Image Invariants for Smooth Reflective Surfaces

Aswin C. Sankaranarayangmshok VeeraraghavdnOncel Tuzel, and
Amit AgrawaP

! Rice University, Houston, TX 77005, USA
2 Mitsubishi Electric Research Labs, Cambridge, MA 02139AUS

Abstract. Image invariants are those properties of the images of atbtbjat re-
main unchanged with changes in camera parameters, illtioinetc. In this pa-
per, we derive an image invariant for smooth surfaces witharike reflectance.
Since, such surfaces do not have an appearance of their awather distort the
appearance of the surrounding environment, the applitalif geometric in-
variants is limited. We show that for such smooth mirroelgurfaces, the image
gradients exhibit degeneracy at the surface points thapanabolic. We lever-
age this result in order to derive a photometric invariaat ik associated with
parabolic curvature points. Further, we show that thesariamt curves can be
effectively extracted from just a few images of the objectuircontrolled, un-
calibrated environments without the need for any a pridianimation about the
surface shape. Since these parabolic curves are a geoprefierty of the sur-
face, they can then be used as features for a variety of neelsion tasks. This
is especially powerful, since there are very few vision athms that can handle
such mirror-like surfaces. We show the potential of the psagl invariant using
experiments on two related applications - object recogmiéind pose estimation
for smooth mirror surfaces.

1 Introduction

Image invariants are those properties of the images of acbtijat remain unchanged
with changes in camera parameters, illumination etc. Armygric invariant (eg., cross
ratio) is true for surfaces with any reflectance charadtesiéncluding diffuse, specular
and transparent surfaces. But, in order to actually usestbesmetric invariants from
observed images of an object, one needs to identify poiméspondences across these
images. Establishing such point correspondences fromamafdiffuse objects is a
meaningful task since these objects have photometricriesai their own. But surfaces
with mirror reflectance do not have an appearance of their, barhrather present a
distorted view of the surrounding environment. Therefeablishing physical point
correspondences using image feature descriptors (sud¢RasiSnot meaningful. Such
descriptors find correspondences between environmerttiefis, and therefore are not
physically at the same point on the surface. Thus, there &ed o find photometric
properties of specular surfaces that are invariant to thresnding environment. In this
paper, we study and present such an invariant for the imagasanth mirrors.

The main results of this paper arise by studying the photomgtoperties of the
images of mirror surfaces around points that exhibit pdralcarvature. Parabolic cur-
vature points are fundamental to perception of shape battifiuse [15, 17] and for



specular surfaces [23]. In this paper, we first derive a phetdc invariant that is as-
sociated with parabolic curvature points of the mirror aoef. We show that a smooth
mirror imaged by an orthographic camera, reflecting an envirent feature at infinity,
exhibits degenerate gradients at parabolic curvaturgqoiinis degeneracy is charac-
terized by the image gradients being orthogonal to the timeof zero curvature at the
parabolic point. Although the invariant holds exactly foetaforementioned imaging
setup, we empirically show that for a range of practical imggonditions (with per-
spective camera and finite scene), the invariance stillshl@ high degree of fidelity.

The set of parabolic points is a geometric property of a serfand each surface
has its own distinct set of parabolic curves. The photométrariant that we propose
allows us to detect these parabolic curves from just imafiheespecular object with-
out any a priori knowledge about its 3D shape or the surroyndnvironment. Since
these parabolic points are a geometric property of the seirfhey can then be used for
a variety of machine vision tasks such as object recognitioge estimation and shape
regularization. In this paper, we demonstrate a few suclicgtions.

Contributions: The specific technical contributions of this paper are:

— We present a theoretical study of the properties of imagesiobrs. We show
that under a certain imaging setup, the image derivativdsegpoints of parabolic
curvature exhibit degeneracies independent of the sudingrenvironment.

— We show that this degeneracy can be measured quantitatisiely just a few im-
ages of the object under arbitrary illumination, therebgwaing us to recover the
parabolic curvature points associated with the mirror.

— We show new applications of this invariant to challenginghiae vision problems
such as object recognition and pose estimation for mirrggais.

2 Prior Work

In this paper, we are interested in identifying invariamsimages of mirrors. Addi-
tional assumptions are needed for obtaining something imgia'non-trivial. A planar
mirror viewed by a perspective camera is optically the sama perspective camera,
and hence, can produce arbitrary images.

The qualitative properties of images of specular/mirrgeots have been well stud-
ied (see [14] for a survey). Zisserman et al. [25] show thedlsurface properties such
as concave/convexity can be determined under motion oftieerger without knowl-
edge of the lighting. Blake [4] analyze stereoscopic imagespecular highlights and
show that disparity of highlights observed on the mirroelsted to the qualitative prop-
erties of the shape such as its convexity/concavity. BlakkBxelstaff [5] quantify local
surface ambiguities given stereo images of highlightamitig et al. [11] discuss hu-
man perception of shape from images of specular objectsvelien the environment is
unknown and show that humans are capable of accuratelyndatag the shape of the
mirror; potentially from image compression cues. In anosftiedy of human perception
of specular surfaces, Savarese et al. [20] report poor pgocewhen the surrounding
scene comprises of unknown but structured patterns.



It is worth noting that points/curves of parabolic curvatirave been studied in
terms of their photometric properties. Our search is mtgnan part from classical
results in photometric stereo and more recent work in tha afspecular flow. Koen-
derink and van Doorn [15] demonstrate that the structuresaphiotes is completely
determined by parabolic curves of the surface. Furthey, dteo show that the a local
extremum of the field of isophotes occur on parabolic curaes, move along these
curves under motion of the light source. Isophotes as a narsire useful for diffuse
objects with constant albedo and mirrors under simple itigh¢such as a point light
source), and do not extend well to scenes/object with rixtutes.

Much of prior work using properties of parabolic points rieeoaround the idea
of consistency of highlights at parabolic curvature poatsoss small changes in view
or illumination. Miyazaki et al [18] use parabolic curves fegistration of transparent
objects across views.

Recent literature has focused on estimating the shape ofither from the specular
flow [1, 21, 7] induced under motion. Specular flow is defineth@smovement of en-
vironmental features on the image of a mirror due to motiothefmirror/scene. It has
been shown that parabolic curvature points exhibit infif\ite under infinitesimal mo-
tion. The infinite flow is a result of appearance of new sceatufes and disappearance
of existing ones, an observation made earlier by Longuggirs [16] and Walden and
Dyer [22] as well. Waldon and Dyer [22] suggest that, for wist, reliable qualitative
shape information is available only at the parabolic cuimebe forms of discontinu-
ous image flow fields. Studies in perception [17] hint at thiitgitof humans to detect
and use parabolic curvature curves to perform local shaplysis. Some existing ap-
proaches in perception [23] and detection [9] of mirrors aekon the anisotropy of
gradients in the images of smooth mirrors. However, thepensado not identify the
existence of the invariance, the assumptions requiredhiiirtvariance to hold, the
geometric interpretation behind its occurrence and thiilgtaof the invariance for
practical imaging scenarios. More importantly, in additio exploring these proper-
ties, we also show that parabolic curvature points of theanifa surface descriptor)
can be recovered from a few images of the mirror.

3 Deriving the Invariant

This section describes the main technical contributionthefpaper. We begin with
a brief overview of parabolic curvature points. Then, wecdss the image formation
model for mirror objects and show that the observed imagéignés exhibit a degener-
acy at the points of parabolic curvature, irrespective eféhvironment. This leads us
to define an invariant for the surfaces of smooth mirrors.

3.1 Parabolic Curvature Points

Let us model the shape of the (smooth) mirror in its Monge féuy, f(z,y)) =

(x, f(x)) in a camera coordinate system where the funcfiae twice continuously
differentiable. At a given point on the surface, the curvatalong a curve is defined
as the reciprocal of the radius of the osculating circle. phacipal curvatures are
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Fig. 1. Local properties of a surface can be classified into 4 tydéptie, hyperbolic, parabolic
and flat umbilic (planar). This classification deals with bieading of the local surface in various
directions. The parabolic curve is shown in red.

defined as the minimum and maximum values of the curvatursuned along various
directions at a given point. The product of the principalvatures is defined as the
Gaussian curvature. It can be shown [15] that the Gaussiaattue is given by
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Points at which one of the principal curvatures is zero an@ée parabolic curvature
points or simply parabolic points. Defining the Hessian ampwo of the surface as
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Hx) = & [ e fyz](x), @)

parabolic curvature points are defined by points wharé|[H (x)] = 1. When both
principal curvatures at a point are zero, the point is reféto asflat umbilic Planes
are examples of surfaces which are flat umbilic everywhenew® in Figure 1 are
characterization of local properties of a surface.

3.2 Image Formation For Mirror Objects

Mirrors do not have an appearance of their own, and image obmare warps of
the surrounding environment. Modeling the shape of theanias (x, f(x)), image
formation can be described by identifying the camera aneétivironment. We model
the camera as orthographic. Under an orthographic camedalpadl the rays entering
the camera are parallel to its principal direction.

The surface gradient at pixel locatiaris given asv f = (f., f,,)7, and the surface
normal is given as

1 -Vf
n(x) = —— ( ) . @)
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The camera viewing directionat each pixel is the same,= (0,0, 1)”. Under perfect

mirror reflectance, we can compute the direction of the ray ith reflected onto the
camera as = 2(nTv)n — v The corresponding Euler anglésx) = (6, ¢) are given

as,
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Fig. 2. Degeneracy of image gradients at parabolic points. Showrinaage patches at three
locations on a mirror fronmultiple images rendered under a rotating environment. The image
patches corresponding to parabolic curves do not have hadéegts along the parabolic curve.
This is in contrast to a non-parabolic point which can hawiti@ary appearance.

The scene/environment that is seen at pxés hence defined by the intersection of
the scene and the ray in the directions¢k) from the location of the mirror element
(x, f(x))T. In the special case of environment at infinity, the dependem the lo-
cation of the mirror is completely suppressed, and the enwirent feature observed
depends only on the surface gradi&hf.

Under the assumption of environment at infinity, we can defireeenvironment
map over a sphere. L& : S — R be the environment map defined on the spl$re
under the Euler angle parametrization. Undeiinter-reflectancevithin the object, the
forward imaging equation for the intensifyx) observed at pixek is given as

I(x) = E(O(x)) ®)

where®(x) is the Euler angle of the observed ray as given in (4). Diffgeging (5)
with respect tak, the image gradients are given by
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Vil = 2H (x) [
where the Hessiaif (x) is defined in (2). The full derivation is in the supplemental
material (and similar to that of [1]).

For parabolic curvature points] (x) is singular. As a consequendé, I takes val-
ues that are proportional to the non-zero eigenvalu @f), immaterial of what the
environment gradien¥ o E is. Figure 2 shows the local appearance of parabolic and
non-parabolic points under various environment maps.

3.3 Invariant

Given a smooth mirrofx, f(x)), wheref is C? continuous, placed with the surround-
ing environment at infinity and viewed by an orthographic esmthe proposed invari-
ant is a statement on the observed image gradient at parauwliature points of the
mirror. Under this setting, the image gradients at paralmlivature points ardegen-
erateand take values along a single direction that is defined byoited shape of the
surface. This property is independent of the scene in wiiemtirror is placed.
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Fig. 3. The proposed invariant can be geometrically describedyusia ray diagram above. At
a parabolic point, by definition, the normal (and curvatude)not change along one direction.
Under orthographic imaging and scene at infinity, the saratife is imaged onto the camera as
we move along the parabolic curve and hence, the image gtatisappears along this direction.

The invariant arises directly due to the principal directiof zero curvature at
parabolic point (see Figure 3). By definition, an infinitealmovement on the surface
along this direction does not change the surface normaletodr imaging model,
the environment feature imaged at a point depends only osutface normal. Hence,
an infinitesimal displacement on the image plane along thgeption of this direction
does not change the environment feature imaged. As a comseguthe image gradi-
ent along this direction is zero. This geometric understanis related to recent work
on ray-space specular surface analysis [24, 10], whereuti®es study local mirror
patches as general linear cameras and associate diffenexera models to different
local surface properties. Interesting connections to aarkwan potentially be derived
from these papers and remain an important direction foréuteisearch.

Mathematically, the invariant can be expressed in various$. From (6) and under
the assumed imaging conditions, a parabolic curvature pbiy, satisfies

Vil (x0) = [|VxI (x0) ||V (7)

wherev is the eigenvector off (xq) with non-zero eigenvalue. An alternate interpreta-
tion that does not involvél (x) uses the matri®/ (x) defined as:

M) =Y ((Vl(x; E) (Vi (x; E))T) (8)

E

wherel (x; E) is the intensity observed at pixelunder environment defined ifi(©).
Note that the summation in (8) is over all possible environnmaaps. At points of
parabolic curvature,

rank[M (xg)] =1 9)

In contrast, for elliptic and hyperbolic points, the mathikis full rank. For flat umbili-
cal points,H (x) is the zero matrix and the image gradients are zero as wedteftre,
the matrix defined in (8) will be zero rank.



4 Detecting Parabolic Curvature Points

We derive a practical algorithm for detecting points of fa&c curvature from mul-
tiple images of a mirror. The algorithm exploits the coresisty (or degeneracy) of the
image gradients as given in (9). Under motion of the camedresmpair (or equiva-
lently, rotation of the environment), the environment fgatassociated with each point
changes arbitrarily. However, parabolic points tiee to the surface of the mirror, and
hence, the direction of image gradients associated wit the& not change. This moti-
vates an acquisition setup wherein the environment is aharpitrary and consistency
of image gradient at a pixel indicates whether or not it hasipalic curvature. Since
movement of the camera-object pair simultaneously is thé/atgnt to that of rotation
of the environment, we use environment rotation to denatie. o practise, moving the
camera-object pair is easier to accomplish.

Given a set of image§!; }, compute the matrix

M(x) =Y (Valj(x)) (VxI;(x))" (10)
J

using image gradients computed at each frame. We use tbeofatie eigenvalues of
M (x) as the statistic to decide whether or not a pxelbserves a parabolic curvature
point. Figure 4 shows estimates of parabolic points of diffé surfaces. Images for
this experiment were rendered using PovRay. Each imageakas tinder a arbitrary
rotation of the environment. As the number of images in@gte detection accuracy
increases significantly ak/ (x) at non-parabolic points become well-conditioned.

We believe that our approach is unigue in the sense thataezs a ‘dense’ char-
acterization of parabolic curvature points from uncalibdaimages of a mirror. Much
of the existing literature on using the photometric projgsrof parabolic points rely on
the stability of highlights at parabolic points under ches@n views. However, such a
property is opportunistic at best, and does not help in ifleng all the parabolic cur-
vature points associated with the visible surface of theaniin this sense, the ability
to recover a dense set of parabolic curvature points opengassibility of a range of
applications. We discuss these in Section 5.

Theoretically, the invariance is guaranteed only for ahagtaphic camera and an
environment at infinity. However, in practice, the invadatolds with sufficient fidelity
when these assumptions are relaxed. We explore the effi¢dlog proposed invariant
for a range of practical operating conditions in Section 6.

Mis-detection: The proposed invariant does not take inter-reflections adcount.
Inter-reflections alter the physics of the imaging processlly, and violates the re-
lations made earlier in physical models. Imaging resofutitso affects the detection
process. For low resolution images, the curvature of théaserobserved in a single
pixel might deviate significantly from parabolic. Such arsméo can potentially annul
the invariance at the parabolic point due to corruption ftbmsurrounding regions.

False Alarm: It is noteworthy that the invariant describe image gradientparabolic
points. However, degenerate gradients do not necessaply the presence of parabolic
points. Clearly, for small number of images, it is possiblatta surface pixel/patch do



(c) Rotated Torus

Fig. 4. Detecting parabolic curvature points from rendered imdgesarious surfaces. (From
left to right) the depth map of the mirror with the parabol@ngs highlighted in red; a rendered
image of the surface using tl&ace cathedraénvironment map; detected parabolic points from
2 images; from 5 images; from 25 images; Log of decision ®tiatestimated from 25 images.
The occluding contour is shown in cyan and the parabolictpamgreen.

not observe environment features that are sufficiently. &milarly, discontinuities in
the surface such as occluding contours can lead to conisiktganeracy in the observed
image gradients.

Note that, the detection of statistics does not require thi@@ment texture to be
rich. Using increasing number of images (camera-mirror peations), the degenera-
cies due to environment become incoherent and can be filearedasily. Our exper-
iments include textures such as the Grace cathedral whicibieXarge regions with
little or no textures and the method succeeds to capturddtistes regardless.

5 Applications

In this section, we describe three applications of the prtesktheory; (1) pose es-
timation, (2) recognition of mirror-like objects; and (3)passible extension for sur-
face reconstruction. The equivalent algorithms desigoedifffuse/textured surfaces
require establishing correspondences between imagewvaliseis and a model of the
object [13]. For specular objects, the highlights on theeoty serve as an informa-
tive cue for object detection and pose estimation [8]. il Gremban and Ikeuchi
[12] use specular highlights for object recognition, ananphovel views that are dis-
criminative between objects with similar highlights. Hawee these methods do not
generalize to objects with mirror reflectance. In a caliédatetup (camera and envi-
ronment), it is possible to infer about surface normalsubioimage and environment
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Fig. 5. Parabolic curves provide a unique signature for object jposkidentity. Shown are the
parabolic curves of four different objects in differnet pssin each instance, the depth map and
the analytically computed parabolic curves are shown.

correspondences which can be further utilized for estmnagigorithms [6, 19]. How-
ever the required calibration process is a tedious tasle Bstimation and recognition
in an uncalibrated setup remains to be a challenge and wetblabvtihe proposed image
invariants provide necessary information for such tasks.

Pose Estimation: The pose estimation algorithm recovers3ierotation an®D trans-
lation parameters with respect to a nominal pose of the alfétce the camera model
is assumed orthographic, the object pose can only be rezdugrto depth ambiguity.
We assume that either the parametric form or the 3D modeleobtject is given in
advance. Based on the representation, the 3D positiong @itabolic points at object
coordinates are recovered either analytically (using rpatec form) or numerically
(using the 3D model). In an offline process, we generate ddataof curve templates
by rotating the parabolic curvature points with respect seteof sampled 3D rotations
and projecting visible points to the image plane. Sincetianeof the object along the
principal axes{.) of the camera results in an in-plane rotation of the paiafpalints
on the image plane, it suffices to include only out-of-plastations ¢, andd,) to the
database which is performed by uniform sampling of the angitethe2-sphere. A few
samples included into the database is given in Figure 5.

The initial pose of the object is recovered by searchingtferdatabase template to-
gether with its optimal 2D Euclidean transformation parterss = (6., t,, t,), which
aligns the parabolic points of the template to the imagelgdi@curvature points. We
use a variant of chamfer matching technique [2] which messstire similarity of two
contours. The precision of the initial pose estimationnsiteéd by the discrete set of
out-of-plane rotations included into the database. Weeefie estimation using a com-
bination of iterative closest point (ICP) [3] and Gauss-Mkawoptimization algorithms.
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Fig. 6. A stylistic example showing how the parabolic points previglobal shape priors. Such
priors are extremely useful in restricting the solutioncg@n a surface recovery algorithm as
well as in identifying regions where simple parametric nisdiescribe the surface accurately.

Recognition: The parabolic curvature points provide unique signatuagtognize
many objects in variable poses. The object recognitionrélgu is a simple extension
of the presented pose estimation approach. For each olgesst we repeat the pose
estimation process and recover the best pose parametersbjéct class is then given
by the minimum of the chamfer cost function [2] over all cless

Shape Priors: Knowledge of the parabolic curvature points gives a stromgrmn
the shape of the mirror. It is well known that curves of pai@bourvature separate
regions of elliptic and parabolic curvature. Toward thiglame can constrain the range
of possible shapes (Figure 6). Further, in each region weisaisimple non-parametric
surface models such as splines and regularize their pagesrtetsatisfy the curvature
properties. This forms a compelling direction for futuregarch.

6 Experiments

We use both real and synthetically generated images fonquaranents. For synthetic
experiments, we use publicly available ray-tracing sofenROV-Ray for photo realistic
rendering which provides high quality simulations of reakld environments including
inter-reflections. Real data was collected with a Canon SaRera using a 300mm
lens, and placing the mirror approximately 150cm from theea. Both camera and
mirror were rigidly mounted to a platform, which was movedward to change the
environment features seen on the mirror.

6.1 Detecting Parabolic Curves

In Figure 4, we present results for detection of parabolig&iure points from synthet-
ically rendered images under the ideal imaging conditionrtfiographic camera and
scene at infinity. We show the performance of the detectioenthese assumptions are
violated. Figure 7 shows the detection of parabolic poirftemthe scene is at a finite
distance from the mirror. In particular, the detection ofgelic curvature points is
reliable even when the minimum distance of the mirror to thiect is the same as that
of the variations in the depth of the object itself. This skdie stability of the detec-
tion statistic to finite scenes. Figure 8 shows stable deteosults when the camera is



(c) Parabolic curve decision

(a) Depth map and true (b) Parabolic curve decision (d) Parabolic curve decision
parabolic curves. The depth of statistic when the environment  statistic when the environment  statistic when the environment

the surface varies by 5 cm. map is at infinity. is (approx) 11 cm away. is (approx) 5 cm away.

Fig. 7. Detection of parabolic points when the environment is atitefiistance from the mirror.

Size of object approx 5cm x 5cm x 5cm

¥ d

Field of view: 35 degrees Field of 75 degrees
Camera to Object Center: 5 cm Camera to Object Center: 3 cm

Fig. 8. Detection of parabolic points using a perspective camedaiumedium to large deviation
from the orthographic case. The parabolic curvature poertgin stable in both cases. Note that
as the camera approaches the object and the field of view cbithera is increased, the relative
locations of the (projection of the) parabolic points on timage plane changes. This, in part,
explains the drift of the parabolic curvature points.

&)

Input Images Estimated Detection Manually marked
detection statistic ~ Results ground truth

Fig. 9. Estimation of parabolic points of a real object using midtipnages. Results were esti-
mated using 17 images.

heavily perspective. These figures reinforce the detedigarabolic curves based on
the invariant for practical imaging scenarios. In Figures 10, we show detection of
parabolic curvature points using real images for two higbfiective objects.

6.2 Pose Estimation and Recognition

In the synthetic experiments, we randomly sample six par@msef the 3D object pose
and render the object under several environment rotatidres parabolic curves on the



An input image. Inset is ~ Decision statistic (log scale) with 10 Detected parabolic  (Left) pose matching results and (right) mirror
the segmentation mask. (left) and 25 (right) images of the mirror.  points with 25 images synthesized in estimated pose.

Fig. 10. Estimation of parabolic points of a real surface using \@eiaumber of images. The
parametric form of the surface was given in Figure 4 and itasufiactured using a CNC machine.
As the number of images increase, the degeneracies dueitorenent become incoherent and
detection becomes more reliable.

image plane is detected using ttierendered images which are then utilized to recover
the object pose via the algorithm described earlier.

We provide results for four different surfaces which arevamin Figure 5. In Fig-
ure 11a, we present several pose estimation results. Thdesiom is repeated 30 times
for each surface using a different pose and mean absolurteatisin errors for five pa-
rameters of the 3D pose is given in Figure 11b. We note thateghe camera model is
orthographic, the object pose can be recovered only up tpth denbiguity. In all our
trials the pose estimation algorithm converged to the tnsepAs shown, the parabolic
curves provide extremely robust features for pose estimasind average rotation error
is less thar2 degrees and pixels. In Figure 10, we show pose detection results on real
images of a mirror. The estimated pose wad.24, —1.66, 1.9) for a ground truth of
(0,0,0).

For recognition, we place four objects simultaneously sae¢hvironment and rec-
ognize identities of these surfaces. This is a challengiegario due to heavy inter-
reflections of the surfaces. The same rendering scenarfegidse estimation experi-
ment is repeated. The object identities are given via thénmim of the cost function
after pose estimation. The average recognition rate bver4 trials is92.5% and typi-
cal recognition examples are shown in Figure 12. We notetivatof the surfaces have
exactly the same occluding contour, therefore in this sderhis statistic is expected
to fail whereas parabolic curvature points provide uniqgeaures.

7 Conclusions

In this paper, we propose a photometric invariant for imagfesmooth mirror. We
show that images of mirror exhibit degenerate image grasli@nparabolic curvature
points when the camera is orthographic and the scene is ritynfive demonstrate the
practical effectiveness of the invariant even under deatfrom this imaging setup. In
particular, the invariant allows for a dense recovery ofghat of parabolic curvature
from multiple images of the mirror under motion of the enwingent. This allows us
to recover a geometric property of the mirror. We show thatvery of the parabolic
curvature points opens up a range of novel applications foons.
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Surface-1 |1.94]1.60|0.55|0.67 | 0.46
Surface-2 | 1.86(2.87|0.96|0.59|0.28
Surface-3 |3.54[8.55[2.74|1.04|0.93
Surface-4 |4.6316.69[1.95|1.39(0.48
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Fig. 11. (a) Visualization of the pose estimation results. For eash ¢bject, we show the pose
estimate at one of the 30 random poses used. (Top) Paraboliatare points detected from 25
images of the mirror under a rotating environment. (bott@siimated pose of the mirror with
the true parabolic curvature points overlaid. (b) Mean pxenation errors. Translational error
is in pixels and rotational error is in degrees. The resuttssaeraged over 30 trials.
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Fig. 12.Recognition experiment on synthetic images. Our test sainpisted of arbitrarily plac-
ing all four test objects in a virtual scene and renderingtiplelimages. The recovered parabolic
curvature points were used to recognize the object and &tiits pose.
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