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ABSTRACT | Video cameras are among the most commonly

used sensors in a large number of applications, ranging from

surveillance to smart rooms for videoconferencing. There is a

need to develop algorithms for tasks such as detection,

tracking, and recognition of objects, specifically using distrib-

uted networks of cameras. The projective nature of imaging

sensors provides ample challenges for data association across

cameras. We first discuss the nature of these challenges in the

context of visual sensor networks. Then, we show how real-

world constraints can be favorably exploited in order to

tackle these challenges. Examples of real-world constraints are

a) the presence of a world plane, b) the presence of a three-

dimiensional scene model, c) consistency of motion across

cameras, and d) color and texture properties. In this regard, the

main focus of this paper is towards highlighting the efficient use

of the geometric constraints induced by the imaging devices to

derive distributed algorithms for target detection, tracking, and

recognition. Our discussions are supported by several examples

drawn from real applications. Lastly, we also describe several

potential research problems that remain to be addressed.

KEYWORDS | Detection; distributed sensing; geometric con-

straints; multiview geometry; recognition; smart cameras;

tracking

I . INTRODUCTION

Video cameras are fast becoming ubiquitous for a wide range

of applications including surveillance, smart video conferenc-

ing, markerless human motion capture, animation transfer,

and even some critical tasks such as assisted surgery. Some

of the challenges in building applications for single video

cameras have been studied for more than a decade, and

reliable algorithms for many tasks have been realized.
Looking ahead, the challenge is to make these algorithms

and applications robust in the presence of several cameras

(possibly even several hundreds) that are networked.

Distributed sensing using a host of networked smart
cameras raises challenges that can be broadly clustered in

two main areas.

• Distributed Sensing. The image obtained by each

camera depends on its position and orientation,
and hence, in general, is different from that of

other cameras observing the same scene. This

raises the need for designing algorithms that can

efficiently fuse the evidence available at each of

these cameras into a consistent and robust

estimate. Specifically, since we are interested in

object detection, it is important to determine

whether an object is present. If an object is present
within the field of view, it is also of interest to

estimate its pose, appearance, and identity. Typical

objects of interest include humans and vehicles.

• Smart Cameras. Constraints in communication

make it inappropriate to transmit all of the video

data collected at each node across the network.

However, the availability of processing power at

each camera enables the transmission of processed
low-bandwidth information that is sufficient for the

task at hand. This raises two important issues.

What is the nature of the information that needs to

be extracted in each individual Bsmart camera[
node? How does one fuse the information

extracted at the nodes in order to solve detection,

tracking, and recognition tasks in visual sensor
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networks? Power and energy optimization in
distributed smart cameras is another important

challenge that other papers in this issue tackle in

detail.

There are numerous applications of distributed visual

sensing algorithms. We concentrate on the problems of

distributed detection, tracking, and recognition. These

form three integral subsystems of any robust distributed

visual sensing network. The number of cameras connected
in the distributed network can vary greatly: from a few

(less than ten) cameras for household monitoring of the

elderly to tens of cameras to monitor a building and all the

way to hundreds of cameras connected in a traffic

monitoring network. The specific challenges encountered

in each of these applications vary with the number of

cameras that are connected in the network. Nevertheless,

some of the basic principles of algorithm design and
optimization remain the same in all these scenarios.

A. Outline of This Paper
In Section II, we describe the geometric constraints

that are involved in multicamera problems with special

emphasis on those constraints that have a direct impact on

algorithm design for detection, tracking, and recognition

of objects. In Section III, we describe some of the
challenges in object detection from uncalibrated cameras

and describe how the constraint that the scene has a

dominant plane can be exploited to develop distributed

detection algorithms for cameras with overlapping fields of

view. In Section IV, we provide a formal description of the

problem of distributed tracking in a camera network and

describe an optimal multiview fusion algorithm that can

combine evidence from multiple camera views to obtain a
robust estimate of the objects’ location in a three-

dimensional (3-D) world coordinate system. In Section V,

we study the problem of recognition of humans and

vehicles. In particular, we show how to perform object

verification across nonoverlapping views using novel views

synthesized from 3-D models built and propagated across

the network of cameras. We conclude by highlighting

several problems that remain to be solved in the area of
visual sensor networks.

II . GEOMETRIC CONSTRAINTS OF
MULTIPLE CAMERAS

In this section, we introduce the basics of projective

geometry and discuss some of the concepts that are

extensively used for detection and tracking. We do note
that this is not an exhaustive coverage of this topic. An in-

depth discussion of projective geometry can be found in [1]

and [2]. The projective nature of imaging introduces

unique challenges in distributed camera networks. In the

context of detection, tracking, and recognition algorithms,

it becomes important to understand the nature of such

constraints and their impact on these problems.

A. A Note on Notation and
Homogeneous Coordinates

In the rest of this paper, we use bold to denote vectors

and capital letters to denote matrices. Further, we use x, y,

and z to denote quantities in world coordinates and u and v
for image plane coordinates. In addition to this, the

concept of homogeneous coordinates is important. We use

a tilde to represent entities in homogeneous coordinates.

Given a d-dimensional vector u 2 R
d, its homogeneous

representation is given as a ðdþ 1Þ-dimensional vector
~u)½u; 1�T, where the operator ) denotes equality up to

scale. In other words, ~u)~x$ ~u ¼ �~x, � 6¼ 0. In simpler

terms, when we deal with homogeneous quantities, we

allow for a scale ambiguity in our representation. The

representation mainly allows for elegant representations of

the basic imaging equations that we discuss next.

B. Central Projection
Central projection is the fundamental principle behind

imaging with a pinhole camera and serves as a good

approximation for lens-based imaging for the applications

considered here. In the pinhole camera model, rays (or

photons) from the scene are projected onto a planar screen

after passing through a pinhole. The screen is typically

called the image plane of the camera. Consider a camera

with its pinhole at the origin and the image plane aligned
with the plane z ¼ f . Under this setup, a 3-D point

x ¼ ðx; y; zÞT projects onto the image plane point

u ¼ ðu; vÞT , such that

u ¼ f
x

z
; v ¼ f

y

z
: (1)

This can be elegantly written in homogeneous terms as

~u )
u
v
1

0
@

1
A ¼ fx=z

fy=z
1

0
@

1
A)

fx
fy
z

0
@

1
A ¼ f 0 0

0 f 0

0 0 1

2
4

3
5x: (2)

A more general model of the pinhole camera allows for

the pinhole to be at an arbitrary position and the image

plane oriented arbitrarily. However, we can use a simple

Euclidean coordinate transformation to map this as an

instance of the previous one. Finally, the camera might

have nonsquare pixels with image plane skew. This leads

us to a general camera model whose basic imaging

equation is given as

~u)K½R t�~x ¼ P~x (3)

where P is the 3 � 4 matrix encoding both the internal

parameters of the camera K (its focal length, principal
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point, etc.) and the external parameters (its orientation
R and position t in a world coordinate system). ~u and ~x
are the homogeneous coordinate representations of the

pixel in the image plane and the point being imaged in

the real world, respectively. Although central projection

is inherently nonlinear, it can be written as a linear

transformation of the homogeneous coordinates. Finally,

(2) can be obtained from (3) with R ¼ I3 (the identity
matrix), t ¼ 0, and K ¼ diagðf; f; 1Þ.

It is noteworthy that the projection equation of (3) is

not invertible in general. Intuitively, the pinhole camera

maps a 3-D world onto a two-dimensional (2-D) plane, and

hence, the mapping is many-to-one and noninvertible. All

points that lie on a line passing through the pinhole map

onto the same image plane point. This can also be

independently verified by the scale ambiguity in (3). Given

a point on the image plane u, its preimage is defined as the
set of all scene points that map onto u under central

projection. It is easily seen that the preimage of a point is a

line in the real world. Without additional knowledge of the

scene and/or additional constraints, it is not possible to

identify the scene point that projects onto u. This lack of

invertibility leads to some of the classical problems in

computer vision, the most fundamental being establishing

correspondence across views.

C. Epipolar Geometry
Consider two images (or central projections) of a 3-D

world. Given a point uA on the first image of a world point

x, we know that its preimage is a line passing through the

point uA and CA, the pinhole of the camera (see Fig. 1).

Hence, given information about uA on the first image, all

we can establish is that the corresponding projection of the
point x on the second image plane uB lies on the

projection of the preimage of uA onto the second image

plane. Since the preimage of uA is a line, the projection of

this line onto view B gives the line LðuAÞ, the epipolar line
associated with uA. Thus, the epipolar geometry constrains

corresponding points to lie on conjugate pairs of epipolar

lines.

In the context of multiview localization problems, the
epipolar constraint can be used to associate objects across

multiple views [3]. Once we obtain reliable correspon-

dence across multiple views, we can triangulate to localize

objects in the real world. However, correspondences based

on epipolar constraint alone tends to be insufficient, as the

constraint does not map points uniquely across views. In

general, all points lying on the epipolar line are potential

candidates for correspondence.

D. Triangulation
In many detection and tracking applications, once we

have correspondences between object locations across

views, we are interested in localization of these objects in

scene coordinates. Let us assume that the same object has

been detected in two views (A and B) with camera center

CA and CB at image place locations uA and uB, as shown in
Fig. 2. In this case, the basics of projective imaging

constrains the object to lie on the preimage of the point uA

(the line connecting CA and uA). Similarly, the object must

also lie on the preimage of uB in view B. Therefore,

estimating the true location of the object amounts to

estimating the point of intersection of these two lines. In a

general scenario with several cameras, each camera gives

Fig. 1. Consider views A and B (camera centers CA and CB) of a scene with a point x imaged as uA and uB on the two views. Without any

additional assumptions, given uA, we can only constrain uB to lie along the image of the pre-image of uA (a line). However, if the world were

planar (and we knew the relevant calibration information), then we can uniquely invert uA to obtain x and reproject x to obtain uB.
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rise to a line and estimating the object’s location involves

computing the point of intersection of these lines. In the

presence of noisy measurements, these lines do not

intersect at a single point and error measures such as

sum of squares are used to obtain a robust estimate of the

location of the object. This is called triangulation [4]. The
drawback of the triangulation approach is that it requires

correspondence information across cameras, which is

difficult to obtain.

E. Planar Scenes and Homography
There is one special scenario when the imaging

equation becomes invertible, and that is when the world

is planar. Most urban scenarios form a good fit as the
majority of actions in the world occur over the ground

plane. This makes it a valid assumption for a host of visual

sensing applications. The invertibility can also be effi-

ciently exploited by algorithms for various purposes. As an

example, consider the correspondence problem that we

mentioned earlier. Under a planar world assumption, the

preimage of a point becomes a point (in most cases) being

the intersection of the world plane and the preimage line.
This implies that by projecting this world point back onto

the second image plane, we can almost trivially find

correspondence between points on the two image planes.

This property induced by the world plane, that seemingly

allows for finding correspondences across image planes, is

referred to as the homography induced by the plane.

Consider two views of a planar scene labeled view A
and view B. We can define a local coordinate system at
each view. The same scene point denoted as xA and xB on

the two coordinate systems is related by a Euclidean

transformation

xB ¼ RxA þ t: (4)

Here, R (a rotation matrix) and t (a 3-D translation

vector) define the coordinate transformation from A to

B. Let us assume that the world plane has an equation

nTxA ¼ d, with d 6¼ 0.1 For points that lie on the plane,

we can rewrite (4) as

xB ¼ RxA þ t
nTxA

d

¼ R þ 1

d
tnT

� �
xA: (5)

In each local camera coordinate system, we know

that ~u)K½R t�~x [see (3)] with R ¼ I3 and t ¼ 0.

Therefore, ~uB)KBxB and ~uA)KAxA, which gives us

K�1
B ~uB) R þ 1

d
tnT

� �
K�1

A ~uA

~uB)H~uA; where H ¼ KB R þ 1

d
tnT

� �
K�1

A : (6)

1When d ¼ 0, the plane passes through the pinhole at A, thereby
making the imaging noninvertible.

Fig. 2. Consider views A, B, and D of a scene with a point x imaged as uA, uB, and uD on the views. We can estimate the location of x by

triangulating the image plane points as shown in the figure. At each view, we draw the preimage of the point, which is the line joining the

image plane point and the associated camera center. The properties of projective imaging ensure that the world point x lies on this preimage.

Hence, when we have multiple preimages (one from each view), the intersection of these lines gives the point x.
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This implies that a point in view A, uA maps to the
point uB on view B as defined by the relationship in (6).

The 3� 3 matrix H [in (6)] is called the homography matrix

or just the homography. Also, note that H (like P) is a

homogeneous matrix, and the transformation defined by it is

unchanged when H is scaled. Further, H is invertible when

the world plane does not pass through pinholes at either of

the two views. This is easily verified, as our derivation is

symmetric in its assumptions regarding the two views.
Finally, the premise of the induced homography

critically depends on the fact that the preimage of a point

on the image plane is a unique point on the world plane.

Suppose we use a local 2-D coordinate system over the

world plane; the image plane to world plane transforma-

tion (from their respective 2-D coordinate systems) can be

shown to be a projective transformation, which, like

before, can be encoded as a 3 � 3 homogeneous matrix,
say, H�. This transformation is useful when we want to

estimate metric quantities, or quantities in a Euclidean

setting. The most common example of this is when we

need to localize the target in the scene coordinates.

Computing the image plane to world plane transfor-

mation H� is a challenging problem that is typically done

by exploiting properties of parallel and perpendicular lines

on the planes. Typically, this requires manual inputs such
as identifying straight lines segments that are parallel.

While this is not always possible, many urban scenes (such

as parking lots, roads, buildings) contain such lines, which

makes it easier to estimate the transformation H�, at least

in a semisupervised way. Computing H�, as it turns out, is

identical to a metric rectification of the image plane. Many

such techniques are illustrated in [1].

III . DETECTION

The first and foremost task in distributed visual sensing is to

detect objects of interest as they appear in the individual

camera views [5]–[7]. In general, this is a very challenging

task since objects belonging to the same class (say, humans,

for instance) can have significantly different appearances

in the images because of factors such as clothing,
illumination, pose, and camera parameters. Object detec-

tion in images and video may be achieved using one of two

major approachesVa static feature-based characterization

of the objects of interest or object motion as a cue to detect

objects. Several recent approaches have been developed for

object detection and recognition in images and videos, and

these approaches typically involve maintaining a model for

the objects of interest in the form of a set of static features
and possibly a model for the spatial relationship between

the various features. Given a test image, object detection is

then decomposed into two stepsVfinding features in the

test image and then validating whether the set of visible

features in the test image suitably explains the presence of

the object in the image. One problem with adopting any

such approach for video is that these approaches are

computationally intensive and it would be inefficient
especially when the number of objects is large. Secondly,

these approaches also require a training set of images in

which the objects of interest have been labeled. This would

mean that objects not previously modeled would not be

detected in a test sequence. Therefore, we will not discuss

these methods in the rest of this paper.

In typical visual sensing scenarios, the objects of

interest are those that are moving. Detection of moving
objects is a much easier task, because object motion

typically leads to changes in the observed intensity at the

corresponding pixel locations, and this change in intensity

can be used to detect moving objects. The challenge in a

single camera setup is to associate groups of coherently

moving nearby pixels to a single object. In multicamera

networks, it also becomes necessary to associate detected

objects across camera views.

A. Background Modeling for Moving
Object Detection

Detection of moving objects is typically performed by

modeling the static background and looking for regions in

the image that violate this model. The simplest model is

that of a single template image representing the static

background. A test image can then be subtracted from the
template and pixels with large absolute difference can be

marked as moving. This simple model introduces the idea

of background subtractionVessentially the process of

removing static background pixels from an image.

B. Background Subtraction
Traditionally, background subtraction is posed as a

hypothesis test [8] at each pixel, where the null hypothesis
H0 is that the pixel belongs to the background model Bt and

the alternate hypothesis H1 is that the pixel does not belong

to Bt. Here, the subscript t is used to denote time, and

hence Bt represents the background model at time t, and It

the image at time t.
Given the hypothesis test defined as

H0 : Ii
t 2 Bi

t ðpixel is backgroundÞ
H1 : Ii

t 62 Bi
t ðpixel is NOT backgroundÞ (7)

the likelihood ratio associated with the hypothesis test is

defined as

Pr Ii
tjBi

t

� �
1� Pr Ii

tjBi
t

� �]H0

H1
�: (8)

Ii
t and Bi

t correspond to the ith pixel of the image and

background model, respectively, and � defines the

threshold whose value is decided based on a desired

false alarm or misdetection rate.

Sankaranarayanan et al.: Object Detection, Tracking and Recognition for Multiple Smart Cameras

1610 Proceedings of the IEEE | Vol. 96, No. 10, October 2008

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 29, 2008 at 00:59 from IEEE Xplore.  Restrictions apply.



The likelihood ratio test defined in (8) is equivalent to

Pr Ii
tjBi

t

� �
]H0

H1
� ¼ �

1þ � : (9)

As an example, consider a simple background model,

where Bt ¼ B0 is an object-free static background image.

For common models used in the hypothesis test, the

likelihood ratio test takes the form

Ii
t � Bi

0

�� ��yH0

H1
�0: (10)

This intuition behind this test is that the error term

jIi
t � Bi

0j will be very small at pixels that correspond to

static objects, while this term will be large for pixels

corresponding to moving objects. Fig. 3 shows an observed

image, the corresponding background model, and their

difference. As seen, this difference is very small except in
locations corresponding to the moving person and the

moving car. This difference image can be used to estimate

the set of pixels that correspond to moving objects.

C. Common Background Models
However, a simple background model such as a fixed

template ðBt ¼ B0Þ would be susceptible to global changes

in the environment due to lighting, time of the day,

Fig. 3. Use of geometry in multiview detection. (a) Snapshot from each view. (b) Object-free background image. (c) Background subtraction

results. (d) Synthetically generated top view of the ground plane. The bottom point (feet) of each blob is mapped to the ground plane

using the image-plane to ground-plane homography. Each color represents a blob detected in a different camera view. Points of different

colors very close together on the ground plane probably correspond to the same subject seen via different camera views.
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weather effects, etc. Ideally, we would like the following
from our detection algorithm:

• adaptive to global changes in the scene, such as

illumination or camera jitter;

• resilient to periodic disturbances (such as tree

movement due to wind or rain).

There exist a host of algorithms that work very well in

many scenarios [5]–[7]. One simple extension of the static

model is by modeling each pixel as Gaussian distributed
with mean Bi

t and variance �2
i;t.

The background model is defined as

Pr Ii
tjBt

� �
/ exp �

Ii
t � Bi

t

� �2

2�2
i;t

 !
: (11)

The model defined in (11) extends the simple static

background model by allowing for a variance term �2
i;t at

each pixel. Effectively, this corresponds to using a different

threshold at each pixel, one that depends both on � and on
the variance �2

i;t. Such models are useful in handling

dynamic scenes with significant clutter. The means Bi
t and

variances �2
i;t are typically updated in a manner that

attempts to keep the background model object-free [6].

Another background model that robustly handles

periodic background disturbances is the mixture of

Gaussians (MoG) model [7]. This model adaptively learns

an MoG distribution at each pixel. The multimodality of
the underlying distribution gives the ability to capture

repetitive actions as part of the background. An adaptive

learning method can be used to keep track of global

changes in the scene. As before, given a new image, we can

compute the likelihood image and threshold it to obtain

pixels that violate the background model.

D. Using Homography for Multiview Localization
At each individual camera view, background subtrac-

tion results in a binary image that labels each individual
pixel either as belonging to the background or as

belonging to the moving foreground object. Due to

changing texture and illumination conditions in the

scene, the pixels belonging to a single object may lead to

disconnected blobs. Simple heuristics and connected

component analysis is performed on the binary back-

ground subtracted image to label the binary image into a

set of objects with each object occupying a connected set
of pixels (blob) in the image. The location and the

various characteristics of each detected object blob are

stored.

If we assume that the objects are all moving on the

ground plane, then the detected blobs in each camera view

can be transformed to the world plane using the image-

plane to world-plane transformation. Let us assume that Hi

represents the 3 � 3 homogeneous matrix that relates

coordinates in the image plane of camera i to that of a local
2-D coordinate system on the world plane. Also, let Hði;jÞ
denote the homography relating the image plane of camera

i to that of camera j. Therefore, Hði;jÞ ¼ H�1
j Hi. A single

object moving on the world plane will produce

corresponding blobs in each of the cameras that are able

to view the object.

Existing multiview localization algorithms project

features from the detected blob on each of the image
planes to the world plane. These features are typically

representative points [9], lines [10], or the whole blob

itself [11]. The individual choice of the feature depends

heavily on the performance of the background subtraction

algorithms on the underlying data. Consensus across views

is achieved by appropriately fusing these transformed

features in the world plane. This is schematically shown in

Fig. 3.

E. Relaxing the Homography Constraint: Epipolarity
In many cases, we need to study multiview detection

algorithms for more generic scenarios, those in which the

assumption of planar scene is violated. In the absence of

planarity constraint, the image to scene inversion is no

longer unique. In the presence of multiview inputs, it is

possible to triangulate and solve for the intersection of these
line provided the necessary correspondence information
associating points across views is available. Such correspon-

dences are in general hard to solve for, given the weakness of

the epipolar constraint, which usually generates multiple

hypotheses for point correspondences. Typically, these

hypotheses are resolved using additional constraints (such

as the curvature of the trajectory or the appearance of the

object). Fig. 2 and Section II-D illustrate the concept of
triangulation for multiview detection.

IV. DISTRIBUTED MULTIVIEW
TRACKING

Once the objects of interest have been detected in each of the

individual cameras, the next task is to track each object using

multiview inputs. Most algorithms maintain an appearance
model for the detected objects and use this appearance model

in conjunction with a motion model for the object to estimate

the object position at each individual camera. Such tracking

can be achieved using deterministic approaches that pose

tracking as an optimization problem [12], [13] or using

stochastic approaches that estimate the posterior distribution

of the object location using Kalman filters [14] or more

commonly particle filters [15]–[19]. For surveys on visual
tracking of objects, we refer the interested readers to [20], [21].

There exist many application domains that benefit

immensely from multiview inputs. The presence of multi-

view inputs allows for the robust estimation of pose and limb

geometry (markerless motion capture) [22]–[24]. When

targets are at lower resolution, position tracking in scene

coordinates provides information that is useful for higher
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level reasoning of the scene. As an example, [25] uses
multiple cameras to track football players on a ground plane.

Similarly, [9], [10], [26], and [27] consider the problem of

multiview tracking in the context of a ground plane, with

the intent of localization of target position on the plane.

In the case of multicamera systems, another important

challenge is the association of objects across the camera

views. For cameras that have nonoverlapping fields of

views, object association can be achieved by learning the
relationship between patterns of entry and exit in various

camera views [28]. For cameras with overlapping fields of

views, an important issue that arises is fusion of object

location estimates. This requires the use of epipolar

geometry and triangulation in the most general case. As a

special case, in the presence of ground-plane constraint, it

is possible to derive efficient estimators for fusing

multiview information. We discuss this next.

A. Multiview Tracking: Planar World
Multicamera tracking in the presence of ground-plane

constraint has been the focus of many recent papers [9]–

[11], [29]. The key concepts in many of the algorithms

proposed are the following.

• Association of data across views by exploiting the
homography constraint. This can be done by project-
ing various features associated with the silhouette.

The vertical axis from each segmented human is

used as the feature by Kim and Davis [10], while

points features [9], [29] or even the whole silhouette

[11] form alternate choices. These feature(s) are

projected onto a reference view using the homo-

graphy transformation, and consensus between

features is used to associate data across views.
• Temporal continuity of object motion to track.

Typically, a particle filter [9], [10] is used to

temporally filter the data after association. Alter-

natively, [11] builds a temporal consistency graph

and uses graph-cuts [30] to segment tracks.

Since the early work of Smith and Cheeseman [31],

researchers have known that one has to account for the

effect of varying covariances on parameter fusion and
estimation accuracy, especially under highly asymmetric

placement of cameras. Consider, for example, the problem

of location estimation of a point object moving on a plane.

At each camera, background subtraction provides an

estimate of where the object lies. We can now project

the image plane locations to arrive at individual estimates

of the world plane location of the tracked point. In an ideal

noise-free condition, the estimates arising from each of the
cameras would be identical. However, in the presence of

noise corrupting the image plane observations, errors in

calibration, and inaccuracies in modeling, the world plane

location estimates will no longer be identical. We now

need a strategy to fuse these estimates. However, to do so

in a systematic fashion, we need to characterize the

statistical properties of these estimates. Let us suppose that

we have a characterization of the location of the object in

the individual image planes as a random variable. We can

project these random variables to the ground plane using

the projective transformation linking the individual image

planes and the ground plane.

Fig. 4 shows an example of three cameras A, B, and C
looking at a plane �, with the image plane of B parallel to
�. In contrast, the image planes of A and C are

perpendicular to �. Also shown on the image planes of

the cameras are iso-error contours representing the image

plane distribution at each camera. The homographies

between the cameras and the plane � are HA�, HB�, and

HC�, respectively. In this setup, HB� is not fully

projective, defining only an affine transformation, as

opposed to HA� and HC�, which induce strong projective
distortion. We would expect the density on B to retain its

original form (similar error isocontours) when projected

on the plane.

The projective mapping is in general a nonlinear

transformation involving ratios. The statistics of random

variables, when transformed under such a ratio transfor-

mation, change significantly. Given that the projective

transformations linking different views of the same scene
are different, one can expect that the statistics of random

variables on the world plane arising from different views

will necessarily be different, even when the original

random variables are identically distributed.

Given M cameras, and the homography matrices Hi,

i ¼ 1; . . . ;M, between the camera views and the ground

plane, one can derive an algorithm for fusing location

estimates. Let Zi
u be the random variable modeling the

object location on the image plane of the ith camera. Let us

assume that the random variables fZi
ug

M

i¼1 are statistically

independent. Now, each of these random variables can

be projected to the world plane to obtain Zi
x, such that

~Z
i

x)Hi
~Z

i

U , i ¼ 1; . . . ;M.

Let us consider the distribution of Zi
x under the

assumption that the Zi
u are Gaussian. Specifically, when

Fig. 4. A schematic showing densities of the image planes of cameras

and their transformations to the ground plane.
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certain geometric properties are satisfied,2 we can show

that the distribution of Zi
x is closely approximated by a

Gaussian distribution [1], [9]. Further, we can relate the

mean and the covariance matrix of the transformed
random variable to the statistics of the original random

variable and the parameters characterizing the projective

transformation. This result is useful for designing strate-

gies to fuse fZi
x; i ¼ 1; . . . ;Mg in an optimal sense. In the

case of multiview localization, if the covariances of the

estimates Zi
x is �i, then the minimum variance estimate

Zmv is computed as

Zmv ¼
XM

i¼1

��1
i

XM

j¼1

��1
j

 !�1

Zi
x: (12)

The covariance of Zmv, �mv is given as

�mv ¼
XM

j¼1

��1
j

 !�1

: (13)

We refer the reader to the early works of Smith and

Cheeseman [31], [32], Kanatani [33], and, more recently,

Sankaranarayanan and Chellappa [9].

Hence, given a true object location on the ground

plane, �mv provides an estimate of the maximum accuracy

(or minimum error) with which we can localize the object

on the ground plane given modeling assumptions on the
image plane (see Fig. 5).

Finally, we can embed the concept used in constructing

the minimum variance estimators in formulating dynam-

ical systems that can be used to track objects using

multiview inputs. As before, we efficiently fuse estimates

arising from different views by appropriately determining

the accuracy of the estimate characterized by its covari-

ance matrix. Fig. 6 shows tracking outputs from processing
video data acquired from six cameras. Each object is

tracked using a particle filter, and object-to-data associa-

tions are maintained using joint probability data associa-

tion [34].

This algorithm can be easily implemented in a

distributed sensor network. Each camera transmits the

blobs extracted from the background subtraction algorithm

to other nodes in the network. For the purposes of
tracking, it is adequate even if we approximate the blob

with an enclosing bounding box. Each camera maintains a

multiobject tracker filtering the outputs received from all

the other nodes (along with its own output). Further, the

data association problem between the tracker and the data

is solved at each node separately, and the association with

maximum likelihood is transmitted along with data to

other nodes.

B. Relaxing the Planar Constraint
There exist many scenarios when the objects’ motion is

not restricted to the plane or when the scene deviates

significantly from a plane. In [35], we observe and track

2The required geometric properties reduce to the region of interest
that is being imaged to be far away from the line of infinity in each of the
views (for details, refer to [9]).

Fig. 5. Variance ellipses are shown for the individual image planes. The corresponding color-coded ellipse on the ground plane shows the

covariance when transformed to the ground plane. The ellipse in black (on the ground plane) depicts the variance of the minimum

variance estimator. Note that this estimate performs better than the individual estimates.
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objects (bees) flying freely in an enclosed space, using
inputs from two cameras. The bees are all similar in

appearance and image onto small areas (5–10 pixels). We

cannot perform association using appearance information

in this scenario. Finally, the internal and the external

calibration parameters of the camera might not be

available.

In [35], we exploit the property that critical points of
trajectories are invariant to changes in view [36] for
associating objects across camera views. We consider the

cameras to be independent and first perform background

subtraction as shown in Fig. 3. At each camera, we track

bees by associating the background subtracted blobs

temporally, generating a set of object trajectories in each

camera view. We need to now perform object association

across camera views, i.e., associate each trajectory in the

view of one camera to a unique trajectory in the other
camera view. We use the fact that instants of maximal

curvature in the original 3-D space map to instants of

maximal curvature in the respective image spaces

irrespective of the specific camera view [36]. Therefore,

we first compute the instants of maximal curvature in the

2-D trajectories observed in each view and associate

trajectories using the time instants of maximal curvature.

Fig. 7 shows the spatiotemporal curvature of a flight path
as seen in two different camera views. Since the points of

maximal curvature match irrespective of the view, one can

use this in order to associate targets across camera views.

We can use the correspondences that the trajectory asso-

ciations provide in order to obtain most of the required

calibration parameters and then perform triangulation to

obtain the actual 3-D location of the object in each frame.

Shown in the last row of Fig. 7 are the 3-D flight
trajectories of five different bees flying from a bee hive to a

sugar bowl.

V. RECOGNITION

Having detected and tracked objects using multiple

cameras, we are now in a position to recognize the

objects. Object recognition from images and videos is a
long-standing research problem, and there have been

several competing approaches. In general, algorithms for

object recognition can be divided into two major

divisionsVlocal feature-based approaches and global

approaches. Feature-based approaches detect several

points of interest in each image of an object and describe

the object using descriptors of these local feature points.

Fig. 6. Output from the multiobject tracking algorithm working with input from six camera views. (Top row) Four camera views of a scene

with several humans walking. Each camera independently detects/tracks the humans using a simple background subtraction scheme.

The center location of the feet of each human is indicated with color-coded circles in each view. These estimates are then fused together,

taking into account the relationship between each view and the ground plane. (Bottom row) Fused tracks overlaid on a top-down view of the

ground plane.
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Global approaches describe the object using their global

properties such as shape, silhouette, texture, color,

appearance, or any combination of such descriptors.

A. Global Approaches for Object Recognition
Global methods for object recognition involve the use

of some global property of the object such as color, texture,

shape, etc., for recognition. Such approaches are inher-

ently sensitive to the effect of external conditions such as

lighting, pose, viewpoint, etc. The influence of such

external conditions on the global properties of the object is

usually complex and very difficult to model. Therefore,

one needs additional assumptions about either the 3-D

structure of the objects or the viewpoint of the camera in
order for these methods to be successful.

1) 2-D Appearance Models for Recognition: A simple

feature for classification is to build 2-D appearance models

for each class and use these 2-D appearance models for

classification. Such 2-D appearance models are a natural

choice, specifically while modeling and recognizing planar

or near-planar objects (ignoring effects of self-occlusion)
since the effect of viewpoint on these appearance models is

easily accounted for. In particular, small viewpoint

changes produce affine deformation on the 2-D appear-

ance models. Thus, affine-invariant 2-D appearance

models are common and effective representations for

recognizing planar and near-planar objects. Nevertheless,

the problem with using a single 2-D appearance model is

that when the pose of a 3-D object changes, a simple 2-D
appearance model cannot account for this change in pose.

Fig. 7. Two camera views viewing a scene in which there are several bees freely flying around. The second column shows the background

subtracted images. Note that each object occupies only a few pixels. The spatiotemporal curvature as observed at the two camera views is also

shown. Note how the maxima of the spatiotemporal curvature match irrespective of the camera view. The reconstructed 3-D flight paths are

shown below. (Image courtesy of [35].)
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There are several approaches that use 2-D affine

invariant appearance models for face tracking and

recognition [37]–[42]. As an example, let us consider the

simultaneous face tracking and recognition framework

presented in [41]. A 2-D appearance-based tracker is used

in order to track objects of interest. For each person in the

gallery, a simple 2-D appearance template is stored, which
is an image of the person’s face under uniform illumination

conditions. A particle filter is then used to simultaneously

estimate both the position of the target’s face and the

identity of the individual. The 2-D appearance of the

individual is modeled as a mixture of Gaussians, and

the parameters of the mixture density are estimated from a

training gallery. Each camera first estimates its confidence

with regard to whether the face appears frontal in its view.
This can be achieved using a simple correlation-based

detector with a generic frontal face appearance or other

view-selection methodologies [43]. Assuming that at least

one of the camera views is frontal, this camera then

compares the observed appearance with those stored in the

gallery in order to recognize the individual. The top row of

Fig. 8 shows the stored 2-D appearance templates for the

individuals in the gallery. In the bottom are two images
from a test sequence with the bounding box showing the

location of the target’s face. The image within the

bounding box is matched with the stored 2-D appearance

models in the gallery in order to perform recognition.

2) 3-D Face Tracking With Geometric Face Models: The

problem with 2-D appearance models is that it does not

adequately account for the inherent changes in the feature

that occur due to large pose changes in the video

(especially for nonplanar objects). For applications such

as face tracking and recognition (where the perspective

effects cannot be ignored due to proximity between the

face and the camera), it becomes extremely important to

account for pose changes that occur throughout the video

so that continuous recognition is possible even when there
are few cameras viewing the individual and none of these is

able to obtain a frontal view. One way to account for changes

in pose is to model the face as a 3-D object with a certain

structure and a corresponding texture. Since the variations

in face structure across individuals is at best modest, one can

assume a generic 3-D model for the face with the texture

varying according to the individuals. The texture forms the

cue for identity, while the 3-D generic face model allows
recognition to be performed irrespective of the pose of the

face in the video. There are several competing approaches

for fitting 3-D models to a face in order to perform

recognition. In [44]–[46], a statistical model of 3-D faces is

learnt from a population of 3-D scans, and recognition is

performed after morphing the acquired image to the 3-D

model. Unfortunately, moving from a planar model to

complicated 3-D models also introduces significant issues in
registration between an acquired 2-D image and the 3-D

model. As the number of parameters in the 3-D model

becomes large, this registration task becomes difficult.

Therefore, several approaches have adopted simple param-

eterized 3-D models to model the face, thus keeping the

registration between a 2-D image and a 3-D model simple.

A simple but effective model for the generic 3-D model

of a face is that of a cylinder [47], [48]. The advantage of

Fig. 8. (Top row) 2-D appearance models for the individuals in the gallery. (Bottom row) Two images from a video sequence in which a

person is walking. The target’s face is being tracked, and the image within the bounding box of the tracked face is matched with the

2-D appearance models in the gallery in order to perform recognition.
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using such a simple model is that occlusion analysis
becomes extremely simple, allowing efficient inference

algorithms for estimating the pose of the model at each

frame. Once the pose of the model at each frame is

estimated/tracked at each camera independently, the

image intensities in the original image frame are then

mapped onto the generic 3-D model to obtain the texture

map of the face being tracked. The texture mapped models

obtained at each individual camera node can all be fused to
obtain a complete 3-D model of the face. This texture

mapped model is then compared with the stored texture

maps of all the 3-D models in the gallery in order to

perform face-based person recognition. Another point to

be noted is that since the face is assumed to be cylindrical,

once the pose of the face is estimated, the surface normals

at each of the points on the face are known. This allows us

to extract texture features that are moderately insensitive
to illumination conditions. Therefore, modeling the 3-D

structure of the face in order to perform simultaneous

tracking and recognition allows us to design recognition

algorithms that are robust to both changes in facial pose

and illumination conditions. Fig. 9 shows some of the

results [48] of 3-D facial pose tracking and recognition.

Notice that the pose of the face is accurately estimated in

spite of the significant variations in lighting, pose and also
significant occlusions. The graphical rendering in the last

column shows the cylindrical face model at the pose
estimated from the images in the third column. An

implementation of this algorithm suitable for smart

cameras is discussed in [49].

Another significant advantage of using 3-D face models

for tracking and recognition is that such models can be

easily extended for multicamera applications. Each camera

can independently track faces using its own 3-D face model

while the individual pose estimates can then be appropri-
ately fused either at a central node or in a completely

distributed manner using just local communications. A

joint estimate of the pose can be obtained as a Euclidean

mean of these individual estimates, and this mean can be

efficiently estimated in a distributed network using just

local communications [50]. Unfortunately, the 3-D pose

does not lie in Euclidean space, and therefore the

averaging procedure needs to account for the non-
Euclidean nature of this space. Many methods to average

rotation matrices can be found in [51] and [52]. However,

the convergence properties of such estimation methods,

when used in a decentralized computation framework

(such as the one described in [50]), need to be studied.

B. Feature-Based Methods for Object Recognition
In recent years, feature-based methods for object

recognition have been gaining in popularity. This is

Fig. 9. Tracking results under severe occlusion, extreme poses, and different illumination conditions. The cylindrical grid is overlaid on the

image plane to display the results. The three-tuple shows the estimated orientation (roll, yaw, pitch) in degrees. The second column

shows a cylindrical model in the pose estimated for the sequence in the third column. (Courtesy of [48].)
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because while it is extremely difficult to model the
deformation of global features due to changes in

viewpoint and illumination conditions, it is a much

simpler task to model the local deformations due to these

structured changes. Feature-based object recognition can

usually be divided into three stages of processing. First,

discriminative points of interest are detected in each

image frame. These interest points may be chosen using

the simple Harris corner detector [53], or by selecting
the most discriminative features [54], or by using the

scale-invariant feature transform (SIFT) interest points

that are invariant to scale and orientation [55]. Next, a

descriptor is computed for each of these chosen feature

locations. This descriptor is typically chosen such that it

is invariant to some local deformations, so that pose and

lighting changes do not affect these local descriptors

significantly. Examples of such descriptors that are
popular include SIFT [55], [56] or the deformation

invariant feature proposed in [57]. Once such descriptors

are computed for each feature point, then the object is

described using a bag of features model [58], [59], in

which the geometrical relationship between the feature

points is completely lost. Instead, some approaches use a

coarse representation of this geometrical relationship

between feature points in order to improve discrimina-
tion between object categories [60]. The essential

advantage of feature-based approaches for object recog-

nition is the fact that since these local feature descriptors

are very robust to changes in viewpoint and illumination,

these approaches are consequently robust even under

extreme view changes and occlusions.

1) Feature Based Tracking and Recognition Across a Sparse
Camera Network: In a smart camera network, local feature-

based methods allow for object recognition simultaneously

and independently to be performed on each of the smart

cameras locally. Moreover, even when the fields of view of

the cameras do not overlap, such feature-based approaches

may be used to maintain the target’s identity across the

smart camera network. As an example, consider the

scenario where a sparse collection of video cameras is
monitoring a large area. Target association across cameras

needs to be performed only using the appearance

information of these targets since the fields of views of

these cameras might not overlap. Unfortunately, global

appearance models such as a 2-D affine template image are

not sufficient since the pose of the target will be very

different when it reappears in another camera view.

Moreover, since the targets may have very different 3-D
structures, it is not possible to use a generic 3-D model, as

was the case for face tracking. In such a scenario, local

feature-based methods in combination with structure from

motion techniques provide an effective alternative. In

addition, structure from motion-based methods allows for

target-specific 3-D models to be built online as the target

moves within the field of view of each camera.

Consider a sparse distribution of cameras (see Fig. 10)
covering a large area with blind regions in the coverage of

the vehicle movement. As a potential application, let us

suppose a white SUV is seen approaching a camera.

Suppose, a list of authorized vehicles is available with

appropriate descriptions; then we could verify if the

approaching vehicle is in the authorized list. Verification

of vehicle identity across nonoverlapping views presents

two important challenges: pose and illumination. The
models built for each vehicle need to account for possible

changes in both.

In [61], we address the problem of establishing identity

of vehicles across nonoverlapping views when the vehicle

moves on a plane. We use the 3-D structure of the vehicle,

along with statistical appearance models as the fingerprint
representing the vehicles. Estimation of the 3-D structure

of the vehicle is performed using an approach specifically
suited to vehicles exhibiting planar motion [62]. The

ability to estimate 3-D structure allows us to explicitly

address the changes in pose (and hence, view). The

estimated 3-D structure and its texture are used to

generate synthetic views of the object. These synthetic

views are then compared with the view of the vehicle in

other cameras in order to perform recognition across

nonoverlapping cameras. We formulate the problem as one
of simultaneous tracking and verification [18] of vehicle

identity using the structural and appearance models in the

fingerprint. In traditional tracking, the state-space over

which filtering is performed contains the position of the

object being tracked, while in a simultaneous tracking and

verification framework, this state-space is augmented with

the identity of the vehicle. Thus simultaneous tracking and

verification formally amounts to recursively estimating the
position and the identity of the vehicle. Such an approach

has several advantages over traditional methods since a)

accurate tracking results improve recognition perfor-

mance, b) improving recognition performance improves

tracking since the gallery can contain addition individual

specific information, and c) recursive filtering in a video

enables the algorithm to be robust to occlusions, slow

illumination, and pose changes. Estimating the pose of the
object in every frame enables recognition to be performed

irrespective of the viewpoint of the camera. Fig. 10

summarizes results from [61].

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we discussed the basic challenges in

detection, tracking, and classification using multiview
inputs. In particular, we discussed the role of the geometry

induced by imaging with a camera in estimating target

characteristics. In detection and tracking, we show that the

presence of a ground plane can be used as a strong

constraint for designing efficient and robust estimators for

target location. We also discuss how one can go beyond the

planar constraint for overlapping network of cameras. We

Sankaranarayanan et al.: Object Detection, Tracking and Recognition for Multiple Smart Cameras

Vol. 96, No. 10, October 2008 | Proceedings of the IEEE 1619

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 29, 2008 at 00:59 from IEEE Xplore.  Restrictions apply.



demonstrated how 2-D appearance models and 3-D shape

and texture models can be used for recognition of objects.

The algorithms presented here are optimized for sensor

networks that contain a small number of cameras.

Therefore, the solutions presented typically consisted of

distributed sensing using a set of cameras but central and

coordinated processing. In the near future, we will need to

adapt some of the algorithms presented here in order to
tackle the same detection, tracking, and recognition

problems in camera networks containing possibly

hundreds of cameras. In such cases, it becomes essential

to consider not only distributed sensing but also distrib-

uted processing, efficient transmission of sufficient data

across the network, and optimize over power and energy

consumption of the network. In order to tackle these

challenges, we need a more integrated approach that
exploits the rich theory for distributed estimation in sensor

networks to solve the detection, tracking, and classifica-

tion problems using a network of video sensors. Several

papers in this Special Issue discuss algorithms for such

distributed computations while simultaneously optimizing

for power, energy, and/or bandwidth constraints. Several

upcoming fields of research including distributed function

estimation, distributed processing, mobile camera control,
and manipulation will also allow us to tackle many of these

challenges. Lastly, the issue of smart visual surveillance in

the context of additional modalities has immense signif-

icance for practical deployable systems [63]–[65]. We

briefly discuss some of these issues here.

A. Mobile Cameras
Sensing with a mix of static and mobile cameras

connected on a wireless network is becoming prevalent

with the increasing use of unmanned air vehicles. The

advantage of sensing with mobile cameras is that since the
sensing resources may be allocated dynamically one, this

may reduce the number of cameras required in order to

monitor the same area. This results in significant power

and energy savings while simultaneously increasing the

number of pixels on the target by using the results of

target tracking to zoom into these targets. A systematic

and detailed study of both power/energy optimization

versus algorithm performance [66], [67] for such mobile
camera networks is necessary. Mobile platforms are also

important, as they act as a synthetic aperture in capturing

the scene. In [68], a homography-based view-synthesis

algorithm is developed to generate novel views of

observed objects of interest. Such modeling is used for

verification of object identity in video sequences collected

at a later time.

B. Steering PTZ Cameras for Improved Inference
The on-chip processing capabilities of smart cameras

allow for the ability for local control of steerable cameras.

Fig. 10. Tracking and verification across nonoverlapping views. (a) A schematic top view of the sensing area with fields of view of

three cameras shown. (b) 3-D structures (with texture maps overlaid) of three vehicles, as estimated from one of the views.

(c) Tracking results with the output inlaid in magenta.
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Pan-tilt-zoom (PTZ) cameras allow for steering of the
camera view, keeping the camera center (pinhole) in place.

Such a rotating (pan and tilt) and zooming camera produces

views that satisfy elegant geometric properties [69]–[71].

The advantage of using PTZ cameras is that one may now

control the specific settings of the PTZ cameras so as to

improve tracking and recognition performance. Thus while

one or few Bmaster cameras[ observe a wide sensing field of

view, their tracking results in turn guide the PTZ controls
for other slave cameras that can then zoom into objects of

interest in order to obtain high-resolution imagery of these

objects. In general, such a problem may be posed as an

optimization of some desirable cost functional over the

steering controls of the cameras. One example of such a

cost functional would be the average tracking error over the

whole scene. Here, we want to obtain new views (using the

PTZ controls) that minimize the desired objective. We
envision steering algorithms that operate some of the

cameras in the slave mode, tethered with inputs from other

cameras that sense the entire region of interest.

C. Novel Visualization of Multiview Inferences
The use of multiple cameras also necessitates novel

technologies for visualization of the data streaming in from

these cameras. There are many ways to present the
processed information to the end user. These include

simple map-based interfaces that give geometric context to

the end user [72] and various user interfaces that display

only scenes with persistent or interesting activity to the

end user (like in the IBM Smart Surveillance System).

There has been a significant amount of work in novel

visualization tools that exploit these multiple camera views

in order to render virtual views that best depict the
information content in the scene [72]–[74]. Simultaneous-

ly, there has been the development of virtual reality tools

in both 2-D [75] and 3-D [76] for immersive visualization

of such data. We are currently building a testbed for novel

visualization schemes in order to provide an end-user

freedom in viewing the scene and the activities being

performed from arbitrary points of view. Most view

interpolation techniques require a dense array of sensors
for reliable depiction. We overcome this requirement by

precomputing the model of the static background.

Dynamic foreground objects such as humans and vehicles

are handled by estimating their location, pose, and other

characteristics (such as clothing and gaze direction).

Virtual view rendering is then performed by appropriately

fusing the precomputed static background model with the

dynamic foreground object characteristics imposed on a
synthetic virtual actor. One potential application of this

technology is in scene monitoring, where the security

personnel can freely move around the scene without

having to watch a fixed set of CCTV screens (where the

spatial coherence between views and the activities are

lost). Further, this can be combined with algorithms that

alert the personnel when events of interest occur.

D. Distributed Particle Filtering
The algorithms for tracking and recognition presented

here were both based on online inference using particle-

filtering. Therefore, in order to make these algorithms

truly distributed and enable their implementation on huge

camera networks containing hundreds of cameras, one

needs to pay attention to methods that enable these

particle-filter-based estimates to be performed in a

distributed manner. This can be achieved using either
synchronized particle filtering or the more general means of

distributed function estimation.

1) Synchronized Particle Filtering: One way to decentralize
the filter operations is to replicate it identically at each

node. For particle filtering, this can be done easily if the

random number generators are made identical across

nodes. Such a scheme is referred to as synchronized
particle filtering [77]. By initializing the random number

generator with the same seed, all nodes can be made to

generate the same particles, which in turn makes fusion of

the associated weights simpler. The communication costs

are then limited to the transmission of the associated

weights across the whole network.

The immense flexibility of this approach allows for it to be

effective in any particle-filtering algorithm. However, this
freedom in generality comes with associated drawbacks. For

one, the stability of the algorithm depends critically on the

requirement of synchronized random numbers, which

requires that the hardware at each node be the same. Further,

this particular way of decentralization does not efficiently use

the processing power of the nodes, as in the end the same

computations are performed identically at each node.

2) Distributed Function Estimation: However, we can

relax the need to make our distributed inference algorithm

identical to the centralized one. There are a host of

methods that allow for the computation of average mean

through explicit global communication or through local

consensus [50], [78].

An alternative to the concept of synchronous filtering

can be by approximating the inference at each camera with
a Gaussian mixture model [79] or, in general, any

parametric density family. The parameters can then be

transmitted to all nodes in the sensor network, each of

which locally updates their densities.

In addition to distributed inference and filtering,

efficient implementations of particle filters form an impor-

tant direction for future research, especially in the context of

decentralized computing and sensing. Existing approaches to
this problem [80], [81] are limited to node-level algorithms,

although under a distributed architecture of computing.

E. The Future of Distributed Smart Cameras
The increasing need and reliance on distributed array

of visual sensors for automated monitoring has several

important wide-ranging applications, from surveillance

Sankaranarayanan et al.: Object Detection, Tracking and Recognition for Multiple Smart Cameras

Vol. 96, No. 10, October 2008 | Proceedings of the IEEE 1621

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 29, 2008 at 00:59 from IEEE Xplore.  Restrictions apply.



and homeland security to traffic management and
commercial access control to medical applications such

as automated monitoring of the elderly. Such applications

and their prevalence will only increase in the future. The

need to come up with a concerted and integrated approach
for solving the interdisciplinary problems is paramount,

and recent research efforts in the direction have made

some significant progress. h
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