views required to reconstruct an
object by enforcing shape models. We demonstrate this prop-
erty on real data where we reconstruct shape of an object, with
light-rays observed from a single view, by enforcing a locally
planar shape model.

Index Terms— 3D reconstruction, transparent objects,
refraction, light-ray correspondence.

1. INTRODUCTION

A seminal result in shape estimation of transparent objects
suggests the use of light-ray correspondences [1]. It is shown
that shape of specular and transparent objects, in terms of
depths and surface normals, can be estimated from the map-
ping of input to output light-rays. In particular, even when a
set of light-rays refract twice upon intersection with a trans-
parent object, estimating the shape of the object is tractable
provided it is observed from at least three distinct viewpoints.
We build upon this result.

We characterize the ambiguities in the depth and surface
normal along a single light-path, i.e., given a single light-
ray correspondence, we derive meaningful constraints on the
depths and surface normals of the object along that light-ray
(see Fig. 1). Our contributions can be summarized in the fol-
lowing two statements:
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Fig. 1. Depth-normal ambiguity of a transparent object.
A light-path originates from a point c with orientation i1, and,
after refracting twice, ends up at q with orientation o2. The
main results of this paper are two-fold: if n1 is specified, then
d1 is uniquely determined; and, if d1 is specified, then n1 is
constrained to lie on a 1D curve. The variables labeled in blue
are known and form the inputs to the problem.

• Given the surface normal at which a refraction occurs,
the depth is uniquely determined.

• Given knowledge of the depth at which a refraction oc-
curs, the surface normal at that location is constrained
to lie on a 1D curve.

These two statements provide a novel depth-normal ambigu-
ity characterization for transparent object and are similar in
spirit to the bas-relief ambiguity [2] for Lambertian objects
and the depth-normal ambiguity [3] for specular objects. We
use these statements to develop shape estimation algorithms
that incorporate surface priors.

2. RELATED WORK

We look at some of the key ambiguities underlying shape es-
timation under various contexts.

Bas-relief ambiguity. The bas-relief ambiguitiy [2] specifies
shape ambiguities when a Lambertian object is orthographi-
cally viewed under distant lighting. Specifically, there is an
equivalence class of shapes that have the same appearance
and hence, without additional knowledge (for example of the
lighting), it is not possible to distinguish between them.

Depth-normal ambiguity of specular objects. A funda-
mental ambiguity in specular surface reconstruction is the so-
called depth-normal ambiguity [3]. Given a light-ray that is



the reflection of a known 3D reference point on a mirror, the
surface normal and the depth at which reflection occurs are
constrained. Specifically, for every possible depth along the
light-ray, there is a corresponding normal leading to the same
reference point. There are multiple approaches to resolve
the depth-normal ambiguity for specular surfaces. Methods
in [4–6] overcome the depth-normal ambiguity by using cor-
respondences of a known reference target and by regularizing
the depth using smoothness priors. Kutulakos and Steger [1]
show that observing the specular object from two views pro-
vides dense 3D-2D correspondences. In [7], the shape of a
mirror is recovered by obtaining images of a planar target,
thus the need for knowledge of the reference point is relaxed.
Shape from specular flow [8,9] recovers the shape of a mirror
from scene motion requiring little effort in terms of calibra-
tion. In this setting, it is even possible to obtain invariant sig-
natures of the shape of the object from multiple images [10].

Transparent object reconstruction. For transparent objects,
it is common that light refracts at least twice — once each
upon entering and exiting the object. This makes shape esti-
mation a hard problem since we have to jointly reason about
the shape of the object at multiple locations. Kutulakos and
Steger [1] show that if we have light-ray correspondences,
it is possible to reconstruct transparent objects even when
the rays undergo refraction twice. Some other method on
shape reconstruction of even more complex transparent ob-
jects includes tomography for reconstructing transparent ob-
jects [11, 12] and reconstructing fluid [13], Schlieren imag-
ing for transparent object reconstruction [14] and thin gas
flows [15], using radiometric cues to reduce the number of
views needed [16], using light polarization to simultaneously
recover shape and refractive index of transparent objects [17],
and shape estimation using single refraction approximation
[18–21].

3. SHAPE FROM RAY CORRESPONDENCES

The goal of this paper is to find what a single light-ray reveals
about a transparent object.

Notation. We denote vectors in bold. Light-rays in 3D are
denoted by a pair of vectors, {o,p}, where o ∈ R3 is a unit-
norm vector that denotes the orientation of the ray and p ∈ R3

is a point in 3D space that the ray passes through. For λ ∈ R,
{o,p} and {o,p + λo} are identical.
Problem statement. Suppose that a ray {i1, c} is incident on
a transparent object and after refracting twice, once each upon
entering and exiting the object, becomes the ray {o2,q} (see
Fig. 1). Given knowledge of the rays {i1, c} and {o2,q}, the
relative refractive indices of the medium µ1 and the object
µ2 and their ratio ρ = µ2/µ1, what can we infer about the
shape of the object as encoded in the locations of the refrac-
tion events, v1 and v2, and the surface normals, n1 and n2,
of the object at these locations.

Observation 1. Since the refraction events occur on the rays,
we can identify two depth values d1 and d2 such that v1 =
c + d1i1 and v2 = q − d2o2. The problem is equivalent to
estimating d1, d2, n1, and n2.

Observation 2. The light-path is fully determined from the
depth and surface normals at v1 (or equivalently, v2). Given
d1 and n1, the outgoing ray o1 is fully specified from the
laws of refraction. The intersection of this ray with {o2,q}
provides both the surface normal n2 and the 3D point v2.

Observation 3. Any constraint that we derive on the shape
at v1, the first refraction point, translates to a similar con-
straint on the shape at v2. This is simply a consequence of
Helmholtz reciprocity.

Our main results are in the form of ambiguities in the val-
ues of the depth d1 given knowledge of the surface normal
n1, and vice versa. These can be succinctly summarized in
the following statements.

Theorem 1 (Depth ambiguity given normal). Given the sur-
face normal n1, the depth d1 at which the refraction occurs
is unique, provided the light-path does not entirely lie in a
plane.

Proof. By Snell’s law, the refracted ray o1 is uniquely deter-
mined given both the incident ray i1 and the normal n1 by

o1 =
i1
ρ
−

(
〈i1,n1〉+

√(
〈i1,n1〉2 − (1− ρ2)

)) n1

ρ
. (1)

Since a light-path is connected, the relationship between d1
and d2 can be characterized as

c + d1i1 + ∆o1 + d2o2 = q.

This can be further simplified to

d1 〈i1 × o2,o1〉 = 〈(q− c)× o2,o1〉 .

When 〈i1 × o2,o1〉 6= 0,

d1 =
〈(q− c)× o2,o1〉
〈i1 × o2,o1〉

. (2)

In (2), i1, o2, c and q are known. Further, the value of
o1 is fully-determined from (1) when n1 is given. Therefore,
provided 〈i1 × o2,o1〉 6= 0, d1 is uniquely determined when
the surface normal n1 is known. Finally, 〈i1 × o2,o1〉 = 0
if and only if o1 lies in the plane spanned by i1 and o2 or,
equivalently, the entire light-path lies in a plane.

We provide a geometric interpretation of Theorem 1 in
Fig. 2. Given i1 and n1, o1 is determined. All the possi-
ble rays after first refraction will form a plane. The light-ray
{o2,q} will intersect the plane at one point. Therefore, we
can find a unique depth d1.
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Fig. 2. Illustration of Theorem 1. Given normal n1, o1 is
fully determined. By finding the intersection of the light-ray
{o2,q} and the plane formed by all possible v1 and o1, we
can find the corresponding depth d(3)1 .

Corollary 1 (Planar light-path). If the vectors i1, o2 and (q−
c) are co-planar, then specifying n1 does not constrain d1.

Theorem 2 (Normal ambiguity given depth). Given the depth
d1, the surface normal n1 is constrained to lie on a 1D curve,
which is the intersection of an oblique cone with a unit sphere.

Proof. Recall that the first refraction happens at v1, which is
d1 units away from the camera center,

v1 = c + d1i1.

The second refraction occurs at v2 which lies on the line de-
fined by a point q and the vector o2,

v2 ∈ {q− λo2, λ ∈ R, λ ≥ 0}.

From Fig. 3, we observe that o1 belongs to the plane that
q− v1 and o2 are on. Therefore, we can represent o1 by:

o1 = B(d1)

[
cos(ψ)
sin(ψ)

]
, ψ ∈ [0, 2π),

where B(d1) is an orthonormal basis for the column span of
q − v1 and o2.1 Since c, i1, o2 and q are known and v1 =
c + d1i1, B is dependent only on d1.

Define n⊥ as a unit-norm vector, co-planar to i1 and n1,
and orthogonal to n1. From Snell’s law, we know µ1 sin θ1 =
µ2 sin θ2, where θ1 and θ2 are the angle formed by i1 and o1,
respectively, to n1.

µ1 〈i1,n⊥〉 = µ2 〈o1,n⊥〉

µ1

〈
i1 −

µ2

µ1
o1,n⊥

〉
= 0

〈i1 − ρo1,n⊥〉 = 0

1Another way to parameterize is o1 = q−λo2−v1
‖q−λo2−v1‖

, where λ > 0.
While this constraints the surface normal to a smaller set, the resulting ex-
pressions are harder to analysis due to their complex dependence on λ.
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Fig. 3. Illustration of Theorem 2. The refracted ray o1 lies
in the plane spanned by q−v1 and o2. By choosing different
v2 locations, we will have different corresponding o1 and n1.
In this figure, we show the normal n(i)

1 and o
(i)
1 corresponding

to different v(i)
2 locations.

Recall that n1 is co-planar to i1 and o1 and, by definition,
〈n1,n⊥〉 = 0. Hence, we can conclude that n1 is parallel to
i1 − ρo1.

n1 ∝ i1 − ρB(d1)

[
cos(ψ)
sin(ψ)

]
, ψ ∈ [0, 2π). (3)

The RHS of (3) traces a circle in R3 as ψ varies. Since
‖n1‖ = 1, we can recover n1 by computing the intersection
of an oblique cone and a unit sphere. Therefore, normal n1

lies on a closed 1D curve on a 2D unit sphere.

Corollary 2 (Proposition 1a of [1]). To uniquely identify the
surface normal at a point, we need at least three light-ray
correspondences.

Proof. Given the point under consideration, we know the
value of d1 for each ray correspondence. From Theorem 2,
each ray-correspondence restricts the surface normal to lie on
a closed 1D curve. However, any two arbitrary 1D curves on
the unit-sphere can potentially intersect. Hence, we need a
third correspondence to verify the intersection produced by
the first two correspondences. (See Fig. 4)

Remark. The depth-normal ambiguities described in
Theorems 1 and 2 are fundamental to studying the shape
of transparent objects, where we can expect a majority of
ray-correspondences to be from double-refraction events.
These are similar in spirit to two well-known ambiguities in
computer vision: the depth-normal ambiguity for mirror ob-
ject, and the bas-relief ambiguity in Lambertian shape-from-
shading. An understanding of these fundamental ambiguities
is important to the design of techniques for shape estimation.

Relationship to [1]. In Kutulakos and Steger [1], the al-
gorithmic development as well as analysis is performed using
d1 and d2 — variables pertaining to two distinct points, v1

and v2. In contrast, we only use d1 and n1, which are local
to v1. This leads to a simpler explanation of the underlying
ambiguities that we state in Theorems 1 and 2.
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Fig. 4. Illustration of Corollary 2. (a) Any two 1D curves on
the sphere can intersect. (b) We need a third curve to validate
if the intersect is indeed correct.

4. EXPERIMENTS

Single-view reconstruction algorithm using surface prior.
If the first refraction happens on a plane, n1 is the same for
all the light-path correspondences. Thus, from Theorem 1, for
every candidate n1, we can calculate d1 of m light-ray corre-
spondences. Since we impose a planar model on the collec-
tion of v1, we use the variance of

[〈n1,v
(1)
1 〉, 〈n1,v

(2)
1 〉, ..., 〈n1,v

(m)
1 〉]

to determine the goodness the candidate n1. The normal that
gives smallest variance is the normal estimation. Once the
normal is recovered, both v1 and v2 are determined.
Real data. We use real world datasets from [1] to verify our
single-view reconstruction algorithms. The data is collected
by placing the object of interest between a camera and a mov-
able LCD, as shown in Fig. 5. Image pixel to LCD pixel
correspondences are collected at two LCD positions to give
light-ray correspondences.

We observe that the back of the diamond scene is pla-
nar, therefore, we impose a planar model on the back of the
diamond. The refractive index is set to 1.55. As shown in
Fig. 6, by enforcing planar model on one side, we can recover
a complex object. Without enforcing additional constraint,
different facets of the diamond meet at the same position in
space. To evaluate the correctness of the normal estimation,
we use different camera views. The normal estimation should
be consistent in all views. The results are shown in Table 1.

5. CONCLUSION

We characterize the information pertaining to the shape of a
transparent object that is encoded in a single light-ray. Our
contributions are in the form of two novel depth-normal am-
biguities which characterizes the fundamental limitations of
shape estimation and provides a foundation for future tech-
niques. To this end, we outline how simple surface priors,
such as a planar model, can be incorporated into a shape esti-
mation framework for transparent objects.

Fig. 5. Experiment setup. The dataset is courtesy of Kutu-
lakos and Steger [1].

Fig. 6. Single-view reconstruction with a planarity con-
straint. We exploited the planarity of the “back” of the dia-
mond in Figure 5 to recover its shape from light-rays observed
at a single camera. Specifically, we randomly chose 40 light-
rays (out of a total of 33,737) entering the camera to estimate
the normal and intercept of the plane. Given the parameters of
the plane, we can now estimate densely both the front surface
(show in blue) and the back (shown in cyan).

View number
 1
 2
 3
 4
 5
 6
 7

Elevation (°) 84.0
 84.0
 82.6
 79.4
 83.5
 84.2
 83.5

Azimuth (°) 82.7
 82.9
 92.5
 68.9
 63.2
 69.8
 61.4

Standard 
deviation (°)
 3.9
 0.7
 1.9
 1.9
 3.8
 0.9
 6.3


Table 1. Normal estimation using different camera posi-
tions. We randomly select 50 light-ray correspondences to
estimate each normal. Shown are average normal estimates,
in terms of azimuth and elevation angles, as well as standard
deviation across 50 trials.



6. REFERENCES

[1] K. N. Kutulakos and E. Steger, “A theory of refractive
and specular 3d shape by light-path triangulation,” Intl.
J. of Computer Vision, vol. 76, no. 1, pp. 13–29, 2008.

[2] P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille, “The
bas-relief ambiguity,” Intl. J. of Computer Vision, vol.
35, no. 1, pp. 33–44, 1999.

[3] J. Kaminski, S. Lowitzsch, M. C. Knauer, and G. Husler,
“Full-field shape measurement of specular surfaces,” in
Intl. Workshop on Automatic Processing of Fringe Pat-
terns, 2005.

[4] M. Tarini, H. PA Lensch, M. Goesele, and H.-P. Seidel,
“3d acquisition of mirroring objects using striped pat-
terns,” Graphical Models, vol. 67, no. 4, pp. 233–259,
2005.

[5] M. Liu, R. Hartley, and M. Salzmann, “Mirror surface
reconstruction from a single image,” in CVPR, 2013.

[6] M. Weinmann, A. Osep, R. Ruiters, and R. Klein,
“Multi-view normal field integration for 3d reconstruc-
tion of mirroring objects,” in ICCV, 2013.

[7] T. Bonfort, P. Sturm, and P. Gargallo, “General specular
surface triangulation,” in ACCV, 2006.

[8] Y. Adato, Y. Vasilyev, O. Ben-Shahar, and T. Zickler,
“Toward a theory of shape from specular flow,” in ICCV,
2007.

[9] A. C. Sankaranarayanan, A. Veeraraghavan, O. Tuzel,
and A. Agrawal, “Specular surface reconstruction from
sparse reflection correspondences,” in CVPR, 2010.

[10] A. C. Sankaranarayanan, A. Veeraraghavan, O. Tuzel,
and A. Agrawal, “Image invariants for smooth reflective
surfaces,” in ECCV, 2010.

[11] C. Ma, X. Lin, J. Suo, Q. Dai, and G. Wetzstein, “Trans-
parent object reconstruction via coded transport of in-
tensity,” in CVPR, 2014.

[12] Y. Ji, J. Ye, and J. Yu, “Reconstructing gas flows using
light-path approximation,” in CVPR, 2013.

[13] J. Gregson, M. Krimerman, M. B Hullin, and W. Hei-
drich, “Stochastic tomography and its applications in
3d imaging of mixing fluids.,” ACM Trans. Graph., vol.
31, no. 4, pp. 52, 2012.

[14] G. Wetzstein, R. Raskar, and W. Heidrich, “Hand-held
schlieren photography with light field probes,” in ICCP,
2011.

[15] G. S. Settles, Schlieren and shadowgraph techniques,
Springer, 2001.

[16] V. Chari and P. Sturm, “A theory of refractive photo-
light-path triangulation,” in CVPR, 2013.

[17] C. P. Huynh, A. Robles-Kelly, and E. Hancock, “Shape
and refractive index recovery from single-view polarisa-
tion images,” in CVPR, 2010.

[18] G. Wetzstein, D. Roodnick, W. Heidrich, and R. Raskar,
“Refractive shape from light field distortion,” in ICCV,
2011.

[19] D. Liu, X. Chen, and Y. H. Yang, “Frequency-based 3d
reconstruction of transparent and specular objects,” in
CVPR, 2014.

[20] T. Xue, M. Rubinstein, N. Wadhwa, A. Levin, F. Du-
rand, and W. T. Freeman, “Refraction wiggles for mea-
suring fluid depth and velocity from video,” in ECCV,
2014.

[21] Y. Ding, F. Li, Y. Ji, and J. Yu, “Dynamic fluid surface
acquisition using a camera array,” in ICCV, 2011.


