
STOCHASTIC FUSION OF MULTI-VIEW GRADIENT FIELDS

Aswin C. Sankaranarayanan and Rama Chellappa

Center for Automation Research and Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

{aswch,rama}@umiacs.umd.edu

ABSTRACT

Image gradients form powerful cues in a host of vision
and graphics applications. In this paper, we consider multi-
ple views of a textured planar scene and consider the problem
of estimating the scene texture map using these multi-view
inputs. Modeling each camera view as a projective transfor-
mation of the scene, we show that the problem is equivalent to
that of studying the effect of noise (and the projective imag-
ing) on the gradient fields induced by this texture map. We
show that these noisy gradient fields can be modeled as com-
plete observers of the scene radiance. Further, the corrupting
noise can be shown to be additive and linear, although spa-
tially varying. However, the specific form of the noise term
can be exploited to design linear estimators that fuse the gra-
dient fields obtained from each of the individual views. The
fused gradient field forms a robust estimate of the scene gra-
dients and is useful in many applications.

Index Terms— Multi-view estimation, Image fusion,
Gradient fields, Image restoration

1. INTRODUCTION

Imaging of a scene with a camera is well approximated by
a projective transformation and an understanding of the ge-
ometry introduced by this imaging process is useful in many
estimation problems. In this context, the constraints induced
by the projective geometry greatly influences the choice and
design of statistical estimators [1].

In this paper, we study the problem of robust estima-
tion of gradient fields using inputs from multiple (projective)
views. Gradient fields play an important role in many vi-
sion and graphics applications. Estimation of optical flow
and shape recovery using shading information, both classi-
cal vision problems, involve estimation using gradient fields.
Illumination invariant image analysis is tied heavily to the
properties of image gradients [2]. The properties of image
gradients have been used heavily in many image editing [3]
and fusion [4, 5] algorithms. A weakly related concept is that
of scene-flow estimation [6, 7]. Scene flow refers to the 3D
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Fig. 1. (top row) Camera views (bottom) Registered top view
of the plane as seen from each camera. We pose the following
problem: Is it possible to construct a high resolution image of
the plane like the one seen in the right-camera, from views
such as the left and center camera.

motion flow of the scene and can be computed using optical
flow inputs from multiple views. The use of gradients for
image fusion has been explored in the context of multi-modal
image registration. A distance metric based on Normalized
image gradients is used in [8] to fuse multi-modal images for
medical applications. In [9], multi-spectral images of varying
resolutions are fused by minimizing the differences between
their gradients, and using a reconstruction to integrate the
fused gradient field.

Consider the three images of a planar scene in Figure
1. We pose the problem of estimating the scene view from
a camera looking vertically down (or, equivalently a metric
rectification of the images). However, depending on the spe-
cific orientation/placement of the camera to the plane, such
rectified views can look quite different (see Figure 1). In
particular, we draw attention to the way the gradients in the
three cases are distorted. In this paper, we study the effect of
projective transformations of noisy images and the induced
image gradient fields. We show that these image gradients
are corrupted with anisotropic noise whose statistics depend
heavily on the specific projective transformation (and hence,
the specific camera view). Finally, given multiple such image
gradient fields, each arising from a different camera, a global
estimate can be computed using linear filtering techniques.



2. PROBLEM FORMULATION

Consider a function f : X = P
2 → R, characterizing the

texture map over the plane in its Euclidean frame of refer-
ence X . We denote x = (x, y)T ,u = (u, v)T and x̃ ∼
(x, y, 1)T , ũ v (u, v, 1)T represent x and u in their homoge-
neous coordinates respectively.

We now consider a set of C cameras observing this planar
scene. Given that the scene is planar, we can map points on
the image plane of the camera uniquely to the world plane.
This transformation is projective is equivalent to the metric
rectification of the plane [10]. Each camera is identified by
a projection matrix Hi, i = 1, . . . , C. Defining, Ui = P

2 as
the coordinate reference on the image plane of camera i, we
define Hi as the projective transformation mapping Ui onto
X .

Hi : X → Ui

x 7→ ũ v Hix̃
(1)

When the imaging is perfect (continuous, infinite resolu-
tion and noiseless), each camera observes a projective trans-
formed image of the scene, i.e, each camera observes a func-
tional fi : Ui = P

2 → R, such that,

fi(u) = (f ◦ H−1
i )(u) (2)

However, imaging parameters such as finite resolution
and sensor noise corrupt the observation of the function f .
Further, a host of illumination related issues (camera gain,
reflectance of the ground plane) will modify this observation.
We assume that the illumination model is known and com-
pensated for. Allowing for noise, the imaging of f changes
as follows.

fi(u) = (f ◦ H−1
i )(u) + ni(u) (3)

where ni is a noise process that accounts for the discrepancies
including pixelation.

An immediate problem of interest is that of estimating
f from its noisy projective counterparts, namely fi, i =
1, . . . , C. This would correspond to traditional image based
mosaicing/restoration problem, which finds use in several
applications. An alternate problem that we would like to
consider is estimating the gradient field induced by f , as
f can then be recovered by integrating the gradient field
appropriately [11].

To begin with, we can project fi back to the world plane
to obtain gi.

gi(x) = (fi ◦ Hi)(x) = f(x) + (ni ◦ Hi)(x) (4)

From (4), we can obtain the corresponding equation link-
ing the gradient fields of gi and f .

dgi(x) = df(x) + ∇Hidni

∣

∣

u=Hi(x) (5)

Further, practical imaging considerations allow us to re-
strict the both X and Ui from P

2 to R
2.

PSfrag replacements
f(x) dfx dfy

f1(x) g1(x) dg1,x dg1,y

f2(x) g2(x) dg2,x dg2,y

Fig. 2. Illustration of symbols using a synthetic example. The
gradient images show signed magnitudes of the individual
components. The reader is instructed to use the zoom tool
to view the pictures better.

With this, we can define Hi and ∇Hi as,

Hi : R
2 → R

2

x 7→ 1
HT

i,3
x̃

[

HT
i,1x̃

HT
i,2x̃

]

(6)

where HT
i,j is the j-th row of the matrix Hi. The expres-

sion for ∇H can now be derived using basic algebra.

∇Hi(x) =
1

HT
i,3x̃

([

Hi,11 − uHi,31 Hi,12 − uHi,32

Hi,21 − vHi,32 Hi,22 − vHi,32

])

(7)
A closer look at (5) suggests that the gradient field dgi is

a complete observer of the gradient field df . This is due to
the invertible nature of projective imaging considered in the
context of planar scenes. However, the key point to note is
the way the noise term appears in (5). Note that the noise
corrupting dgi is spatially varying given the dependence of
the matrix ∇H on x. However, the nature of this mixing term
is not only point-wise but also linear. We can exploit this
property for recovering df robustly.

3. GRADIENT ESTIMATION USING MULTI-VIEW
INPUTS

The overall properties of the effect of noise depends critically
on the nature of the mixing matrix ∇Hi. For example, if ∇Hi

has eigenvalues that are of unequal magnitude then noise gets
amplified in anisotropy. Hence, given different views of the
same scene, each top-view gi is corrupted with noise that is
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Fig. 3. Minimum variance estimate of the gradient field ob-
tained by fusing the gradient fields induced by f1 and f2 (see
Figure 2).

not only varying spatially, but is also anisotropic. However,
if we look at the way the gradient field is corrupted, the prop-
erties of the corrupting noise are modified with a spatially
varying linear matrix ∇Hi.

Coupling the equation arising from each camera, we get
the following equation






dg1(x)
...

dgC(x)






=







I2

...
I2






df(x) +







∇H1(x)n1(u1)
...

∇HC(x)nC(uC)







(8)
where I2 is the rank 2 identity matrix. Equation (8) provides
the basic filtering equation for estimating df . The exact na-
ture of the solution depends on the specific properties of the
noise fields ni. For our purposes, we assume that the only
corrupting noises are from pixelation and mis-registration er-
rors. An accurate model of these noise processes is in general
difficult. Toward this end, we assume that the noise is zero
mean, stationary with a standard deviation of 1 pixel1.

∀i,u ∈ U , E(ni(u)) = 0, E(ni(u)ni(u)T ) =

[

1 0
0 1

]

(9)
As a result, we can suitably model this into an estimator

for the gradient field induced by f by efficiently incorporating
this information in the fusion scheme. Under this setting, it
is possible to achieve a minimum variance estimate using a
linear estimator. The minimum variance estimate for df(x),
denoted as d̂f(x), is computed as,

d̂f(x) =

C
∑

j=1

Σ−1
j (x)Σ(x)dgj(x) (10)

1An error of 1 pixel standard deviation is a reasonable approximation of
the pixellation error. However, under extreme perspective imaging, artifacts
due to misregistration can be quite severe. Such error can be approximated
with a Gaussian model with higher variance, or by explivitly modeling the
misregistration error.

Fig. 4. (left) Ground truth of the scalar field f(x) (right)
Scalar field obtained by reconstructing the minimum variance
estimate of Figure 3

where

Σj(x) = ∇Hj(x)∇HT
j (x) (11)

and

Σ =





C
∑

j=1

Σ−1
j (x)





−1

(12)

Figure 3 shows the minimum variance estimate for the
problem depicted in Figure 2. Such an estimator is also opti-
mal (over the class of all estimators) when the noise process
are assumed to be Gaussian.

Further, the estimated gradient field d̂f can now be inte-
grated to obtain an estimate of f(x) (see Figure 4). We use
the Poisson reconstruction algorithms described in [11] for
the reconstruction.

4. RESULTS

We applied the proposed theory of multi-view gradient esti-
mation on the chessboard images shown in Figure 1. Fig-
ures 5 and 6 summarize the results for this dataset. With the
exception of the region that is outside the fields of view of
the two cameras, it is seen that d̂f is indeed a good approx-
imation to the ground truth df . The reason for this comes
from the specifics of camera placement. The two cameras
are placed so that each view resolves the gradient fields accu-
rately only along one orientation. The fused estimate appro-
priately weighs the individual estimates to obtain low vari-
ance estimates for both orientations.

Finally, we reconstruct the scalar field corresponding to
the gradient estimate obtained using fusion. We suppress the
false gradients that arise because of field of view lines by as-
signing a high variance to those regions. This is easy done, as
the field of view lines corresponds to pixels near the bound-
ary of the captured image at each view. Figure 7 shows the
reconstruction results.

The fusion algorithm presented in this paper works under
the assumption of perfect registration, or equivalent when the
errors in registration can be captures as additive noise. This,



however, is not necessarily true, especially when the perspec-
tive distortions are severe. Further, when the scene structure
deviates significantly from a plane, the errors due to paral-
lax (off the plane) introduces additional errors in registration.
Such errors need to be explicitly addressed, and forms av-
enues for future research.

PSfrag replacements
f(x) dfx dfy

f1(x) g1(x) dg1,x dg1,y

f2(x) g2(x) dg2,x dg2,y

Fig. 5. Visual representations of the various components for
the chessboard example of Figure 1. Note the high distortion
in dg1,y and dg2,x.

5. CONCLUSION

In this paper, we show that it is possible to estimate gradient
fields robustly from noisy projective transforms. The ability
to estimate gradient fields robustly is useful in many vision
and graphics problems. While we consider the planar scene
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Fig. 6. Minimum variance estimate of the gradient field ob-
tained by fusing the gradient fields induced by f1 and f2 (see
Figure 5).

Fig. 7. (left) Ground truth of the scalar field f(x) (right)
Scalar field obtained by reconstructing the minimum variance
estimate of Figure 6

setting (thereby allowing for invertible projective transforms)
in this paper, we plan on extending the fusion methodology
for motion field estimation without any stringent scene con-
straints (similar to the work on scene flow estimation).
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