
Image Invariants for Smooth Reflective Surfaces

Aswin C. Sankaranarayanan1, Ashok Veeraraghavan2, Oncel Tuzel2, and
Amit Agrawal2

1 Rice University, Houston, TX 77005, USA
2 Mitsubishi Electric Research Labs, Cambridge, MA 02139, USA

Abstract. Image invariants are those properties of the images of an object that re-
main unchanged with changes in camera parameters, illumination etc. In this pa-
per, we derive an image invariant for smooth surfaces with mirror-like reflectance.
Since, such surfaces do not have an appearance of their own but rather distort the
appearance of the surrounding environment, the applicability of geometric in-
variants is limited. We show that for such smooth mirror-like surfaces, the image
gradients exhibit degeneracy at the surface points that areparabolic. We lever-
age this result in order to derive a photometric invariant that is associated with
parabolic curvature points. Further, we show that these invariant curves can be
effectively extracted from just a few images of the object inuncontrolled, un-
calibrated environments without the need for any a priori information about the
surface shape. Since these parabolic curves are a geometricproperty of the sur-
face, they can then be used as features for a variety of machine vision tasks. This
is especially powerful, since there are very few vision algorithms that can handle
such mirror-like surfaces. We show the potential of the proposed invariant using
experiments on two related applications - object recognition and pose estimation
for smooth mirror surfaces.

1 Introduction

Image invariants are those properties of the images of an object that remain unchanged
with changes in camera parameters, illumination etc. Any geometric invariant (eg., cross
ratio) is true for surfaces with any reflectance characteristics including diffuse, specular
and transparent surfaces. But, in order to actually use these geometric invariants from
observed images of an object, one needs to identify point correspondences across these
images. Establishing such point correspondences from images of diffuse objects is a
meaningful task since these objects have photometric features of their own. But surfaces
with mirror reflectance do not have an appearance of their own, but rather present a
distorted view of the surrounding environment. Therefore,establishing physical point
correspondences using image feature descriptors (such as SIFT) is not meaningful. Such
descriptors find correspondences between environment reflections, and therefore are not
physically at the same point on the surface. Thus, there is a need to find photometric
properties of specular surfaces that are invariant to the surrounding environment. In this
paper, we study and present such an invariant for the images of smooth mirrors.

The main results of this paper arise by studying the photometric properties of the
images of mirror surfaces around points that exhibit parabolic curvature. Parabolic cur-
vature points are fundamental to perception of shape both for diffuse [15, 17] and for



specular surfaces [23]. In this paper, we first derive a photometric invariant that is as-
sociated with parabolic curvature points of the mirror surface. We show that a smooth
mirror imaged by an orthographic camera, reflecting an environment feature at infinity,
exhibits degenerate gradients at parabolic curvature points. This degeneracy is charac-
terized by the image gradients being orthogonal to the direction of zero curvature at the
parabolic point. Although the invariant holds exactly for the aforementioned imaging
setup, we empirically show that for a range of practical imaging conditions (with per-
spective camera and finite scene), the invariance still holds to a high degree of fidelity.

The set of parabolic points is a geometric property of a surface and each surface
has its own distinct set of parabolic curves. The photometric invariant that we propose
allows us to detect these parabolic curves from just images of the specular object with-
out any a priori knowledge about its 3D shape or the surrounding environment. Since
these parabolic points are a geometric property of the surface, they can then be used for
a variety of machine vision tasks such as object recognition, pose estimation and shape
regularization. In this paper, we demonstrate a few such applications.

Contributions: The specific technical contributions of this paper are:

– We present a theoretical study of the properties of images ofmirrors. We show
that under a certain imaging setup, the image derivatives atthe points of parabolic
curvature exhibit degeneracies independent of the surrounding environment.

– We show that this degeneracy can be measured quantitativelyusing just a few im-
ages of the object under arbitrary illumination, thereby allowing us to recover the
parabolic curvature points associated with the mirror.

– We show new applications of this invariant to challenging machine vision problems
such as object recognition and pose estimation for mirror objects.

2 Prior Work

In this paper, we are interested in identifying invariants for images of mirrors. Addi-
tional assumptions are needed for obtaining something meaningful/non-trivial. A planar
mirror viewed by a perspective camera is optically the same as a perspective camera,
and hence, can produce arbitrary images.

The qualitative properties of images of specular/mirror objects have been well stud-
ied (see [14] for a survey). Zisserman et al. [25] show that local surface properties such
as concave/convexity can be determined under motion of the observer without knowl-
edge of the lighting. Blake [4] analyze stereoscopic imagesof specular highlights and
show that disparity of highlights observed on the mirror is related to the qualitative prop-
erties of the shape such as its convexity/concavity.Blake and Brelstaff [5] quantify local
surface ambiguities given stereo images of highlights. Fleming et al. [11] discuss hu-
man perception of shape from images of specular objects evenwhen the environment is
unknown and show that humans are capable of accurately determining the shape of the
mirror; potentially from image compression cues. In another study of human perception
of specular surfaces, Savarese et al. [20] report poor perception when the surrounding
scene comprises of unknown but structured patterns.



It is worth noting that points/curves of parabolic curvature have been studied in
terms of their photometric properties. Our search is motivated in part from classical
results in photometric stereo and more recent work in the area of specular flow. Koen-
derink and van Doorn [15] demonstrate that the structure of isophotes is completely
determined by parabolic curves of the surface. Further, they also show that the a local
extremum of the field of isophotes occur on parabolic curves,and move along these
curves under motion of the light source. Isophotes as a construct are useful for diffuse
objects with constant albedo and mirrors under simple lighting (such as a point light
source), and do not extend well to scenes/object with rich textures.

Much of prior work using properties of parabolic points revolve around the idea
of consistency of highlights at parabolic curvature pointsacross small changes in view
or illumination. Miyazaki et al [18] use parabolic curves for registration of transparent
objects across views.

Recent literature has focused on estimating the shape of themirror from the specular
flow [1, 21, 7] induced under motion. Specular flow is defined asthe movement of en-
vironmental features on the image of a mirror due to motion ofthe mirror/scene. It has
been shown that parabolic curvature points exhibit infiniteflow under infinitesimal mo-
tion. The infinite flow is a result of appearance of new scene features and disappearance
of existing ones, an observation made earlier by Longuet-Higgins [16] and Walden and
Dyer [22] as well. Waldon and Dyer [22] suggest that, for mirrors, reliable qualitative
shape information is available only at the parabolic curvesin the forms of discontinu-
ous image flow fields. Studies in perception [17] hint at the ability of humans to detect
and use parabolic curvature curves to perform local shape analysis. Some existing ap-
proaches in perception [23] and detection [9] of mirrors remark on the anisotropy of
gradients in the images of smooth mirrors. However, these papers do not identify the
existence of the invariance, the assumptions required for the invariance to hold, the
geometric interpretation behind its occurrence and the stability of the invariance for
practical imaging scenarios. More importantly, in addition to exploring these proper-
ties, we also show that parabolic curvature points of the mirror (a surface descriptor)
can be recovered from a few images of the mirror.

3 Deriving the Invariant

This section describes the main technical contributions ofthe paper. We begin with
a brief overview of parabolic curvature points. Then, we discuss the image formation
model for mirror objects and show that the observed image gradients exhibit a degener-
acy at the points of parabolic curvature, irrespective of the environment. This leads us
to define an invariant for the surfaces of smooth mirrors.

3.1 Parabolic Curvature Points

Let us model the shape of the (smooth) mirror in its Monge form(x, y, f(x, y)) =
(x, f(x)) in a camera coordinate system where the functionf is twice continuously
differentiable. At a given point on the surface, the curvature along a curve is defined
as the reciprocal of the radius of the osculating circle. Theprincipal curvatures are
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Fig. 1. Local properties of a surface can be classified into 4 types: elliptic, hyperbolic, parabolic
and flat umbilic (planar). This classification deals with thebending of the local surface in various
directions. The parabolic curve is shown in red.

defined as the minimum and maximum values of the curvature measured along various
directions at a given point. The product of the principal curvatures is defined as the
Gaussian curvature. It can be shown [15] that the Gaussian curvature is given by

fxxfyy − f2
xy
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y

. (1)

Points at which one of the principal curvatures is zero are termed parabolic curvature
points or simply parabolic points. Defining the Hessian at point x of the surface as

H(x) =
1

2

[
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fxy fyy

]

(x)

, (2)

parabolic curvature points are defined by points whererank[H(x)] = 1. When both
principal curvatures at a point are zero, the point is referred to asflat umbilic. Planes
are examples of surfaces which are flat umbilic everywhere. Shown in Figure 1 are
characterization of local properties of a surface.

3.2 Image Formation For Mirror Objects

Mirrors do not have an appearance of their own, and image of mirror are warps of
the surrounding environment. Modeling the shape of the mirror as(x, f(x)), image
formation can be described by identifying the camera and theenvironment. We model
the camera as orthographic. Under an orthographic camera model, all the rays entering
the camera are parallel to its principal direction.

The surface gradient at pixel locationx is given as∇f = (fx, fy)
T , and the surface

normal is given as

n(x) =
1

√

1 + ‖∇f‖2

(

−∇f

1

)

. (3)

The camera viewing directionv at each pixel is the same,v = (0, 0, 1)T . Under perfect
mirror reflectance, we can compute the direction of the ray that is reflected onto the
camera ass = 2(nT

v)n − v The corresponding Euler anglesΘ(x) = (θ, φ) are given
as,

tanφ(x) =
fy

fx
, tan θ(x) =

2‖∇f‖

1− ‖∇f‖2
. (4)
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Fig. 2. Degeneracy of image gradients at parabolic points. Shown are image patches at three
locations on a mirror frommultiple images rendered under a rotating environment. The image
patches corresponding to parabolic curves do not have have gradients along the parabolic curve.
This is in contrast to a non-parabolic point which can have arbitrary appearance.

The scene/environment that is seen at pixelx is hence defined by the intersection of
the scene and the ray in the direction ofs(x) from the location of the mirror element
(x, f(x))T . In the special case of environment at infinity, the dependence on the lo-
cation of the mirror is completely suppressed, and the environment feature observed
depends only on the surface gradient∇f .

Under the assumption of environment at infinity, we can definethe environment
map over a sphere. LetE : S2 7→ R be the environment map defined on the sphereS2

under the Euler angle parametrization. Underno inter-reflectancewithin the object, the
forward imaging equation for the intensityI(x) observed at pixelx is given as

I(x) = E(Θ(x)) (5)

whereΘ(x) is the Euler angle of the observed ray as given in (4). Differentiating (5)
with respect tox, the image gradients are given by

∇xI = 2H(x)

[

∂Θ

∂∇f

]T

∇ΘE (6)

where the HessianH(x) is defined in (2). The full derivation is in the supplemental
material (and similar to that of [1]).

For parabolic curvature points,H(x) is singular. As a consequence,∇xI takes val-
ues that are proportional to the non-zero eigenvalue ofH(x), immaterial of what the
environment gradient∇ΘE is. Figure 2 shows the local appearance of parabolic and
non-parabolic points under various environment maps.

3.3 Invariant

Given a smooth mirror(x, f(x)), wheref isC2 continuous, placed with the surround-
ing environment at infinity and viewed by an orthographic camera, the proposed invari-
ant is a statement on the observed image gradient at parabolic curvature points of the
mirror. Under this setting, the image gradients at parabolic curvature points aredegen-
erateand take values along a single direction that is defined by thelocal shape of the
surface. This property is independent of the scene in which the mirror is placed.
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Fig. 3. The proposed invariant can be geometrically described using the ray diagram above. At
a parabolic point, by definition, the normal (and curvature)do not change along one direction.
Under orthographic imaging and scene at infinity, the same feature is imaged onto the camera as
we move along the parabolic curve and hence, the image gradient disappears along this direction.

The invariant arises directly due to the principal direction of zero curvature at
parabolic point (see Figure 3). By definition, an infinitesimal movement on the surface
along this direction does not change the surface normal. Under our imaging model,
the environment feature imaged at a point depends only on thesurface normal. Hence,
an infinitesimal displacement on the image plane along the projection of this direction
does not change the environment feature imaged. As a consequence, the image gradi-
ent along this direction is zero. This geometric understanding is related to recent work
on ray-space specular surface analysis [24, 10], where the authors study local mirror
patches as general linear cameras and associate different camera models to different
local surface properties. Interesting connections to our work can potentially be derived
from these papers and remain an important direction for future research.

Mathematically, the invariant can be expressed in various forms. From (6) and under
the assumed imaging conditions, a parabolic curvature point atx0 satisfies

∇xI(x0) = ‖∇xI(x0)‖v (7)

wherev is the eigenvector ofH(x0) with non-zero eigenvalue. An alternate interpreta-
tion that does not involveH(x) uses the matrixM(x) defined as:

M(x) =
∑

E

(

(∇xI(x;E))(∇xI(x;E))T
)

(8)

whereI(x;E) is the intensity observed at pixelx under environment defined inE(Θ).
Note that the summation in (8) is over all possible environment maps. At points of
parabolic curvature,

rank[M(x0)] = 1 (9)

In contrast, for elliptic and hyperbolic points, the matrixM is full rank. For flat umbili-
cal points,H(x) is the zero matrix and the image gradients are zero as well. Therefore,
the matrix defined in (8) will be zero rank.



4 Detecting Parabolic Curvature Points

We derive a practical algorithm for detecting points of parabolic curvature from mul-
tiple images of a mirror. The algorithm exploits the consistency (or degeneracy) of the
image gradients as given in (9). Under motion of the camera-mirror pair (or equiva-
lently, rotation of the environment), the environment feature associated with each point
changes arbitrarily. However, parabolic points aretied to the surface of the mirror, and
hence, the direction of image gradients associated with them do not change. This moti-
vates an acquisition setup wherein the environment is changed arbitrary and consistency
of image gradient at a pixel indicates whether or not it has parabolic curvature. Since
movement of the camera-object pair simultaneously is the equivalent to that of rotation
of the environment, we use environment rotation to denote both. In practise, moving the
camera-object pair is easier to accomplish.

Given a set of images{Ij}, compute the matrix

M(x) =
∑

j

(∇xIj(x)) (∇xIj(x))
T (10)

using image gradients computed at each frame. We use the ratio of the eigenvalues of
M(x) as the statistic to decide whether or not a pixelx observes a parabolic curvature
point. Figure 4 shows estimates of parabolic points of different surfaces. Images for
this experiment were rendered using PovRay. Each image was taken under a arbitrary
rotation of the environment. As the number of images increase, the detection accuracy
increases significantly asM(x) at non-parabolic points become well-conditioned.

We believe that our approach is unique in the sense that it recovers a ‘dense’ char-
acterization of parabolic curvature points from uncalibrated images of a mirror. Much
of the existing literature on using the photometric properties of parabolic points rely on
the stability of highlights at parabolic points under changes in views. However, such a
property is opportunistic at best, and does not help in identifying all the parabolic cur-
vature points associated with the visible surface of the mirror. In this sense, the ability
to recover a dense set of parabolic curvature points opens the possibility of a range of
applications. We discuss these in Section 5.

Theoretically, the invariance is guaranteed only for an orthographic camera and an
environment at infinity. However, in practice, the invariance holds with sufficient fidelity
when these assumptions are relaxed. We explore the efficacy of the proposed invariant
for a range of practical operating conditions in Section 6.

Mis-detection: The proposed invariant does not take inter-reflections intoaccount.
Inter-reflections alter the physics of the imaging process locally, and violates the re-
lations made earlier in physical models. Imaging resolution also affects the detection
process. For low resolution images, the curvature of the surface observed in a single
pixel might deviate significantly from parabolic. Such a scenario can potentially annul
the invariance at the parabolic point due to corruption fromthe surrounding regions.

False Alarm: It is noteworthy that the invariant describe image gradients at parabolic
points. However, degenerate gradients do not necessarily imply the presence of parabolic
points. Clearly, for small number of images, it is possible that a surface pixel/patch do
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(c) Rotated Torus

Fig. 4. Detecting parabolic curvature points from rendered imagesfor various surfaces. (From
left to right) the depth map of the mirror with the parabolic points highlighted in red; a rendered
image of the surface using theGrace cathedralenvironment map; detected parabolic points from
2 images; from 5 images; from 25 images; Log of decision statistic estimated from 25 images.
The occluding contour is shown in cyan and the parabolic points in green.

not observe environment features that are sufficiently rich. Similarly, discontinuities in
the surface such as occluding contours can lead to consistent degeneracy in the observed
image gradients.

Note that, the detection of statistics does not require the environment texture to be
rich. Using increasing number of images (camera-mirror pair rotations), the degenera-
cies due to environment become incoherent and can be filteredout easily. Our exper-
iments include textures such as the Grace cathedral which exhibit large regions with
little or no textures and the method succeeds to capture the statistics regardless.

5 Applications

In this section, we describe three applications of the presented theory; (1) pose es-
timation, (2) recognition of mirror-like objects; and (3) apossible extension for sur-
face reconstruction. The equivalent algorithms designed for diffuse/textured surfaces
require establishing correspondences between image observations and a model of the
object [13]. For specular objects, the highlights on the objects serve as an informa-
tive cue for object detection and pose estimation [8]. Similarly, Gremban and Ikeuchi
[12] use specular highlights for object recognition, and plan novel views that are dis-
criminative between objects with similar highlights. However, these methods do not
generalize to objects with mirror reflectance. In a calibrated setup (camera and envi-
ronment), it is possible to infer about surface normals through image and environment



Fig. 5. Parabolic curves provide a unique signature for object poseand identity. Shown are the
parabolic curves of four different objects in differnet poses. In each instance, the depth map and
the analytically computed parabolic curves are shown.

correspondences which can be further utilized for estimation algorithms [6, 19]. How-
ever the required calibration process is a tedious task. Pose estimation and recognition
in an uncalibrated setup remains to be a challenge and we showthat the proposed image
invariants provide necessary information for such tasks.

Pose Estimation:The pose estimation algorithm recovers the3D rotation and2D trans-
lation parameters with respect to a nominal pose of the object. Since the camera model
is assumed orthographic, the object pose can only be recovered up to depth ambiguity.
We assume that either the parametric form or the 3D model of the object is given in
advance. Based on the representation, the 3D positions of the parabolic points at object
coordinates are recovered either analytically (using parametric form) or numerically
(using the 3D model). In an offline process, we generate a database of curve templates
by rotating the parabolic curvature points with respect to aset of sampled 3D rotations
and projecting visible points to the image plane. Since rotation of the object along the
principal axes (θz) of the camera results in an in-plane rotation of the parabolic points
on the image plane, it suffices to include only out-of-plane rotations (θx andθy) to the
database which is performed by uniform sampling of the angles on the2-sphere. A few
samples included into the database is given in Figure 5.

The initial pose of the object is recovered by searching for the database template to-
gether with its optimal 2D Euclidean transformation parameterss = (θz , tx, ty), which
aligns the parabolic points of the template to the image parabolic curvature points. We
use a variant of chamfer matching technique [2] which measures the similarity of two
contours. The precision of the initial pose estimation is limited by the discrete set of
out-of-plane rotations included into the database. We refine the estimation using a com-
bination of iterative closest point (ICP) [3] and Gauss-Newton optimization algorithms.
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Fig. 6. A stylistic example showing how the parabolic points provide global shape priors. Such
priors are extremely useful in restricting the solution space in a surface recovery algorithm as
well as in identifying regions where simple parametric models describe the surface accurately.

Recognition: The parabolic curvature points provide unique signatures to recognize
many objects in variable poses. The object recognition algorithm is a simple extension
of the presented pose estimation approach. For each object class we repeat the pose
estimation process and recover the best pose parameters. The object class is then given
by the minimum of the chamfer cost function [2] over all classes.

Shape Priors: Knowledge of the parabolic curvature points gives a strong prior on
the shape of the mirror. It is well known that curves of parabolic curvature separate
regions of elliptic and parabolic curvature. Toward this end, we can constrain the range
of possible shapes (Figure 6). Further, in each region we canuse simple non-parametric
surface models such as splines and regularize their parameters to satisfy the curvature
properties. This forms a compelling direction for future research.

6 Experiments

We use both real and synthetically generated images for our experiments. For synthetic
experiments, we use publicly available ray-tracing software POV-Ray for photo realistic
rendering which provides high quality simulations of real world environments including
inter-reflections. Real data was collected with a Canon SLR camera using a 300mm
lens, and placing the mirror approximately 150cm from the camera. Both camera and
mirror were rigidly mounted to a platform, which was moved around to change the
environment features seen on the mirror.

6.1 Detecting Parabolic Curves

In Figure 4, we present results for detection of parabolic curvature points from synthet-
ically rendered images under the ideal imaging condition oforthographic camera and
scene at infinity. We show the performance of the detection when these assumptions are
violated. Figure 7 shows the detection of parabolic points when the scene is at a finite
distance from the mirror. In particular, the detection of parabolic curvature points is
reliable even when the minimum distance of the mirror to the object is the same as that
of the variations in the depth of the object itself. This shows the stability of the detec-
tion statistic to finite scenes. Figure 8 shows stable detection results when the camera is



(a) Depth map and true 

parabolic curves. The depth of 

the surface varies by 5 cm. 

(c) Parabolic curve decision 

statistic when the environment 

is (approx) 11 cm away. 

(b) Parabolic curve decision 

statistic when the environment 

map is at infinity.

(d) Parabolic curve decision 

statistic when the environment 

is (approx) 5 cm away.

Fig. 7.Detection of parabolic points when the environment is at a finite distance from the mirror.

Field of view: 75 degrees

Camera to Object Center: 3 cm

Field of view: 35 degrees

Camera to Object Center: 5 cm

Size of object approx 5cm x 5cm x 5cm

Fig. 8.Detection of parabolic points using a perspective camera under medium to large deviation
from the orthographic case. The parabolic curvature pointsremain stable in both cases. Note that
as the camera approaches the object and the field of view of thecamera is increased, the relative
locations of the (projection of the) parabolic points on theimage plane changes. This, in part,
explains the drift of the parabolic curvature points.

Input Images Estimated 

detection statistic
Detection 

Results

Manually marked 

ground truth

Fig. 9. Estimation of parabolic points of a real object using multiple images. Results were esti-
mated using 17 images.

heavily perspective. These figures reinforce the detectionof parabolic curves based on
the invariant for practical imaging scenarios. In Figures 9and 10, we show detection of
parabolic curvature points using real images for two highlyreflective objects.

6.2 Pose Estimation and Recognition

In the synthetic experiments, we randomly sample six parameters of the 3D object pose
and render the object under several environment rotations.The parabolic curves on the
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Fig. 10. Estimation of parabolic points of a real surface using variable number of images. The
parametric form of the surface was given in Figure 4 and it is manufactured using a CNC machine.
As the number of images increase, the degeneracies due to environment become incoherent and
detection becomes more reliable.

image plane is detected using the25 rendered images which are then utilized to recover
the object pose via the algorithm described earlier.

We provide results for four different surfaces which are shown in Figure 5. In Fig-
ure 11a, we present several pose estimation results. The simulation is repeated 30 times
for each surface using a different pose and mean absolute estimation errors for five pa-
rameters of the 3D pose is given in Figure 11b. We note that, since the camera model is
orthographic, the object pose can be recovered only up to a depth ambiguity. In all our
trials the pose estimation algorithm converged to the true pose. As shown, the parabolic
curves provide extremely robust features for pose estimation, and average rotation error
is less than2 degrees and5 pixels. In Figure 10, we show pose detection results on real
images of a mirror. The estimated pose was(−4.24,−1.66, 1.9) for a ground truth of
(0, 0, 0).

For recognition, we place four objects simultaneously to the environment and rec-
ognize identities of these surfaces. This is a challenging scenario due to heavy inter-
reflections of the surfaces. The same rendering scenario of the pose estimation experi-
ment is repeated. The object identities are given via the minimum of the cost function
after pose estimation. The average recognition rate over10× 4 trials is92.5% and typi-
cal recognition examples are shown in Figure 12. We note that, two of the surfaces have
exactly the same occluding contour, therefore in this scenario this statistic is expected
to fail whereas parabolic curvature points provide unique signatures.

7 Conclusions

In this paper, we propose a photometric invariant for imagesof smooth mirror. We
show that images of mirror exhibit degenerate image gradients at parabolic curvature
points when the camera is orthographic and the scene is at infinity. We demonstrate the
practical effectiveness of the invariant even under deviations from this imaging setup. In
particular, the invariant allows for a dense recovery of thepoint of parabolic curvature
from multiple images of the mirror under motion of the environment. This allows us
to recover a geometric property of the mirror. We show that recovery of the parabolic
curvature points opens up a range of novel applications for mirrors.



(a) (b)

Mean Abs. 

Err.
tx ty  x  y  z

Surface-1 1.94 1.60 0.55 0.67 0.46

Surface-2 1.86 2.87 0.96 0.59 0.28

Surface-3 3.54 8.55 2.74 1.04 0.93

Surface-4 4.63 6.69 1.95 1.39 0.48

Fig. 11. (a) Visualization of the pose estimation results. For each test object, we show the pose
estimate at one of the 30 random poses used. (Top) Parabolic curvature points detected from 25
images of the mirror under a rotating environment. (bottom)Estimated pose of the mirror with
the true parabolic curvature points overlaid. (b) Mean poseestimation errors. Translational error
is in pixels and rotational error is in degrees. The results are averaged over 30 trials.
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Fig. 12.Recognition experiment on synthetic images. Our test setupconsisted of arbitrarily plac-
ing all four test objects in a virtual scene and rendering multiple images. The recovered parabolic
curvature points were used to recognize the object and estimate its pose.
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