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Abstract

Cameras for imaging in short and mid-wave infrared
spectra are significantly more expensive than their counter-
parts in visible imaging. As a result, high-resolution imag-
ing in those spectrum remains beyond the reach of most con-
sumers. Over the last decade, compressive sensing (CS) has
emerged as a potential means to realize inexpensive short-
wave infrared cameras. One approach for doing this is the
single-pixel camera (SPC) where a single detector acquires
coded measurements of a high-resolution image. A compu-
tational reconstruction algorithm is then used to recover the
image from these coded measurements. Unfortunately, the
measurement rate of a SPC is insufficient to enable imaging
at high spatial and temporal resolutions.

We present a focal plane array-based compressive sens-
ing (FPA-CS) architecture that achieves high spatial and
temporal resolutions. The idea is to use an array of SPCs
that sense in parallel to increase the measurement rate, and
consequently, the achievable spatio-temporal resolution of
the camera. We develop a proof-of-concept prototype in the
short-wave infrared using a sensor with 64× 64 pixels; the
prototype provides a 4096× increase in the measurement
rate compared to the SPC and achieves a megapixel resolu-
tion at video rate using CS techniques.

1. Introduction
The cost of a high-resolution sensors in the visible spec-

trum has fallen dramatically over the last decade. For ex-
ample, a cellphone camera module boasting a sensor with
several megapixels costs little more than a few dollars.This
trend is fueled by the fact that silicon is sensitive to the vis-
ible region of the electromagnetic spectrum and hence, the
scaling trends and advances made in silicon-based semicon-
ductor fabrication directly benefit visible imaging technolo-
gies. Unfortunately, these scaling trends do not extend to
imaging beyond the visible spectrum.
Motivation. In many application domains, imaging be-
yond the visible spectrum provides significant benefits over
traditional visible sensors [12]. For example, short-wave in-
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Figure 1. Focal plane array-based compressive sensing (FPA-CS)
camera with a 64 × 64 SWIR sensor array is equivalent to 4096
single pixel cameras (SPCs) operating in parallel. This results in
vastly superior spatio-temporal resolutions against what is achiev-
able using the SPC or a traditional camera.

frared (SWIR) penetrates fog and smog; this enables imag-
ing through scattering media. The night-glow of the sky
naturally provides SWIR illumination which enables SWIR
sensors to passively image even in the dark. SWIR imaging
also enables a wide variety of biomedical applications [30].
Yet, SWIR imaging requires sensors made of exotic materi-
als such as indium gallium arsenide (InGaAs), which are or-
ders of magnitude more expensive than silicon. As a conse-
quence, the cost of a megapixel sensor in the SWIR regime
is still greater than tens of thousands dollars. Hence, despite
their immense potential, high-resolution SWIR cameras are
beyond the reach of engineers and scientists in application
domains that could most benefit from its use.

In this paper, we leverage the theory and practice of
compressive sensing (CS) [4, 7], to enable high-resolution
SWIR imaging from low-resolution sensor arrays. CS re-
lies on the ability to obtain arbitrary linear measurements
of the scene; this requires a fundamental redesign of the ar-
chitecture used to image the scene. The single-pixel camera
(SPC) is an example of such an architecture [8]. The SPC
uses a digital micro-mirror device (DMD) as a spatial light
modulator and acquires coded measurements of an image
onto a single photo-detector. We can build an SWIR SPC
by employing a photo-detector sensitive to SWIR along
with the appropriate choice of optical accessories. The pro-
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grammable nature of the DMD enables the photo-detector
to obtain the sum of any arbitrary subset of pixels. The high-
resolution image can then be computationally reconstructed
from a small number of such measurements.

A SPC is incapable of producing high-resolution images
at video rate. To understand why, we first observe that the
measurement rate of an SPC is determined by the operat-
ing speed of its DMD which seldom goes beyond 20 kHz.
At this measurement rate, conventional Nyquist-based sam-
pling with a single-pixel can barely support a 20 fps video
at a spatial resolution of 32×32 pixels. To sense at a mega-
pixel resolution and video rate using a CS-based SPC, we
would need a measurement rate of tens of millions of mea-
surements per second — a gap of 1000× that is beyond the
capabilities of current CS techniques.
Applications of SWIR Imaging. A large number of ap-
plications that are difficult or impossible to perform us-
ing the visible spectrum become much simpler due to the
characteristics of the SWIR spectrum. SWIR imaging is
currently used in a host of applications including auto-
motive, electronic board inspection, solar cell inspection,
produce inspection, identification and sorting, surveillance,
anti-counterfeiting, process quality control, and much more
[12]. Some unique properties of SWIR that enable many of
these applications include (a) improved penetration through
scattering media including tissue, fog, and haze, (b) seeing
through many commonly-used packaging materials which
are transparent in SWIR while opaque in visible spectrum,
and (c) observing defects and gauging quality of fruits and
vegetables. Finally, for night-time surveillance applica-
tion, the night-glow of the sky provides sufficient SWIR
illumination even on a moon-less night; this enables long-
distance SWIR imaging without the need for extra illumi-
nation sources that could compromise reconnaissance.
Contributions. This paper enables a novel class of CS ar-
chitectures that achieve high spatial and temporal resolu-
tions using inexpensive low-resolution sensors. The main
technical contributions in this paper are:

• We characterize the spatio-temporal resolution limits of
CS architectures. A key finding is that a space-bandwidth
product mismatch between the DMD and the photo-
detector results in sub-optimal performance.

• We propose the focal plane array-based compressive
sensing (FPA-CS) camera—an imaging architecture that
is optically identical to thousands of SPCs acquiring
compressive measurements in parallel (see Figure 1).
FPA-CS balances space-bandwidth product constraints,
thereby enabling CS-based imaging architectures with
higher spatial and time resolutions.

• We develop a prototype FPA-CS camera in SWIR and
demonstrate capturing 1 megapixel images at video rate,
far exceeding the capabilities of current methods.

2. Related work
Compressive sensing (CS). Compressive sensing [4, 7]
deals with the estimation of a signal x ∈ RN from M < N
linear measurements y ∈ RM of the form

y = Ax+ e, (1)

where e is the measurement noise and A is the measure-
ment matrix. Estimating the signal x from the compressive
measurements y is an ill-posed problem since the system of
equations is under-determined. Nevertheless, a fundamen-
tal result from CS theory states that a robust estimate of the
vector x can be obtained from M ∼ K log(N/K) mea-
surements if the signal x admits a K-sparse representation
and the sensing matrix A satisfies the so-called restricted
isometry property [3]. Furthermore, signals with sparse
transform-domain coefficients or sparse gradients can be es-
timated stably from the noisy measurement y by solving a
convex problem [4, 22].

Compressive imaging architectures. In the context of
video CS, there are two broad classes of architectures: spa-
tial multiplexing and temporal multiplexing cameras. Fig-
ure 2 provides a comparison of various CS architectures

Spatial multiplexing cameras (SMCs) acquire coded,
low-resolution images and super-resolve them to obtain
high-resolution images. In particular, they employ a spa-
tial light modulator (SLM), e.g., a digital micro-mirror de-
vice (DMD) or liquid crystal on silicon (LCoS), to optically
compute linear projections of the scene x; these linear pro-
jections determine the rows of the sensing matrix A in (1).
Since SMCs are usually built with only low-resolution sen-
sors, they can operate at wavelengths where full-frame sen-
sors are too expensive.

A prominent example of SMC is the single pixel camera
(SPC) [8]; its main feature is to sense using only a single
sensor element (i.e., a single pixel) and that the number of
multiplexed measurements required for image reconstruc-
tion is significantly smaller than the number of pixels in the
scene. In the SPC, light from the scene is focused onto a
programmable DMD, which directs light from only a sub-
set of activated micro-mirrors onto the photodetector. By
changing the micro-mirror configurations, we can obtain
linear measurements corresponding to the sensing model in
(1). Several multi-pixel extensions to the SPC have been
proposed recently, with the goal of increasing the measure-
ment rate [16, 17, 20, 36]. To our knowledge, ours is the
only design that focuses on sensing in SWIR wavebands.

A commercial version of the SPC for sensing in SWIR
has been produced by InView Corporation. A key differ-
ence between our proposed architecture and the InView
camera is the number of sensing elements. To our knowl-
edge, the InView camera, much like the SPC, uses a single
photo diode, whereas we use a sensor with 64× 64 pixels.



SMCs for video CS also make use of a diverse set of
signal models and constraints including 3D wavelets [35],
multi-scale wavelet lifting [23], optical flow-based recon-
structions [27, 1], block-based models [9], sparse frame-to-
frame residuals [32, 5], linear dynamical systems [31, 28],
and combinations of low-rank and sparse matrices [37].
One characteristic of all these algorithms is that reconstruc-
tion performance improves with increasing number of mea-
surements. However, the measurement rate in traditional
SPC architectures is too low to support high resolution, high
frame rate reconstructions.

In sharp contrast to SMCs, temporal multiplexing cam-
eras (TMCs) use full-frame sensors with low frame rates
and aim to super-resolve videos temporally, i.e., produce
high frame rate videos from low frame rate sensors. Veer-
araghavan et al. [33] showed that periodic scenes could be
imaged at high temporal resolutions by using global tempo-
ral coding. This idea was extended to non-periodic scenes
in [15] where a union-of-subspace models was used. Per-
pixel temporal modulation to recover higher frame-rates
was demonstrated using prototypes that used LCOS for
modulation [11, 26, 14]. Llull et al. [19] propose a TMC
that uses a translating mask in the sensor plane to achieve
temporal multiplexing. Harmany et al. [13] extend coded
aperture systems by incorporating a flutter shutter [25]; the
resuling TMC provides immense flexibility in the choice of
measurement matrix. A common feature for all TMCs is the
use of a high resolution sensor; this makes them inapplica-
ble for SWIR imaging where high resolution sensor arrays
are prohibitively expensive.
Super-resolution (SR). SR is a technique that is com-
monly used to enhance the resolution of a given image.
Traditional SR works by utilizing image priors or acquir-
ing multiple measurements of the same scene [24]. How-
ever, traditional SR cannot arbitrarily increase resolution,
and even state-of-the-art SR algorithms are limited to 2–4×
upsampling [10]. In contrast, for a loss in temporal resolu-
tion, our proposed architecture can achieve the full spatial
resolution of the DMD without compression (see Section 6
and Figures 4(f), 5(b)) with the sensor pixel-wisely scan-
ning of the DMD, which can be seen as implementing SR
in the optical domain: at each sensor pixel, we take 256
non-overlapping sub-pixel measurements by turning on dif-
ferent DMD pixels that map to the given sensor pixel. If we
were to procure a DMD with higher resolution, the camera
system inherits that same resolution.

3. Spatio-temporal resolution (STR)
Nyquist cameras STR. The STR of a camera is limited
by the product of the number of pixels and the maximum
frame rate. For example, a 1 megapixel sensor operating
at 30 fps provides a measurement rate, which we denote as
Mr, equals to 30 × 106 samples per second. Traditional
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Figure 2. Comparisons of some existing CS-based cameras.

cameras rely on the principle of Nyquist sampling; thus, for
such cameras STR = Mr. Pixel count and frame rate of
visible sensors have significantly improved, and it is now
common to obtain sensors that can achieve megapixel res-
olution at 30 fps. Unfortunately sensors outside the visible
spectrum either provide a much lower spatial resolution, or
they are quite expensive.

Compressive cameras STR. Let us consider a CS-based
camera operating at measurement rate,Mr samples per sec-
ond, that can provide a high-resolution video with αMr

pixels per seconds. The effective STR can be written as
STR = αMr, where α ≥ 1 represents the compression fac-
tor by which the sampling rate reduced thank to the com-
pressive sensing framework. In a SPC, the measurement
rate is typically limited by the maximum rate at which syn-
chronization can be achieved between the DMD modulator
and the sensor. While a photo-detector can be operated at
very high rates (even GHz), commercially-available DMD
seldom operate faster than 10–20 kHz. Hence, it is not pos-
sible to achieve synchronization between any of the cur-
rent high resolution spatial light modulators and a photo-
detector at greater than fDMD = 20 kHz. This directly im-
poses a limit on the STR of compressive cameras based on
single pixel sensors, i.e., STR ≤ αMr = αfDMD samples
per second.

Increasing the measurement rate. From the previous
discussion, it is clear that in order to increase the STR of
CS-based imaging systems, one must increase the measure-
ment rate. Given that the operating speed of the DMD poses
strict limits on the number of frames we can obtain in unit
time, one approach is to increase the measurement rate by
reading multiple measurements in parallel. As an exam-
ple, a compressive imaging system, in which a K × K
pixel image sensor array is used to acquire multiplexed
measurements in synchronization with a DMD at an op-
erational rate fDMD Hz, provides a measurement rate of
Mr = K2fDMD samples per second—a K2 times im-
provement over the SPC. This increased measurement rate
enables the acquisition of videos at higher spatial and tem-
poral resolution. In the next section, we describe a SWIR



prototype that uses a 64× 64 focal plane array sensor along
with a DMD operating at fDMD = 480 Hz to achieve mea-
surement rates in millions of samples per second.

4. Specifics of the FPA-CS prototype
System Architecture. Figure 3 shows a schematic of our
design and a photograph of our prototype. We utilized a
Texas Instruments Light Crafter DMD as the light modula-
tor. The DMD consists of 1140 × 912 micro-mirrors, each
of size 7.6 micron. Each mirror can be independently ro-
tated to either +12◦ or −12◦ around the optical axis at a
rate of 2.88 KHz. We used a SWIR objective lens (Edmund
Optics #83 − 165) with a focal length of 50 mm to fo-
cus the scene on to the DMD. A 150 mm-150 mm relay
lens pair (2x Thorlabs AC254-150C) was placed after the
SWIR objective lens to extend the original flange distance,
thereby providing ample space for the light bundle reflect-
ing out of the DMD . We also used a 50 mm field lens
(Thorlabs LB1417) to reduce vignetting. The light incident
on the DMD corresponding to pixels that are oriented at
−12◦ is discarded, while the light that is reflected from pix-
els that are oriented at +12◦ is focused on the SWIR sensor
using a re-imaging lens. We used a 100 mm-45 mm lens
pair (Thorlabs AC-254-100C and AC-254-045C) as our re-
imaging lens, which provides a 1:2.22 magnification as the
physical sizes of the sensor and the DMD are different.

We used a 64 × 64 SWIR sensor (Hamamatsu G11097-
0606S), with 50 micron pixel size. The relay lens is config-
ured such that roughly 16 × 16 pixels on the DMD map to
one sensor pixel. Since the DMD has a rectangular shape
and the sensor has a square one, some of the DMD pixels
are not mapped on the sensor. In our prototype, the sensor
measures a square region of the DMD with approximately
600,000 micromirrors, which we up-sample to a megapixel
image. Furthermore, since the DMD and the sensor planes
are not parallel, we adjusted the relay lens and the sensor
position to satisfy the Scheimpflug principle so that the en-
tire scene plane remains in focus on the sensor [21].
Achievable measurement rates. In our prototype, we
operate the DMD at fDMD = 480 Hz in synchroniza-
tion with the readout timing of the 64 × 64 sensor array.
Therefore, we obtain the measurement rate, Mr ≈ 2× 106

pixels/sec. In our experimental results, we demonstrate
high-fidelity video reconstruction at a compression rate of
α = 16. Thus, the effective STR of our system is limited by
STR≤ αK2fDMD = 32×106 pixels/second, which makes
recovery of videos at spatial resolution of 1 megapixel at ap-
proximately 32 frames/sec possible. In comparison, a SPC
with the DMD operating at 20,000 Hz and the compres-
sion factor α = 16 would provide 1 megapixel at 0.32fps.
Clearly, the mismatch between the measurement rate of the
sensor and the operating speed of the DMD is the major
bottleneck in SPC.
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Figure 3. (a) Schematic illustration of the optical system. (b) Pho-
tograph of our prototype.

It is worth noting here that an equivalent full-frame
SWIR sensor that can operate at 1 megapixel spatial resolu-
tion over 30 fps would cost upwards of $60,000. In contrast,
our 64× 64-pixel SWIR sensor costs approximately $2,000
and the DMD with its evaluation board costs approximately
$1,500, resulting in a total cost of under $4,000 for our FPA-
CS prototype.

5. Reconstruction algorithms
Forward imaging model of FPA-CS. Our FPA-CS pro-
totype is equivalent to an array of 64× 64 SPCs working in
parallel. The DMD and sensor are synchronized to project
modulation patterns and record coded low-resolution im-
ages at a certain frame rate, say fDMD fps; we used
fDMD = 480 fps in our experiments.

Let us describe the sensor image measured at time t us-
ing the following matrix-vector notation: yt = Atxt, where
yt is a vector with sensor measurements at 4096 pixels, xt
represents the unknown high-resolution image formed at the
DMD plane, and the matrix At encodes modulation of xt
with the DMD pattern and subsequent mapping onto the
SWIR sensor pixels. Thus, At can be decomposed into two
components as At = CDt; Dt denotes a diagonal matrix



that contains the binary pattern projected on the DMD at
time t; and every Ci,j entry in C represents the response
of a unit light from jth DMD mirror onto ith sensor pixel.
C is a highly sparse matrix, because only a small group of
roughly 16× 16 DMD mirrors map to a single pixel on the
SWIR sensor. Therefore, for a stationary camera assembly,
we can estimate C using a separate, one-time calibration
procedure, which is used in all subsequent experiments.

To reconstruct video at a desired frame rate, say Fr fps,
we divide low-resolution sensor images, yt, into sets of T =
fDMD/Fr measurements, and assume that all of them cor-
respond to the same high-resolution image. Suppose the kth
set correspond to yt = Atxt for t = (k− 1)T +1, . . . , kT ;
we assume that xt = xk and stack all the yt and At in the
kth set to form a larger system of equations. For instance,
the system for k = 1 can be written as

y1
y2
...
yT

 =


A1x1
A2x2

...
ATxT

 ≡

A1

A2

...
AT

x1 ⇒ yk = Akxk. (2)

Our goal is to reconstruct the xk from the noisy and possibly
under-determined sets of linear equations yk = Akxk.

Total variation-based reconstruction. Natural images
have been shown to have sparse gradients. For such sig-
nals, one can solve an optimization problem of the follow-
ing form [6, 22]:

x̂ = argmin
x

TV(x) subject to ‖y −Ax‖2 ≤ ε, (3)

where the term TV(x) refers to the total-variation of x. In
the context of images where x denotes a 2D signal, the op-
erator TV(x) can be defined as

TV(x) =
∑
i

√
(Dux(i))2 + (Dvx(i))2,

where Dux and Dvx are the spatial gradients along hor-
izontal and vertical dimensions of x, respectively. In the
context of video signals, we can also exploit the similar-
ity between adjacent frames along the temporal direction.
We can view a video signal as a 3D object that consists of
a sequence of 2D images, and we expect the signal to ex-
hibit sparse gradients along spatial and temporal directions.
Thus, we can easily extend the definition of TV operator to
include gradients in the temporal d direction.

TV3D(x) =
∑
i

√
(Dux(i))2 + (Dvx(i))2 + (Dtx(i))2,

where Dtx represents gradient along the temporal dimen-
sion of x. In our experimental results, we used TVAL3 [18]
for the reconstruction of images and MFISTA [2] for the
reconstruction of videos.

6. Experiments
To demonstrate the performance of our device, we show

results on several static and dynamic scenes captured using
our prototype SWIR FPA-CS camera.

Resolution chart. To study the spatial resolution charac-
teristics of our system, we first captured images of a USAF
1951 target using our prototype device. For each measure-
ment, the DMD projected a random binary spatial pattern
and the sensor recorded a 64 × 64 image. We adjust the
exposure duration for each acquired images to 0.8 ms and
acquired 512 sensor images with varying patterns on the
DMD. We then reconstructed the scene at the same reso-
lution as that of the DMD using the TV-regularized recon-
struction algorithm described in Section 5. To study the
impact of the number of measurements, we reconstructed
the image with T = 64, 128, 256, and 512 cpatured images,
which correspond to compression of α = 4, 2, 1, and 0.5,
respectively. We defined α ≈ 106/(T × 4096). Figure 4
presents the results obtained at various compression rates.

Figure 4(a) presents an up-sampled version of a single
64 × 64 image using bicubic interpolation. Figure 4(b)–
(e) present images reconstructed with different number of
measurements; the spatial quality of reconstructed images
improves as the number of measurements increases. Fig-
ure 4(f) presents an image reconstructed using direct pixel-
wise scanning of the DMD without multiplexing. This al-
lows us to acquire images at the maximum spatial resolution
that FPA-CS can provide (limited only by the performance
of optics), at the sacrifice of temporal resolution. To per-
form the direct pixel-wise scanning, we divided the DMD
into 18 × 20 regions that map to non-overlapping sensor
pixels. We sequentially turned on one micromirror in all
the groups and recorded the respective sensor images. In
this manner, we can compute the image intensity at every
micromirror location. Such pixel-wise scanning, with non-
overlapping division of the DMD, requires approximately
3000 images to be captured. Such scanning can also be con-
sidered a super resolution scheme performed in the optical
domain, but it can only be used for static scenes.

Overall, results in Figure 4 demonstrates that high-
resolution images can be obtained from a small number of
multiplexed images. Furthermore, FPA-CS provides flexi-
ble tradeoff between spatial and temporal resolutions of the
reconstructed signals. As we increase the number of im-
ages used for reconstruction, the spatial quality improves,
but the imaging interval per frame also increases. There-
fore, a small number of multiplexed images can be used to
reconstruct dynamic scenes at high temporal resolution, or
static scenes can be reconstructed using a large number of
multiplexed images.

Highlighting capabilities of imaging in SWIR. We
present a simple experiment that highlights two attributes



(a) Bicubic up-sampling of 64⨉64 sensor image  (b) Reconstruction from T=64 images (α = 4) (c) Reconstruction from T=128 images (α = 2)

(d) Reconstruction from T=256 images (α = 1) (e) Reconstruction from T=512 images (α = 0.5) (f) Direct pixel-wise scanning, no multiplexing

Figure 4. FPA-CS results for a resolution chart. (a) Interpolation of a 64× 64 sensor image. (b)–(e) Images reconstructed using increasing
number of measurements (T ); compression factor α ≈ 106/(T × 4096); a larger value of T would translate to smaller frame rate of
reconstruction for a dynamic scene. (f) Direct pixel-wise scanning result, where no multiplexing is performed and T ≈ 3000.

of SWIR imaging. The scene in Figure 5, when observed
in the visible spectrum, is largely unremarkable and con-
sists of an opaque bottle and a crayon scribble in the back-
ground. However, the corresponding SWIR images show
two interesting differences. First, note that the crayon scrib-
ble is transparent in SWIR, therefore allowing us to read the
text behind it. Second, the bottle is partially transparent in
SWIR, therefore allowing us to see through the bottle and
determine the water level inside the bottle. Figure 5 also
shows 1D plots of the mean intensity of columns inside the
highlighted color boxes; SWIR intensity changes because
of the water inside the bottle, but the visible light intensity
remains unchanged.
Video reconstruction. Figure 6 shows results on two dy-
namic scenes. In the moving car and moving hand video,
we grouped the captured sequence into sets of T = 16 and
T = 22 images, respectively. We used one such set to rep-
resent each frame of the video according to (2); this corre-
spond to videos at 32 fps and 21.8 fps, with compression
factors α = 16 and α = 11.6, respectively. We used 3D TV
optimization problem described in (3) for the reconstruc-
tion. Complete videos can be found in the supplemental
material.

7. Discussions
Artifacts. Some artifacts can be observed in the output
images and videos from the FPA-CS system. The two ma-
jor types of artifacts that can be observed are: (1) motion
artifacts that occur at sharp edges of moving objects in the
scene, and (2) “blocky” structural artifacts that underlie the
entire captured scene. The motion artifacts are simply an ar-
tifact of motion blur while the “blocky” artifacts are caused
by small misalignments in the mapping between the sensor

pixel and DMD pixel introduced after the system calibra-
tion. In practice, we observed that applying a 3D median
filter can largely suppress both artifacts.

Choice of modulation masks. To obtain high fidelity re-
construction, modulation masks should meet two condi-
tions. First, the system matrix in (2)—the combined system
of 4096 SPCs in every set of T frames—should be well-
conditioned so that the image reconstruction process is sta-
ble and robust to noise. Second, the spatial code should
have high light-throughput that maximizes the signal-to-
noise ratio in sensor images. In this paper, we tested two
mask patterns–Hadamard and random binary–both of which
satisfy these characteristics. Hadamard matrices are known
to be optimal in terms of linear multiplexing [29]. The
results shown in Figure 5 correspond to Hadamard mea-
surements. We also used random binary patterns since
they are known to satisfy the restricted isometry property
[3], and therefore lead to robust inversion when used along
with sparse regularizers such as total variation. The re-
sults shown in Figure 4 and 6 correspond to binary random
measurements. Notice that in both cases, 50% of the light
reaches the sensor after modulation. In practice, we ob-
served that the reconstructions obtained from the two mod-
ulation patterns were near-identical.

Benefits. FPA-CS provides three advantages over conven-
tional imaging. First, our CS-inspired FPA-CS system pro-
vides an inexpensive alternative to achieve high-resolution
SWIR imaging. Second, compared to traditional single
pixel-based CS cameras, FPA-CS simultaneously records
data from 4096 parallel, compressive systems, thereby sig-
nificantly improving the measurement rate. As a conse-
quence, the achieved spatio-temporal resolution of our de-



(a) Bicubic up-sampling 
of the 64x64 sensor image

(c) Reconstruction from 
128 images

(d) Reconstruction from 
256 images

(b) Direct pixel-wise 
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(e) Visible DSLR image 
of the scene

Average intensity 
of columns in 
highlighted box

Figure 5. SWIR imaging of an opaque bottle in the foreground and a crayon scribble in the background. (a) Bicubic interpolated version
of a 64 × 64 sensor image. (b) Direct pixel-wise scanning result. (c) and (d) Images reconstructed with different compression factor α.
(e) Visible image of the scene taken with a DSLR camera. Notice that the crayons are transparent in SWIR allowing us to read the text
behind the scribbles. The bottle in the foreground is opaque in visible but transparent in SWIR. Highlighted boxes on the right display
mean intensity of columns in the corresponding regions of the SWIR and visible images, showing that one can estimate the water level
inside the bottle from the SWIR image, but not from the visible image.
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Figure 6. Selected frames from reconstructed SWIR videos. Each frame in the moving car videos is reconstructed using T = 16 captured
images (α = 16) at 32-fps. Each frame in the moving hand videos is reconstructed using T = 22 captured images (α = 11.6) at 21.8-fps.
Both videos are reconstructed using 3D-TV prior. XT and YT slices for both videos are shown to the right of the images.

vice is orders of magnitude better than the SPC.

Limitations. FPA-CS exploits spatio-temporal redun-
dancy in the reconstruction, therefore, extremely complex
scenes such as a bursting balloon cannot be directly handled
by the camera. Since the spatio-temporal redundancy ex-
ploited by traditional compression algorithms and our imag-
ing architecture are very similar, one can assume that the
scenes that can be compressed efficiently, can also be pro-
cessed well using our method. Our prototype uses a binary
per-pixel shutter, which causes a 50% reduction in light
throughput as half of the light is wasted. In future, a sep-
arate, synchronized 64 × 64 image sensor can be used in
the other arm, thereby doubling the measurement rate and
further increasing the spatio-temporal resolution that can be
achieved. The algorithm is currently not real-time and thus
precludes the direct-view capability.

Conclusion. We presented focal plane array-compressive
sensing (FPA-CS), a new imaging architecture for paral-
lel compressive measurement acquisition that can provide

quality videos at high spatial and temporal resolutions in
SWIR. The architecture proposed here is generic and can be
adapted to other spectral regimes such as mid-wave infra-
red and thermal imaging, where, much like SWIR, sensors
are prohibitively expensive.
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