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ABSTRACT

We propose a recursive algorithm for estimating time-varying sig-

nals from a few linear measurements. The signals are assumed

sparse, with unknown support, and are described by a dynamical

model. In each iteration, the algorithm solves an ℓ1-ℓ1 minimization

problem and estimates the number of measurements that it has to

take at the next iteration. These estimates are computed based on

recent theoretical results for ℓ1-ℓ1 minimization. We also provide

sufficient conditions for perfect signal reconstruction at each time

instant as a function of an algorithm parameter. The algorithm

exhibits high performance in compressive tracking on a real video

sequence, as shown in our experimental results.

Index Terms— State estimation, sparsity, background subtrac-

tion, motion estimation, online algorithms

1. INTRODUCTION

We study the reconstruction of sparse, time-varying signals from a

limited number of linear measurements. Let x[k] ∈ R
n denote the

target signal at time k and let y[k] ∈ R
mk denote mk measurements

of x[k]. We consider the dynamical model

x[k] = fk(x[k − 1]) + ǫ[k] (1a)

y[k] = Ak x[k] + η[k] , (1b)

where fk : Rn −→ R
n describes the evolution of the signals x[k],

k = 1, 2, . . ., between consecutive time instants, and Ak ∈ R
mk×n

is the matrix of measurements at time k. The quantities ǫ[k] and η[k]
capture model inaccuracies and measurement noise, respectively.

One of the oldest problems in control theory is to estimate

the state sequence {x[k]}k≥1 from the measurements {y[k]}k≥1.

The classical solution is the Kalman filter [1], a recursive algo-

rithm, known to be least-squares optimal when the model is linear

(fk(x) = Fk x) and ǫ[k] and η[k] are zero-mean Gaussian. Several

extensions have been proposed for the case where these two assump-

tions are not met, e.g., [2–4]. The Kalman filter and these extensions,

however, cannot easily integrate additional knowledge of the signal’s

structure, e.g., sparsity, and suffer from lack of observability when

the number of measurements is limited, i.e., mk ≪ n.

Contributions. Our goal is to reconstruct each signal x[k] ∈ R
n

from a small number of measurements mk ≪ n, when x[k] is sparse
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and has unknown support. Furthermore, we assume sparse model

inaccuracies ǫ[k] and bounded measurement noise η[k], i.e., there

exists σk ≥ 0 such that ‖η[k]‖2 ≤ σk. Under these conditions, the

Kalman filter has poor performance [5] (especially for non-Gaussian

ǫ[k]’s). Assuming that the entries of each Ak are i.i.d. Gaussian1, we

propose estimating x[k] recursively as follows:

x̂[k] ∈ Argmin
x

‖x‖1 +
∥

∥x− fk(x̂[k − 1])
∥

∥

1

s.t.
∥

∥Akx− y[k]
∥

∥

2
≤ σk ,

(2)

where x̂[k − 1] is the signal estimate at time k − 1. In (2), ‖x‖1 :=
∑

i
|xi| is the ℓ1-norm and ‖x‖2 :=

√
∑

i
x2
i is the ℓ2-norm. Note

that, in general, (2) may have more than one solution. Based on the

results in [8, 9], we propose a recursive mechanism to compute the

number of measurements mk at each time k. This scheme mini-

mizes mk while guaranteeing perfect reconstruction in the noiseless

scenario, η[k] = 0, or stable reconstruction (i.e., ‖x̂[k] − x[k]‖2 ≤
2σk/ǫ, for some 0 < ǫ < 1) in the noisy scenario. Furthermore,

note that there are no parameters (weights) to tune in (2).

Applications. The model in (1) is actually applicable to non-

sparse signals, provided they have sparse representations in a suit-

able domain. Let z[k] ∈ R
n be a non-sparse signal that has a sparse

representation x[k] = Ψz[k], where Ψ : Rn×n is the sparsifying

transform. Suppose z[k] evolves as z[k] = f̂k(z[k − 1]) + ǫ[k],

and we observe y[k] = Âkz[k] + η[k]. Then, the sparse coeffi-

cients x[k] evolve as in (1) with fk(x) = Ψf̂k(Ψ
−1x) and Ak =

ÂkΨ. Thus, the class of signals described by our model is quite

broad, and the applications are diverse. They include, for example,

dynamic MRI [10, 11], radar [12], and background subtraction [13].

2. RELATED WORK

Prior work that incorporates signal structure in state estimation

problems includes [14–16]. This work splits the problem of esti-

mating a dynamic sparse signal into the problems of estimating its

support, which is addressed with compressed sensing techniques,

and estimating its values, which is addressed with a Kalman filter.

This method, however, assumes that the support of the signal varies

slowly in time. Other approaches assume the coefficients of the sup-

port also vary slowly [17,18], or the signal varies smoothly [18,19],

including with an evolution governed by a linear dynamical sys-

tem [20]. Instead of assuming smoothness or slow-varying supports,

our scheme assumes that the quality of the prediction given by fk
does not vary much between consecutive instants.

1This is common in systems designed to sample signals according to the
compressed sensing paradigm [6, 7].



The work in [5] studies three reconstruction schemes, the best

of which is a Lagrangian version of (2), i.e., there are no constraints

and the objective has the additional term β2

∥

∥Akx − y[k]
∥

∥

2
. It was

experimentally shown in [5] that the Lagrangian version of (2) has an

excellent performance and outperforms Kalman filtering, even when

the model inaccuracies ǫ[k] are Gaussian (and thus not sparse). Note

that the solutions of (2) and its Lagrangian version coincide when β2

is chosen properly. However, the advantages of solving (2) w.r.t. its

Lagrangian version are twofold. First, in practice, it is easier to ob-

tain bounds on the magnitude of η[k] than it is to tune the param-

eter β2. Second, the recent results in [8, 9] establish reconstruction

guarantees for (2) in the case of static signals; those results also es-

tablish an optimal value for the parameter β (equal to 1), making (2)

parameter-free.

Finally, while prior work studies reconstruction schemes where

the number of measurements is the same in all time instants [5,14,15,

17–21] (a notable exception is [22], where cross-validation is used to

estimate the required number of measurements), our reconstruction

scheme adapts the number of measurements recursively.

3. BACKGROUND: STATIC SIGNAL RECONSTRUCTION

Our scheme is motivated by the recent results in [8]. This reference

studies problem (2) in a static scenario, i.e., when only one iteration

of (2) is performed. We summarize those results next.

Let x⋆ ∈ R
n be a sparse signal of which we have m linear noisy

measurements y = Ax⋆ + η, where A ∈ R
m×n and ‖η‖2 ≤ σ,

for a known σ ≥ 0. We assume access to a signal w ∈ R
n similar

to x⋆, in the sense that ‖x⋆ − w‖1 is expected to be small. Sup-

pose we attempt to reconstruct x⋆ by solving the ℓ1-ℓ1 minimization

problem:

minimize
x

‖x‖1 + β‖x− w‖1
subject to ‖Ax− y‖2 ≤ σ ,

(3)

where β > 0. The following result from [8] establishes reconstruc-

tion guarantees for (3). To state it, we need the following quantities:

h :=
∣

∣{i : x⋆
i > 0, x⋆

i > wi} ∪ {i : x⋆
i < 0, x⋆

i < wi}
∣

∣ (4a)

ξ :=
∣

∣{i : wi 6= x⋆
i = 0}

∣

∣ −
∣

∣{i : wi = x⋆
i 6= 0}

∣

∣ , (4b)

where | · | denotes the cardinality of a set. Note that 0 ≤ h ≤ s,

where s is the sparsity of x⋆.

Theorem 1 ( [8]). Let x⋆, w ∈ R
n and suppose we take m lin-

ear measurements y = Ax⋆ + η, where ‖η‖2 ≤ σ, for σ ≥ 0.

Assume h > 0 and that there exists at least one index i for which

x⋆
i = wi = 0. Let the entries of A ∈ R

m×n be i.i.d. Gaussian with

zero mean and variance 1/m.

1. If σ = 0 or, equivalently, y = Ax⋆, and

m ≥ 2h log
( n

s+ ξ/2

)

+
7

5

(

s+
ξ

2

)

+ 1 , (5)

then, with probability at least 1 − exp
(

− 1

2
(m − √

m)2
)

,

x⋆ is the unique solution of (3) with β = 1.

2. If σ > 0, define 0 < ǫ < 1 and let

m ≥ 1

(1− ǫ)2

[

2h log
( n

s+ ξ/2

)

+
7

5

(

s+
ξ

2

)

+
3

2

]

+ 1 .

(6)

Then, any solution x̂ of (3) with β = 1 satisfies ‖x̂−x⋆‖2 ≤
2σ/ǫ with probability at least 1 − exp

(

− 1

2
(m − (1 −

ǫ)
√
m)2

)

.

Theorem 1 establishes lower bounds on the number of measure-

ments that guarantees that (3) with β = 1 recovers x⋆ perfectly

(resp. stably) in a noiseless (resp. noisy) measurement scenario, with

high probability. The bounds in (5) and (6) are a function of the sig-

nal dimension n, the signal sparsity s, and the quantities h and ξ.

Note that h and ξ depend only on the signs of each entry of the vec-

tors x⋆ and w−x⋆, but not on their values. As these quantities are not

known in practice (they depend on the unknown signal x⋆), we pro-

pose in section 4 an adaptive scheme to estimate them using previous

signals. Note that h and ξ measure the quality of the approximation

of x⋆ by w. When this approximation is reasonable, problem (3) re-

quires much less measurements than standard ℓ1 minimization, i.e.,

(3) with β = 0. For example, in a noiseless acquisition scenario,

standard ℓ1 minimization requires 2s log(n/s) + (7/5)s + 1 mea-

surements for perfect reconstruction with the same probability as in

Theorem 1 [23]. When the dominant terms are the log’s, (5) can be

much smaller than this bound, since h ≤ s.

Finally, we mention that [8] also provides bounds for the

case β 6= 1, but they are significantly more complex than (5)

and (6). Interestingly, those bounds are minimized for β = 1, a

value that leads to a practical performance close to optimal. For this

reason, we set β = 1 henceforth.

Algorithm 1 Adaptive-Rate Sparse State Estimation

Initialization: choose 0 ≤ α ≤ 1, δ > 0, and estimate s1 and s2,

the sparsity of x[1] and x[2], respectively.

1: for the first two time instants k = 1, 2 do

2: Set mk = 2sk log(n/sk) + (7/5)sk + 1
3: Generate Gaussian matrices Ak ∈ R

mk×n

4: Acquire mk measurements of x[k]: y[k] = Ak x[k]
5: Find x̂[k] such that

x̂[k] ∈ Argmin
x

‖x‖1
s.t. Ak x = y[k]

6: end for

7: Set w[2] = f2(x̂[1]) and compute h2 and ξ2 as in (4) with x̂[2]
and w[2] in place of x⋆ and w, respectively.

8: Set m2 = 2h2 log(n/(s2 + ξ2/2)) + (7/5)(s2 + ξ2/2) + 1
9: Set φ3 = m2

10: for each time instant k = 3, 4, 5, . . . do

11: Choose mk = (1 + δ)φk

12: Generate Gaussian matrix Ak ∈ R
mk×n

13: Acquire mk measurements of x[k]: y[k] = Ak x[k]
14: Set w[k] = fk(x̂[k − 1]) and find x̂[k] such that

x̂[k] ∈ Argmin
x

‖x‖1 +
∥

∥x− w[k]
∥

∥

1

s.t. Ak x = y[k]

15: Compute hk and ξk as in (4) with x̂[k] and w[k]
16: Set sk = |{i : x̂[k] 6= 0}|
17: Set mk = 2hk log(n/(sk+ ξk/2))+(7/5)(sk + ξk/2)+1
18: Update φk+1 = (1− α)φk + αmk

19: end for

4. DYNAMIC SIGNAL RECONSTRUCTION

Algorithm 1 describes the scheme we propose for recursive estima-

tion of x[k]. For simplicity, we consider only the noiseless mea-

surement scenario, but its adaptation to the noisy one is immediate.



The algorithm is meant to be run on a real-time system, since the

measurements taken at each iteration are determined on-the-fly. In

steps 1-6, the first two signals, x[1] and x[2], are reconstructed using

standard ℓ1 minimization. The number of measurements m1 and m2

are computed as in [23], and require an estimate of the signals’ spar-

sity. Steps 7-9 initialize our “estimator” φk of the true bound on the

number of measurements. That is, during the recursive part of the

algorithm, i.e., steps 10-19, φk should approximate the right-hand

side of (5) for s = sk, h = hk, and ξ = ξk, where the subscript k
indicates that these are parameters associated with x[k]. Since φk is

only an approximation, we take more measurements than the ones it

prescribes, as in step 11, where δ is a safeguard parameter. Steps 12-

14 describe the measurement process and the reconstruction of x̂[k]
using ℓ1-ℓ1 minimization. Next, steps 15-16 compute the quantities

hk, ξk, and sk, and step 17 computes mk which, if the reconstruc-

tion was perfect, equals the right-hand side of (5) applied to x[k].
Note, however, that mk is computed only after the measurements

of x[k] have been taken and the reconstruction of x̂[k] has occurred.

The value mk is then used in step 18 to update φk as an exponential

moving average filter with parameter α.

To explain the rationale for the filtering step and the safeguard

parameter δ, suppose there is no filtering, i.e., α = 1. In that

case, the estimator φk of (5) applied to x[k] is simply mk−1 which,

if x̂[k−1] = x[k−1] (perfect reconstruction at k−1), equals (5) ap-

plied to x[k− 1]. Since (5) applied to x[k− 1] might differ from (5)

applied to x[k], we take more measurements for x[k] than the ones

specified by mk−1, that is, mk = (1 + δ)mk−1 (step 11). So,

even when there is perfect reconstruction at time k − 1, δ should be

large enough to account for variations of (5) from x[k − 1] to x[k];
see Lemma 1 below for a lower bound. If reconstruction fails at

time k − 1, i.e., x̂[k − 1] 6= x[k − 1], mk−1 may be very different

from (5) applied to x[k− 1] and to x[k]. The reason for filtering mk

in step 18 is to mitigate the effect of these failed reconstructions. We

therefore recommend setting α < 1.

Reconstruction guarantees. The following lemma consid-

ers α = 1 and derives a lower bound on the probability of recon-

struction success at each time, provided δ is large enough.

Lemma 1. Let α = 1, k > 2, and m = mini=1,...,k mk. Let also

δ ≥ max
3≤i≤k

2
[

hi log(
n

ui
)− hi−1 log(

n

ui−1

)
]

+ 7

5
(ui − ui−1)

1 + 2hi−1 log(
n

ui−1

) + 7

5
ui−1

,

(7)

where ui := si + ξi/2. Assume sq ≥ |{j : xj [q] 6= 0}|, for q =
1, 2, i.e., that the initial sparsity estimates s1 and s2 are not smaller

than the true sparsity of x[1] and x[2]. Then, the probability that

Algorithm 1 reconstructs x[i] perfectly in all time instants 1 ≤ i ≤ k
is not smaller than

(

1− exp
[

− 1

2
(m−√

m)2
]

)k

. (8)

Proof. Since α = 1, step 11 becomes mi = (1 + δ)mi−1, for

all 3 ≤ i ≤ k. According to Theorem 1, if (1 + δ)mi−1 is not

smaller than the right-hand side of (5) applied to x[i], that is,

(1 + δ)mi−1 ≥ 2hi log
( n

ui

)

+
7

5
ui + 1 , (9)

then the probability of perfect reconstruction at time i is not smaller

than 1− exp
(

− 1

2
(mi −

√
mi)

2
)

. In other words,

P(Si|Ei) ≥ 1− exp
[

− 1

2
(mi −

√
mi)

2
]

, (10)

where Si is the event “perfect reconstruction at time i” and Ei is the

event in (9). Simple algebraic manipulation shows that if we replace

the expression for mi−1 (in step 17) in (9) , we obtain

δ ≥
2
[

hi log(
n

ui

)− hi−1 log(
n

ui−1

)
]

+ 7

5
(ui − ui−1)

1 + 2hi−1 log(
n

ui−1

) + 7

5
ui−1

. (11)

That is, (11) is event Ei. Therefore, condition (7) corresponds to the

event E := E3 ∧E4 ∧ · · · ∧ Ek. And we have

P
(

S1 ∧ S2 ∧ · · · ∧ Sk|E
)

(12)

= P(S1)P(S2)
k
∏

i=3

P(Si|S1 ∧ · · · ∧ Si−1 ∧ E) (13)

= P(S1)P(S2)

k
∏

i=3

P(Si|Ei) . (14)

From (12) to (13), we used the fact that S1 and S2 are indepen-

dent. From (13) to (14), we used the fact that Si|E = Si|Ei,

for 3 ≤ i ≤ k, and that the events Si conditioned on Ei (i.e., (9))

are independent, for 3 ≤ i ≤ k. Now note that, since mi ≥ m and

1− exp(−(1/2)(x−√
x)2) is an increasing function, (10) implies

P(Si|Ei) ≥ 1− exp
[

− 1

2
(m−√

m)2
]

. (15)

The right-hand side of (15) also lower bounds P(S1) and P(S2) [23].

From (14) and (15), we obtain

P
(

S1 ∧ S2 ∧ · · · ∧ Sk|E
)

≥
(

1− exp
[

− 1

2
(m−√

m)2
]

)k

,

and the lemma is proved.

When the conditions of the lemma hold, the probability of suc-

cessful reconstruction decreases with time, albeit with a very slow

rate: for example, if m = 8, which is very small for applications,

the right-hand side of (8) gives 0.9998 for k = 102, and 0.9845
for k = 104. Larger m give even smaller rates.

To get some insight about (7), let j be an index for which the

maximum is achieved in the right-hand side of (7). Also, let n be

much larger than sj and ξj . Then, (7) becomes

δ ≥ 2(hj − hj−1) log n+ o(log n)

2hj−1 log n+ o(log n)
,

and, for a large n,

δ &
hj − hj−1

hj−1

. (16)

Equation (16) tells us that, for α = 1 and for very sparse signals,

the oversampling factor δ in Algorithm 1 should be greater than the

largest relative increase between two consecutive hk’s. Writing

hk =
∣

∣

{

i : xi[k] > 0, ǫi[k] > 0
}

∪
{

i : xi[k] < 0, ǫi[k] < 0
}∣

∣

(see (4a)), we conclude that hk increases if and only if there is a new

index i for which xi[k] and ǫi[k] have the same sign.

Variations of Algorithm 1. For example, rather than generating

a matrix Ak at each iteration, one can generate a single (Gaussian)

matrix A ∈ R
n×n at the beginning and, at each iteration, select mk

rows of A randomly. Another variation, motivated by Lemma 1,

sets α = 1 and recursively updates δ applying, e.g., an exponential

moving average filter to the expression in the right-hand side of (7).



(a) background (b) frame 1 (c) frame 2

(d) frame 3 (e) frame 3: prediction (f) frame 3: reconstr.

Fig. 1. (a)-(d) background image and first three frames; (e) predicted

image using (reconstructed) frames 1 and 2; and (f) reconstruction

of frame 3 by ℓ1-ℓ1 minimization.

5. EXPERIMENTAL RESULTS

We assessed the performance of Algorithm 1 by applying it to com-

pressive background subtraction [13], which we explain next.

Compressive background subtraction. Let {z[k]} be a se-

quence of (vectorized) images with the same background b ∈ R
n,

assumed known. We have access only to a set of mk linear measure-

ments u[k] = Akz[k] from each image z[k], where Ak ∈ R
mk×n is

a measurement matrix. Each z[k] can then be decomposed as z[k] =
x[k] + b, where x[k] is the image foreground. As noticed in [13],

foregrounds are typically sparse and thus can be reconstructed using

standard ℓ1 minimization. To do it, we need access to foreground

measurements, which can be obtained as follows [13]: given u[k],
take measurements of the known background b using the same mea-

surement matrix, u0 := Akb, and subtract them from u[k], i.e.,

y[k] := u[k]− u0 = Ak(z[k]− b) = Akx[k].
Our approach. In our experiments, we modified the model

in (1) by assuming that each x[k] is generated by the two previous

signals, i.e., x[k] = fk(x[k − 1], x[k − 2]). This modification has

no implications on our algorithm or on the associated reconstruction

guarantees. However, it allows us to model the action of a motion-

compensated extrapolation algorithm [24–26]: given two (consecu-

tive) images, z[k−1] and z[k−2], predict the next one, z[k], assum-

ing linear motion. We perform extrapolation on the image domain

rather than on the foreground domain, because the texture of the for-

mer is richer and improves the estimation performance. The side in-

formation fed to ℓ1-ℓ1 minimization is, of course, in the foreground

domain: w[k] = e[k] − b, where e[k] is the image extrapolated by

the motion-compensated algorithm.

Experimental setup. We used the Hall video sequence (http:

//trace.eas.asu.edu/yuv/), from which we removed the

first 18 frames, as they had no foreground. Each image was down-

sampled to a resolution of 128 × 128. For the motion-compensated

extrapolation, we used sub-pel motion estimation with a block size

of 8 × 8 pixels and a search range of 6 pixels. The parameters α
and δ were 0.5 and 0.1, respectively. The parameters s1 and s2 were

initialized with the true sparsity of the first two foregrounds. To

solve each ℓ1-ℓ1 minimization problem in step 14 of Algorithm 1,

we used ADMM [27, 28], where one term of the objective function

is ‖x‖1+‖x−w‖1 and the other term is the indicator function of the

linear system Ax = y. It can be shown that both terms have closed-

form proximal operators. The augmented Lagrangian parameter was
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Frame index

measurements mk

estimate φkℓ1-ℓ1 bound (oracle)

ℓ1 bound (oracle)

Fig. 2. Number of measurements mk, estimate φk, and right-hand

side (5) for x[k] per frame. It is also shown the bound for standard

ℓ1 minimization [23].
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Fig. 3. Relative errors for estimation and reconstruction per frame.

updated as suggested in [29].

Results. Fig. 2 shows the number of measurements mk taken

by Algorithm 1 (red), and the estimator φk (blue). It also shows the

oracle bounds for standard ℓ1 minimization in [23] (black) and ℓ1-

ℓ1 minimization (5) (green). These are called “oracle” because they

are computed assuming the signal to be reconstructed is known. We

remark that all previous approaches to compressive background sub-

traction, e.g., [13, 22], require always more measurements than the

standard ℓ1 bound, i.e., their performance curves are always above

the black line. We thus see that our algorithm allows a dramatic re-

duction in the number of required measurements. Furthermore, its

performance is close to optimal, since the number of measurements

(red line) follows the ℓ1-ℓ1 bound (green line) very closely. Fig. 3

shows the relative reconstruction and estimation errors, respectively,

‖ẑ[k]− z[k]‖2/‖z[k]‖2 and ‖e[k]− z[k]‖2/‖z[k]‖2 . It can be seen

that each frame was reconstructed almost perfectly. In fact, the re-

construction error was determined mostly by the precision of the

solver we used for ℓ1-ℓ1 minimization.

6. CONCLUSIONS

We proposed a recursive ℓ1-ℓ1 minimization algorithm for recon-

structing time varying sparse signals from a limited number of linear

measurements. Based on recent theoretical results on ℓ1-ℓ1 mini-

mization, the algorithm estimates, on-the-fly, the number of mea-

surements required to reconstruct the signal in the next time instant.

Experimental results on compressive background subtraction using

real test video data demonstrate the validity of our estimation scheme



and the high reconstruction performance of ℓ1-ℓ1 minimization.
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