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Abstract

Video cameras are among the most commonly used sensors in a large number of applications,

ranging from surveillance to smart rooms for video conferencing. There is a need to develop algorithms

for tasks such as detection, tracking and recognition of objects, specifically using a distributed networks

of cameras. The projective nature of imaging sensors provides ample challenges for data association

across cameras. We first discuss the nature of these challenges in the context of visual sensor networks.

Then, we show how real-world constraints can be favorably exploited in order to tackle these challenges.

Examples of real-world constraints are (a) the presence of a world plane (b) presence of a 3-D scene

model (c) consistency of motion across cameras and (d) color and texture properties. In this regard, the

main focus of this paper is towards highlighting the efficient use of the geometric constraints induced by

the imaging devices to derive distributed algorithms for target detection, tracking and recognition. Our

discussions are supported by several examples drawn from real applications. Finally, we also describe

several potential research problems that remain to be addressed.

I. INTRODUCTION

Video cameras are fast becoming ubiquitous for a wide range of applications ranging from

surveillance, smart video-conferencing, markerless human motion capture, animation transfer

and even in some critical tasks such as assisted surgery. Some of the challenges in building

applications for single video cameras have been studied for over a decade and reliable algorithms

for many tasks have been realized. Looking ahead, the challenge is to make these algorithms

and applications robust in the presence of several cameras (possibly even several hundreds) that

are networked.

Distributed sensing using a host of networked smart cameras raises challenges that can be

broadly clustered in two main areas.

• Distributed Sensing: The image obtained by each camera depends on its position and

orientation and hence, in general, is different from that of other cameras observing the same

scene. This raises the need for designing algorithms that can efficiently fuse the evidence

available at each of these cameras into a consistent and robust estimate. Specifically, since

we are interested in object detection, it is important to determine whether an object is

present. If an object is present within the field of view, it is also of interest to estimate its

pose, appearance and identity. Typical objects of interest include humans and vehicles.
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• Smart Cameras: Constraints in communication make it inappropriate to transmit all of the

video data collected at each node across the network. However, the availability of processing

power at each camera enables the transmission of processed low bandwidth information that

is sufficient for the task at hand. This raises two important issues. What is the nature of the

information that needs to be extracted in each individual ‘smart camera’ node? How does

one fuse the information extracted at the nodes in order to solve detection, tracking and

recognition tasks in visual sensor networks? Power and energy optimization in distributed

smart cameras is another important challenge that other papers in this issue tackle in detail.

There are numerous applications of distributed visual sensing algorithms. We concentrate

on the problems of distributed detection, tracking and recognition. These form three integral

subsystems of any robust distributed visual sensing network. The number of cameras connected

in the distributed network can vary greatly: from a few (< 10) cameras for household monitoring

of the elderly, to tens of cameras to monitor a building and all the way to hundreds of cameras

connected in a traffic monitoring network. The specific challenges encountered in each of these

applications vary with the number of cameras that are connected in the network. Nevertheless,

some of the basic principles of algorithm design and optimization remain the same in all these

scenarios.

A. Outline of the Paper

In Section 2, we describe the geometric constraints that are involved in multi-camera problems

with special emphasis on those constraints that have a direct impact on algorithm design for

detection, tracking and recognition of objects. In Section 3, we describe some of the challenges

in object detection from uncalibrated cameras and describe how the constraint that the scene

has a dominant plane can be exploited to develop distributed detection algorithms for cameras

with overlapping fields of view. In Section 4, we provide a formal description of the problem of

distributed tracking in a camera network and describe an optimal multi-view fusion algorithm that

can combine evidences from multiple camera views to obtain a robust estimate of the objects’

location in a 3D world coordinate system. In Section 5, we study the problem of recognition

of humans and vehicles. In particular, we show how to perform object verification across non-

overlapping views using novel views synthesized from 3D models built and propagated across

the network of cameras. We conclude by highlighting several problems that remain to be solved
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in the area of visual sensor networks.

II. GEOMETRIC CONSTRAINTS OF MULTIPLE CAMERAS

In this section, we introduce the basics of projective geometry and discuss some of the concepts

that are extensively used for detection and tracking. We do note that this is not an exhaustive

coverage of this topic. An in-depth discussion of projective geometry can be found in [1][2]. The

projective nature of imaging introduces unique challenges in distributed camera networks. In the

context of detection, tracking and recognition algorithms, it becomes important to understand

the nature of such constraints and their impact on these problems.

A. A Note on Notation and Homogeneous coordinates

In the rest of the paper, we use bold-font to denote vectors, and CAPS to denote matrices.

Further, we use x, y, z alphabets to denote quantities in world coordinates, and u, v alphabets

for image plane coordinates. In addition to this, the concept of homogeneous coordinates is

important. We use the tilde notation to represent entities in homogeneous coordinates. Given a

d−dimensional vector u ∈ R
d, its homogeneous representation is given as a (d+1)−dimensional

vector ũ v [u, 1]T , where the operator v denotes equality up to scale. In other words, ũ v x̃ ↔

ũ = λx̃, λ 6= 0. In simpler terms, when we deal with homogeneous quantities we allow for a scale

ambiguity in our representation. The representation mainly allows for elegant representations of

the basic imaging equations, that we discuss next.

B. Central Projection

Central projection is the fundamental principle behind imaging with a pinhole camera, and

serves as a good approximation for lens-based imaging for the applications considered here.

In the pinhole camera model, rays (or photons) from the scene are projected onto a planar

screen after passing through a pinhole. The screen is typically called the image plane of the

camera. Consider a camera with its pinhole at the origin and the image plane aligned with the

plane z = f . Under this setup, a 3D point x = (x, y, z)T projects onto the image plane point

u = (u, v)T , such that

u = f
x

z
, v = f

y

z
(1)
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This can be elegantly written in homogeneous terms as,
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A more general model of the pinhole camera allows for the pinhole to be at an arbitrary

position and the image plane oriented arbitrarily. However, we can use a simple Euclidean

coordinate transformation to map this as an instance of the previous one. Finally, the camera

might have non-square pixels with image plane skew. This leads us to a general camera model

whose basic imaging equation is given as:

ũ v K[R t]x̃ = P x̃ (3)

where P is the 3× 4 matrix encoding both the internal parameters of the camera K (its focal

length, principal point etc.) and the external parameters (its orientation R and position t in a

world coordinate system). ũ and x̃ are the homogeneous coordinate representations of the pixel

in the image plane and the point being imaged in the real world respectively. Although central

projection is inherently non-linear, it can be written as a linear transformation of the homogeneous

coordinates. Finally, (2) can be obtained from (3) with R = I3 (the identity matrix), t = 0 and

K = diag(f,f,1).

It is noteworthy that the projection equation of (3) is not invertible in general. Intuitively,

the pinhole camera maps a 3D world onto a 2D plane, and hence, the mapping is many-to-one

and non-invertible. All points that lie on a line passing through the pinhole map onto the same

image plane point. This can also be independently verified by the scale ambiguity in (3). Given

a point on the image plane u, its pre-image is defined as the set of all scene points that map onto

u under central projection. It is easily seen, that the pre-image of a point is a line in the real

world. Without additional knowledge of the scene and/or additional constraints, it is not possible

to identify the scene point which projects onto u. This lack of invertibility leads to some of the

classical problems in computer vision, the most fundamental being establishing correspondence

across views.
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Fig. 1. Consider views A and B (camera centers CA and CB) of a scene with a point x imaged as uA and uB on the two

views. Without any additional assumptions, given uA, we can only constrain uB to lie along the image of the pre-image of uA

(a line). However, if world were planar (and we knew the relevant calibration information) then we can uniquely invert uA to

obtain x, and re-project x to obtain uB

C. Epipolar Geometry

Consider two images (or central projections) of a 3D world. Given a point uA on the first

image of a world point x, we know that its pre-image is a line passing through the point uA and

CA, the pinhole of the camera (see Figure 1). Hence, given information about uA on the first

image, all we can establish is that the corresponding projection of the point x on the second

image plane uB lies on the projection of the pre-image of uA onto the second image plane. Since

the pre-image of uA is a line, the projection of this line onto view B gives the line L(uA), the

epipolar line associated with uA. Thus, the epipolar geometry constrains corresponding points

to lie on conjugate pairs of epipolar lines.

In the context of multi-view localization problems, the epipolar constraint can be used to

associate objects across multiple views [3]. Once we obtain reliable correspondence across

multiple views, we can triangulate to localize objects in the real world. However, correspondences

based on epipolar constraint alone tends to be insufficient as the constraint does not map points

uniquely across views. In general, all points lying on the epipolar line are potential candidates

for correspondence.
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Fig. 2. Consider views A, B and D of a scene with a point x imaged as uA, uB and uD on the views. We can estimate the

location of x by triangulating the image plane points as shown in the figure. At each view, we draw the pre-image of the point,

which is the line joining the image plane point and the associated camera center. The properties of projective imaging ensure

that the world point x lies on this pre-image. Hence, when we have multiple pre-images (one from each view) the intersection

of these lines gives the point x.

D. Triangulation

In many detection and tracking applications, once we have correspondences between object

locations across views, we are interested in localization of these objects in scene coordinates.

Let us assume that the same object has been detected in two views (A and B) with camera

center CA and CB at image place locations uA and uB as shown in Figure 2. In this case,

the basics of projective imaging constrains the object to lie on the pre-image of the point uA

(the line connecting CA and uA). Similarly the object must also lie on the pre-image of uB in

view B. Therefore, estimating the true location of the object amounts to estimating the point of

intersection of these two lines. In a general scenario with several cameras, each camera gives

rise to a line and estimating the object’s location involves computing the point of intersection of

these lines. In the presence of noisy measurements, these lines do not intersect at a single point

and error measures such as sum of squares are used to obtain a robust estimate of the location

of the object. This is called triangulation [4]. The drawback of the triangulation approach is that

it requires correspondence information across cameras which is difficult to obtain.
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E. Planar scenes and Homography

There is one special scenario when the imaging equation becomes invertible, and that is when

the world is planar. Most urban scenarios form a good fit as majority of the actions in the

world occurs over the ground plane. This makes it a valid assumption for a host of visual

sensing applications. The invertibility can also be efficiently exploited by algorithms for various

purposes. As an example, consider the correspondence problem that we mentioned earlier. Under

a planar world assumption, the pre-image of a point becomes a point (in most cases), being the

intersection of the world plane and the pre-image line. This implies that by projecting this world

point back onto the second image plane, we can almost trivially find correspondence between

points on the two image planes. This property induced by the world plane, that seemingly allows

for finding correspondences across image planes is referred to as the homography induced by

the plane.

Consider two views of a planar scene labeled View A and view B. We can define a local

coordinate system at each view. The same scene point denoted as xA and xB on the two

coordinate systems is related by an Euclidean transformation,

xB = RxA + t (4)

Here, R (a rotation matrix) and t (a 3D translation vector) define the coordinate transformation

from A to B. Lets us assume that the world plane has an equation n
T
xA = d with d 6= 01. For

points that lie on the plane, we can rewrite (4) as,

xB = RxA + t
n

T
xA

d

=
(

R + 1
d
tn

T
)

xA

(5)

In each local camera coordinate system, we know that ũ v K[R t]x̃ ( see (3)) with R = I3

and t = 0. Therefore, ũB v KBxB and ũA v KAxA, which gives us,

K−1
B ũB v

(

R + 1
d
tn

T
)

K−1
A ũA

ũB v HũA, where H = KB

(

R + 1
d
tn

T
)

K−1
A

(6)

This implies that a point in View A, uA maps to the point uB on View B as defined by

the relationship in (6). The 3 × 3 matrix H (in (6)) is called the homography matrix or just

1When d = 0, the plane passes through the pinhole at A, thereby making the imaging non-invertible
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the homography. Also, note that H (like P ) is a homogeneous matrix, and the transformation

defined by it is unchanged when H is scaled. Further, H is invertible when the world plane does

not pass through pinholes at either of the two views. This is easily verified as our derivation is

symmetric in its assumptions regarding the two views.

Finally, the premise of the induced homography critically depends on the fact that the pre-

image of a point on the image plane is a unique point on the world plane. Suppose we use a

local 2D coordinate system over the world plane, the image plane to world plane transformation

(from their respectively 2D coordinate systems) can be shown to be a projective transformation,

which like before can be encoded as a 3× 3 homogeneous matrix, say Hπ. This transformation

is useful when we want to estimate metric quantities, or quantities in a Euclidean setting. The

most common example of this is when we need to localize the target in the scene coordinates.

Computing the image plane to world plane transformation Hπ is a challenging problem, that is

typically done by exploiting properties of parallel and perpendicular lines on the planes. Typically,

this requires manual inputs such as identifying straight lines segments that are parallel. While

this not always possible, many urbans scenes (such as parking lots, roads, buildings) contain

such lines which makes it easier to estimate the transformation Hπ, at least in a semi-supervised

way. Computing Hπ, as it turns out, is identical to a metric rectification of the image plane.

Many such techniques are illustrated in [1].

III. DETECTION

The first and foremost task in distributed visual sensing is to detect objects of interest as they

appear in the individual camera views [5][6][7]. In general, this is a very challenging task since

objects belonging to the same class (say, humans for instance) can have significantly different

appearances in the images because of factors such as clothing, illumination, pose and camera

parameters. Object detection in images and video may be achieved using one of two major

approaches - either using a static feature based characterization of the objects of interest or

using object motion as a cue to detect objects. Several recent approaches have been developed

for object detection and recognition in images and videos and these approaches typically involve

maintaining a model for the objects of interest in the form of a set of static features and possibly

a model for the spatial relationship between the various features. Given a test image, object

detection is then decomposed into two steps - finding features in the test image and then validating
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whether the set of visible features in the test image suitably explain the presence of the object

in the image. One problem with adopting any such approach for video is that these approaches

are computationally intensive and it would be inefficient especially when the number of objects

is large. Secondly, these approaches also require a training set of images in which the objects

of interest have been labeled. This would mean that objects not previously modeled would not

be detected in a test sequence. Therefore, we will not discuss these methods in the rest of the

paper.

In typical visual sensing scenarios, the objects of interest are those that are moving. Detection

of moving objects is a much easier task, because object motion typically leads to changes in

the observed intensity at the corresponding pixel locations and this change in intensity can be

used to detect moving objects. The challenge in a single camera set-up is to associate groups of

coherently moving nearby pixels to a single object. In multi-camera networks it also becomes

necessary to associate detected objects across camera views.

A. Background Modeling for Moving Object Detection

Detection of moving objects is typically performed by modeling the static background and

looking for regions in the image that violate this model. The simplest model is that of a single

template image representing the static background. A test image can then be subtracted from

the template and pixels with large absolute difference can be marked as moving. This simple

model introduces the idea of background subtraction - essentially the process of removing static

background pixels from an image.

B. Background Subtraction

Traditionally, background subtraction is posed as a hypothesis test [8] at each pixel, where

the null hypothesis H0 is that the pixel belongs to the background model Bt, and the alternate

hypothesis H1 is that the pixel does not belongs to Bt. Here, the subscript t is used to denote

time, and hence Bt represents the background model at time t, and It the image at time t.

Given the hypothesis test defined as is:

H0 : I i
t ∈ Bi

t (pixel is background)

H1 : I i
t /∈ Bi

t (pixel is NOT background)
(7)
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the likelihood ratio associated with the hypothesis test is defined as

Pr(I i
t |B

i
t)

1 − Pr(I i
t |B

i
t)

≷H0

H1
τ (8)

I i
t and Bi

t correspond to the ith pixel of the image and background model respectively, and τ

defines the threshold whose value is decided based on a desired false-alarm or mis-detection

rate.

The likelihood ratio test defined in (8) is equivalent to

Pr(I i
t |B

i
t) ≷H0

H1
η =

τ

1 + τ
(9)

As an example, consider a simple background model, where Bt = B0 is a object-free static

background image. For common models used in the hypothesis test, the likelihood ratio test

takes the form,

|I i
t − Bi

0| ≶H0

H1
η′ (10)

This intuition behind this test is that the error term |I i
t −Bi

0| will be very small at pixels that

correspond to static objects while this term will be large for pixels corresponding to moving

objects. Figure 3 shows an observed image, the corresponding background model and their

difference. As seen, this difference is very small except in locations corresponding to the moving

person and the moving car. This difference image can be used to estimate the set of pixels which

correspond to moving objects.

C. Common Background Models

However, a simple background model such as a fixed template (Bt = B0) would be susceptible

to global changes in the environment due to lighting, time of the day, weather effects etc. Ideally,

we would like the following from our detection algorithm:

• Adaptive to global changes in the scene, such as illumination or camera jitter.

• Resilient to periodic disturbances (such as tree movement due to wind or rain).

There exist a host of algorithms that work very well in many scenarios [5][6][7]. One simple

extension of the static model is by modeling each pixel as Gaussian distributed with mean B i
t

and variance σ2
i,t

The background model is defined as:

Pr(I i
t |Bt) ∝ exp

(

−
(I i

t − Bi
t)

2

2σ2
i,t

)

(11)
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The model defined in (11) extend the simple static background model by allowing for a variance

term σ2
i,t at each pixel. Effectively, this corresponds to using a different threshold at each pixel,

one that depends both on τ and the variance σ2
i,t. Such models are useful in handling dynamic

scenes with significant clutter. The means Bi
t and variances σ2

i,t are typically updated in a manner

that attempts to keep the background model object-free [6].

Another background model that robustly handles periodic background disturbances is the

mixture of Gaussians (MoG) model [7]. This model adaptively learns a MoG distribution at each

pixel. The multi-modality of the underlying distribution gives the ability to capture repetitive

actions as part of the background. An adaptive learning method can be used to keep track of

global changes in the scene. As before, given a new image, we can compute the likelihood image

and threshold it to obtain pixels that violate the background model.

D. Using Homography for Multi-view Localization

At each individual camera view, background subtraction results in a binary image that labels

each individual pixel either as belonging to the background or as belonging to the moving

foreground object. Due to changing texture and illumination conditions in the scene, the pixels

belonging to a single object may lead to disconnected blobs. Simple heuristics and connected

component analysis is performed on the binary background subtracted image to label the binary

image into a set of objects with each object occupying a connected set of pixels (blob) in the

image. The location and the various characteristics of each detected object blob are stored.

If we assume that the objects are all moving on the ground plane, then the detected blobs in

each camera view can be transformed to the world plane using the image plane to world plane

transformation. Let us assume that Hi represents the 3 × 3 homogeneous matrix that relates

coordinates in the image plane of camera i to that of a local 2D coordinate system on the world

plane. Also, let H(i,j) denote the homography relating the image plane of camera i to that of

camera j. Therefore, H(i,j) = H−1
j Hi. A single object moving on the world plane will produce

corresponding blobs in each of the cameras which are able to view the object.

Existing multi-view localization algorithms project features from the detected blob on each of

the image planes to the world plane. These features are typically either representative points [9],

or lines [10] or the whole blob itself [11]. The individual choice of the feature depends heavily

on the performance of the background subtraction algorithms on the underlying data. Consensus
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across views is achieved by appropriately fusing these transformed features in the world plane.

This is schematically shown in Figure 3.

(a) Video frames captured from 4 different views

(b) Background images corresponding to each view

(c) Background subtraction results at each view

(d) Projection of detected points onto synthetic top view of ground−plane.

Fig. 3. Use of geometry in multi-view detection. (a) Snapshot from each view (b) Object free background image (c) Background

subtraction results (d) Synthetically generated top view of the ground plane. The bottom point (feet) of each blob is mapped

to the ground-plane using the image-plane to ground-plane homography. Each color represents a blob detected in a different

camera view. Points of different colors very close together on the ground plane probably correspond to the same subject seen

via different camera views.

E. Relaxing the homography constraint: Epipolarity

In many cases, we need to study multi-view detection algorithms for more generic scenarios,

those in which the assumption of planar scene is violated. In the absence of planarity constraint,

the image to scene inversion is no longer unique. In the presence of multi-view inputs, it
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is possible to triangulate and solve for the intersection of these line provided the necessary

correspondence information associating points across views is available. Such correspondences

are in general hard to solve for, given the weakness of the epipolar constraint, which usually

generates multiple hypotheses for point correspondences. Typically, these hypotheses are resolved

using additional constraints (such as the curvature of the trajectory or the appearance of the

object). Figure 2 and Section II-D illustrate the concept of triangulation for multi-view detection.

IV. DISTRIBUTED MULTI-VIEW TRACKING

Once the objects of interest have been detected in each of the individual cameras, the next task

is to track each object using multi-view inputs. Most algorithms maintain an appearance model

for the detected objects and use this appearance model in conjunction with a motion model

for the object to estimate the object position at each individual camera. Such tracking can be

achieved using deterministic approaches that pose tracking as an optimization problem [12][13]

or using stochastic approaches that estimate the posterior distribution of the object location using

Kalman filters [14] or more commonly particle filters [15] [16] [17] [18] [19]. For surveys on

visual tracking of objects, we refer the interested readers to [20], [21].

There exist many application domains that benefit immensely from multi-view inputs. Presence

of multi-view inputs allows for the robust estimation of pose and limb geometry (markerless

motion capture) [22] [23][24]. When targets are at lower resolution, position tracking in scene

coordinates provides information that is useful for higher level reasoning of the scene. As an

example, [25] uses multiple cameras to track football players on a ground plane. Similarly,

[26][27][11][10] and [9] consider the problem of multi-view tracking in the context of a ground

plane, with the intent of localization of target position on the plane.

In the case of multi-camera systems, another important challenge that presents itself is the

association of objects across the camera views. For cameras, that have non-overlapping fields of

views, object association can be achieved by learning the relationship between patterns of entry

and exit in various camera views [28]. For cameras with overlapping fields of views, an important

issue that arises is fusion of object location estimates. This requires the use of epipolar geometry

and triangulation in the most general case. As a special case, in the presence of ground-plane

constraint, it is possible to derive efficient estimators for fusing multi-view information. We

discuss this next.

June 11, 2008 DRAFT
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A. Multi-view tracking: Planar world

Multi-camera tracking in the presence of ground-plane constraint has been the focus of many

recent papers [29], [11], [10], [9]. The key concepts in many of the algorithms proposed are:

• Association of data across views by exploiting the homography constraint: This can

be done by projecting various features associated with the silhouette. The vertical axis

from each segmented human is used as the feature by Kim and Davis [10], while points

features [9], [29] or even the whole silhouette [11] form alternate choices. These feature(s)

are projected onto a reference view using the homography transformation and consensus

between features is used to associate data across views.

• Temporal continuity of object motion to track: Typically, a particle filter [10] [9] is

used to temporally filter the data after association. Alternatively, [11] builds a temporal

consistency graph and uses graph-cuts [30] to segment tracks.

Since the early work of Smith and Cheeseman [31], researchers have known that one has

to account for the effect of varying covariances on parameter fusion and estimation accuracy,

especially under highly assymetric placement of cameras. Consider, for example, the problem of

location estimation of a point object moving on a plane. At each camera, background subtraction

provides an estimate of where the object lies. We can now project the image plane locations to

arrive at individual estimates of the world plane location of the tracked point. In an ideal noise-

free condition, the estimates arising from each of the cameras would be identical. However, in the

presence of noise corrupting the image plane observations, errors in calibration and inaccuracies

in modeling, the world plane location estimates will no longer be identical. We now need a

strategy to fuse these estimates. However, to do so in a systematic fashion we need to characterize

the statistical properties of these estimates. Let us suppose that we have a characterization of the

location of the object in the individual image planes as a random variable. We can project these

random variables to the ground plane using the projective transformation linking the individual

image planes and the ground plane.

Figure 4 shows an example of three cameras A,B and C looking at a plane Π, with the

image plane of B parallel to Π. In contrast, the image planes of A and C are perpendicular to

Π. Also shown on the image planes of the cameras are iso-error contours representing the image

plane distribution at each camera. The homographies between the cameras and the plane Π are

HAΠ, HBΠ and HCΠ respectively. In this setup, HBΠ is not fully projective, defining only an
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Fig. 4. A schematic showing densities the image planes of cameras and their transformations to the ground plane.

affine transformation, as opposed to HAΠ and HCΠ which induce strong projective distortion.

We would expect the density on B to retain its original form (similar error iso-contours) when

projected on the plane.

The projective mapping is in general a non-linear transformation involving ratios. The statistics

of random variables, when transformed under such a ratio transformation, change significantly.

Given that the projective transformations linking different views of the same scene are different,

one can expect that the statistics of random variables on the world plane arising from different

views will necessarily be different, even when the original random variables are identically

distributed.

Given M cameras, and the homography matrices Hi, i = 1, . . . ,M between the camera views

and the ground plane, one can derive an algorithm for fusing location estimates. Let Z
i
u be

the random variable modeling the object location on the image plane of the i-th camera. Let

us assume that the random variables {Zi
u}

M
i=1 are statistically independent. Now, each of these

random variables can be projected to the world plane to obtain Z
i
x, such that Z̃

i
x v HiZ̃

i
U , i =

1, . . . ,M .

Let us consider the distribution of Z
i
x under the assumption that the Z

i
u are Gaussian. Specif-

ically, when certain geometric properties are satisfied2, we can show that the distribution of Z i
x

is closely approximated by a Gaussian distribution [1][9]. Further, we can relate the mean and

the covariance matrix of the transformed random variable to the statistics of the original random

2The required geometric properties reduce to the region of interest that is being imaged to be far away from the line of infinity

in each of the views (for details, refer to [9]).
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Fig. 5. Variance Ellipses are shown for on the individual image planes. The corresponding color coded ellipse on the ground

plane shows the covariance when transformed to the ground plane. The ellipse in black (on the ground plane) depicts the variance

of the minimum variance estimator. Note that this estimate performs better than the individual estimates.

variable and the parameters characterizing the projective transformation. This result is useful for

designing strategies to fuse {Zi
x, i = 1, . . . ,M} in an optimal sense. In the case of multi-view

localization, if the covariances of the estimates Z
i
x is Σi, then the minimum variance estimate

Zmv is computed as

Zmv =
M
∑

i=1

Σ−1
i

(

M
∑

j=1

Σ−1
j

)−1

Z
i
x (12)

The covariance of the Zmv, Σmv is given as,

Σmv =

(

M
∑

j=1

Σ−1
j

)−1

(13)

We refer the reader to the early works of Smith and Cheeseman [32] [31], Kanatani [33] and

more recently, Sankaranarayanan and Chellappa [9].

Hence, given a true object location on the ground plane, Σmv provides an estimate of the

maximum accuracy (or minimum error) with which we can localize the object on the ground

plane given modeling assumptions on the image plane (see Figure 5).

Finally, we can embed the concept used in constructing the minimum variance estimators in

formulating dynamical systems that can be used to track objects using multi-view inputs. As
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Fig. 6. Output from the multi-object tracking algorithm working with input from six camera views. (Top Row) Shows four

camera views of a scene with several humans walking. Each camera independently detects/tracks the humans using a simple

background subtraction scheme. The center location of the feet of each human is indicated with color coded circles in each view.

These estimates are then fused together taking into account the relationship between each view and the ground-plane. Bottom

row shows the fused tracks overlaid on a top-down view of the ground-plane.

before, we efficiently fuse estimates arising from different views by appropriately determining the

accuracy of the estimate characterized by its covariance matrix. Figure 6 shows tracking outputs

from processing video data acquired from six cameras. Each object is tracked using a particle

filter, and object to data associations are maintained using Joint Probability Data Association

(JPDA) [34].

This algorithm can be easily implemented in a distributed sensor network. Each camera

transmits the blobs extracted from the background subtraction algorithm to other nodes in the

network. For the purposes of tracking, it is adequate even if we approximate the blob with

an enclosing bounding box. Each camera maintains a multi-object tracker filtering the outputs

received from all the other nodes (along with its own output). Further, the data association

problem between the tracker and the data is solved at each node separately and the association

with maximum likelihood is transmitted along with data to other nodes.

June 11, 2008 DRAFT



19

B. Relaxing the planar constraint

There exist many scenarios when the objects’ motion is not restricted to the plane or when

the scene deviates significantly from a plane. In [35], we observe and track objects (bees) flying

freely in an enclosed space, using inputs from two cameras. The bees are all similar in appearance

and image on to small areas (5 − 10 pixels). We cannot perform association using appearance

information in this scenario. Finally, the internal and the external calibration parameters of the

camera might not be available.

In [35], we exploit the property that critical points of trajectories are invariant to changes in

view [36] for associating objects across camera views. We consider the cameras to be independent

and first perform background subtraction as shown in Figure 3. At each camera, we track bees by

associating the background subtracted blobs temporally, generating a set of object trajectories

in each camera view. We need to now perform object association across camera views, i.e.,

associate each trajectory in the view of one camera to a unique trajectory in the other camera

view. We use the fact that instants of maximal curvature in the original 3D space map to instants

of maximal curvature in the respective image spaces irrespective of the specific camera view [36].

Therefore, we first compute the instants of maximal curvature in the 2D trajectories observed

in each view and associate trajectories using the time instants of maximal curvature. Figure

7 shows the spatio-temporal curvature of a flight path as seen in two different camera views.

Since the points of maximal curvature match irrespective of the view, one can use this in order

to associate targets across camera views. We can use the correspondences that the trajectory

associations provide in order to obtain most of the required calibration parameters and then

perform triangulation to obtain the actual 3D location of the object in each frame. Shown in the

last row of Figure 7 are the 3D flight trajectories of five different bees flying from a bee hive

to a sugar bowl.

V. RECOGNITION

Having detected and tracked objects using multiple cameras, we are now in a position to

recognize the objects. Object recognition from images and videos is a long-standing research

problem and there have been several competing approaches. In general, algorithms for object

recognition can be divided into two major divisions - local feature-based approaches and global

approaches. Feature-based approaches detect several points of interest in each image of an object
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and describe the object using descriptors of these local feature points. Global approaches describe

the object using their global properties such as shape, silhouette, texture, color, appearance or

any combination of such descriptors.

A. Global Approaches for object recognition

Global methods for object recognition involve the use of some global property of the object

such as color, texture, shape etc. for recognition. Such approaches are inherently sensitive to the

effect of external conditions such as lighting, pose, viewpoint etc. The influence of such external

conditions on the global properties of the object is usually complex and very difficult to model.

Therefore, one needs additional assumptions either about the 3D structure of the objects or the

viewpoint of the camera in order for these methods to be successful.

1) 2D Appearance Models for recognition: A simple feature for classification is to build

2D appearance models for each class and use these 2D appearance models for classification.

Such 2D appearance models are a natural choice, specifically while modeling and recognizing

planar or near-planar objects (ignoring effects of self-occlusion) since the effect of viewpoint

on these appearance models is easily accounted for. In particular, small viewpoint changes

produce affine deformation on the 2D appearance models. Thus, affine-invariant 2D appearance

models are common and effective representations for recognizing planar and near-planar objects.

Nevertheless, the problem with using a single 2D appearance model is that when the pose of a

3D object changes, a simple 2D appearance model cannot account for this change in pose.

There are several approaches that use 2D affine invariant appearance models for face tracking

and recognition [37] [38][39][40][41][42]. As an example, let us consider the simultaneous face

tracking and recognition framework presented in [41]. A 2D appearance-based tracker is used

in order to track objects of interest. For each person in the gallery, a simple 2D appearance

template is stored which is an image of the person’s face under uniform illumination conditions.

A particle filter is then used to simultaneously estimate both the position of the target’s face

and the identity of the individual. The 2D appearance of the individual is modeled as a mixture

of Gaussians and the parameters of the mixture density are estimated from a training gallery.

Each camera first estimates it’s confidence with regard to whether the face appears frontal in

its view. This can be achieved using a simple correlation-based detector with a generic frontal

face appearance or other view selection methodologies [43]. Assuming that at least one of the
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camera views is frontal, this camera then compares the observed appearance with those stored

in the gallery in order to recognize the individual. The top row of Figure 8 shows the stored

2D appearance templates for the individuals in the gallery. In the bottom are two images from a

test sequence with the bounding box showing the location of the target’s face. The image within

the bounding box is matched with the stored 2D appearance models in the gallery in order to

perform recognition.

2) 3D Face Tracking with Geometric face models: The problem with 2D appearance models

is that it does not adequately account for the inherent changes in the feature that occur due to

large pose changes in the video (especially for non planar objects). For applications such as

face tracking and recognition (where the perspective effects cannot be ignored due to proximity

between the face and the camera) it becomes extremely important to account for pose changes

that occur throughout the video so that continuous recognition is possible even when there are

few cameras viewing the individual and none of these are able to obtain a frontal view. One

way to account for changes in pose is to model the face as a 3D object with a certain structure

and a corresponding texture. Since the variations in face structure across individuals is at best

modest, one can assume a generic 3D model for the face with the texture varying according

to the individuals. The texture forms the cue for identity while the 3D generic face model

allows recognition to be performed irrespective of the pose of the face in the video. There are

several competing approaches for fitting 3D models to a face in order to perform recognition.

In [44][45][46], a statistical model of 3D faces is learnt from a population of 3D scans and

recognition is performed after morphing the acquired image to the 3D model. Unfortunately,

moving from a planar model to complicated 3D models also introduces significant issues in

registration between an acquired 2D image and the 3D model. As the number of parameters in the

3D model becomes large, this registration task becomes difficult. Therefore, several approaches

have adopted simple parameterized 3D models to model the face, thus keeping the registration

between a 2D image and a 3D model simple.

A simple but effective model for the generic 3D model of a face is that of a cylinder [47][48].

The advantage of using such a simple model is that occlusion analysis becomes extremely simple

allowing efficient inference algorithms for estimating the pose of the model at each frame. Once

the pose of the model at each frame is estimated/tracked at each camera independently, the

image intensities in the original image frame are then mapped onto the generic 3D model to
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obtain the texture map of the face being tracked. The texture mapped models obtained at each

individual camera node can all be fused to obtain a complete 3D model of the face. This texture

mapped model is then compared with the stored texture maps of all the 3D models in the gallery

in order to perform face based person recognition. Another point to be noted is that since the

face is assumed to be cylindrical, once the pose of the face is estimated, the surface normals

at each of the points on the face is known. This allows us to extract texture features that are

moderately insensitive to illumination conditions. Therefore, modeling the 3D structure of the

face in order to perform simultaneous tracking and recognition allows us to design recognition

algorithms that are robust to both changes in facial pose and illumination conditions. Figure 9

shows some of the results [48] of 3D facial pose tracking and recognition. Notice that the pose

of the face is accurately estimated inspite of the significant variations in lighting, pose and also

significant occlusions. The graphical rendering in the last column shows the cylindrical face

model at the pose estimated from the images in the third column. An implementation of this

algorithm suitable for smart cameras is discussed in [49].

Another significant advantage of using 3D face models for tracking and recognition is that such

models can be easily extended for multi-camera applications. Each camera can independently

track faces using their own 3D face model while the individual pose estimates can then be

appropriately fused either at a central node or in a completely distributed manner using just

local communications. A joint estimate of the pose can be obtained as a euclidean mean of

these individual estimates and this mean can be efficiently estimated in a distributed network

using just local communications [50]. Unfortunately, 3D pose does not lie in Euclidean space and

therefore the averaging procedure needs to account for the non-Euclidean nature of this space.

Many methods to average rotation matrices can be found in [51][52]. However, the convergence

properties of such estimation methods, when used in a decentralized computation framework

(such as the one described in [50]) needs to be studied.

B. Feature Based Methods for Object Recognition

In recent years feature-based methods for object recognition have been gaining in popularity.

This is because while it is extremely difficult to model the deformation of global features due to

changes in viewpoint and illumination conditions, it is a much simpler task to model the local

deformations due to these structured changes. Feature-based object recognition can usually be

June 11, 2008 DRAFT



23

divided into 3 stages of processing. First, discriminative points of interest are detected in each

image frame. These interest points may be chosen either using the simple Harris corner detector

[53], or by selecting the most discriminative features [54], or by using the SIFT interest points that

are invariant to scale and orientation [55]. Next, a descriptor is then computed for each of these

chosen feature locations. This descriptor is typically chosen such that it is invariant to some local

deformations so that pose and lighting changes do not affect these local descriptors significantly.

Examples of such descriptors that are popular include SIFT [55] [56] or the deformation invariant

feature proposed in [57]. Once such descriptors are computed for each feature point, then the

object is described using a bag of features model [58][59]. In a bag-of-features model, the

geometrical relationship between the feature points is completely lost. Instead, some approaches

use a coarse representation of this geometrical relationship between feature points in order to

improve discrimination between object categories [60]. The essential advantage of feature-based

approaches for object recognition, is the fact that since these local feature descriptors are very

robust to changes in viewpoint and illumination, these approaches are consequently robust even

under extreme view changes and occlusions.

Feature based Tracking and recognition across a sparse camera network: In a smart

camera network, local feature-based methods allow for object recognition to simultaneously

and independently be performed on each of the smart cameras locally. Moreover, even when

the field of view of the cameras do not overlap, such feature-based approaches may be used

to maintain the target’s identity across the smart camera network. As an example, consider the

scenario where a sparse collection of video cameras is monitoring a large area. Target association

across cameras needs to be performed only using the appearance information of these targets

since the fields of views of these cameras might not overlap. Unfortunately, global appearance

models such as a 2D affine template image are not sufficient since the pose of the target will

be very different when it reappears in another camera view. Moreover, since the targets may

have very different 3D structures it is not possible to use a generic 3D model as was the case

for face tracking. In such a scenario, local feature-based methods in combination with strcture

from motion techniques provide an effective alternative. In addition, structure from motion-based

methods allow for target specific 3D models to be built online as the target moves within the

field of view of each camera.

Consider a sparse distribution of cameras (see Figure 10) covering a large area with blind
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regions in the coverage of the vehicle movement. As a potential application, let us suppose a

White SUV is seen approaching a camera. Suppose, a list of authorized vehicles is available with

appropriate descriptions, then we could verify if the approaching vehicle is in the authorized list.

Verification of vehicle identity across non-overlapping views presents two important challenges:

pose and illumination. The models built for each vehicle needs to account for possible changes

in both.

In [61], we address the problem of establishing identity of vehicles across non-overlapping

views, when the vehicle moves on a plane. We use the 3D structure of the vehicle, along with

statistical appearance models as the fingerprint representing the vehicles. Estimation of the 3D

structure of the vehicle is performed using an approach specifically suited to vehicles exhibiting

planar motion [62]. The ability to estimate 3D structure allow us to explicitly address the changes

in pose (and hence, view). The estimated 3D structure and its texture is used to generate synthetic

views of the object. These synthetic views are then compared with the view of the vehicle in

other cameras in order to perform recognition across non-overlapping cameras. We formulate

the problem as one of simultaneous tracking and verification [18] of vehicle identity using

the structural and appearance models in the fingerprint. In traditional tracking, the state-space

over which filtering is performed contains the position of the object being tracked, while in a

simultaneous tracking and verification framework this state-space is augmented with the identity

of the vehicle. Thus simultaneous tracking and verification formally amounts to recursively

estimating the position and the identity of the vehicle. Such an approach has several advantages

over traditional methods since a) accurate tracking results improve recognition performance,

b) improving recognition performance improves tracking since the gallery can contain addition

individual specific information and c) recursive filtering in a video enables the algorithm to be

robust to occlusions, slow illumination and pose changes. Estimating the pose of the object in

every frame enables recognition to be performed irrespective of the viewpoint of the camera.

Figure 10 summarizes results from [61].

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we discussed the basic challenges in detection, tracking and classification using

multi-view inputs. In particular, we discussed the role of the geometry induced by imaging with

a camera in estimating target characteristics. In detection and tracking, we show that the presence
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of a ground plane can be used as a strong constraint for designing efficient and robust estimators

for target location. We also discuss how one can go beyond the planar constraint for overlapping

network of cameras. We demonstrated how 2D appearance models and 3D shape and texture

models can be used for recognition of objects.

The algorithms presented here are optimized for sensor networks that contain a small number

of cameras. Therefore, the solutions presented typically consisted of distributed sensing using

a set of cameras but central and co-ordinated processing. In the near-future, we will need to

adapt some of the algorithms presented here in order to tackle the same detection, tracking

and recognition problems in camera networks containing possibly hundreds of cameras. In such

cases, it becomes essential to consider not only distributed sensing but also distributed processing,

efficient transmission of sufficient data across the network and optimize over power and energy

consumption of the network. In order to tackle these challenges, we need a more integrated

approach that exploits the rich theory for distributed estimation in sensor networks to solve

the detection, tracking and classification problems using a network of video sensors. Several

papers in this special issue have discussed algorithms for such distributed computations while

simultaneously optimizing for power, energy and/or bandwidth constraints. Several upcoming

fields of research including distributed function estimation, distributed processing, mobile camera

control and manipulation, etc will also allow us to tackle many of these challenges. Finally, the

issue of smart visual surveillance in the context of additional modalities has immense significance

for practical deployable systems [63], [64], [65]. We briefly discuss some of these issues here.

A. Mobile Cameras

Sensing with a mix of static and mobile cameras connected on a wireless network is becoming

prevalent with the increasing use of unmanned air vehicles (UAVs). The advantage of sensing

with mobile cameras, is that since the sensing resources may be allocated dynamically one. This

may reduce the number of cameras required in order to monitor the same area. This results in

significant power and energy savings while simultaneously increasing the number of pixels on

the target by using the results of target tracking in order to zoom into these targets. A systematic

and detailed study of both power/energy optimization vs algorithm performance [66][67] for

such mobile camera networks is necessary. Mobile platforms are also important, as they act as a

synthetic aperture in capturing the scene. In [68], a homography based view-synthesis algorithm
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is developed to generate novel views of observed objects of interest. Such modeling is used for

verification of object identity in video sequences collected at a later time.

B. Steering PTZ cameras for improved inference

The on-chip processing capabilities of smart cameras allow for the ability for local control of

steerable cameras. Pan-Tilt-Zoom (PTZ) cameras allow for steering of the camera view keeping

the camera center (pinhole) in place. Such a rotating (pan and tilt) and zooming camera produces

views that satisfy elegant geometric properties [69][70][71]. The advantage of using PTZ cameras

is that one may now control the specific settings of the PTZ cameras so as to improve tracking

and recognition performance. Thus while one or few ‘master cameras’ observe a wide sensing

field of view, their tracking results in turn guide the PTZ controls for other slave cameras that

can then zoom into objects of interest in order to obtain high resolution imagery of these objects.

In general, such a problem may be posed as an optimization of some desirable cost functional

over the steering controls of the cameras. One example of such a cost functional would be the

average tracking error over the whole scene. Here, we want to obtain new views (using the PTZ

controls) that minimize the desired objective. We envision steering algorithms that operate some

of the cameras in the slave mode, tethered with inputs from other cameras that sense the entire

region of interest.

C. Novel Visualization of Multi-view inferences

The use of multiple cameras also necessitate novel technologies for visualization of the data

streaming in from these cameras. There are many ways to present the processed information to the

end user. These include simple map based interfaces that give geometric context to the end user

[72], various user interfaces that display only scenes with persistent or interesting activity to the

end user (like in the IBM Smart Surveillance System). There has been significant amount of work

in novel visualization tools that exploit these multiple camera views in order to render virtual

views that best depict in the information content in the scene [72], [73], [74]. Simultaneously,

there has been the development of virtual reality tools in both 2D [75] and 3D [76] for immersive

visualization of such data. We are currently building a test bed for novel visualization schemes in

order to provide an end-user the freedom in viewing the scene and the activities being performed

from arbitrary points of view. Most view interpolation techniques require a dense array of sensors
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for reliable depiction. We overcome this requirement by precomputing the model of the static

background. Dynamic foreground objects such as humans and vehicles are handled by estimating

their location, pose and other characteristics (such as clothing, gaze direction). Virtual view

rendering is then performed by appropriately fusing the precomputed static background model

with the dynamic foreground object characteristics imposed on a synthetic virtual actor. One

potential application of this technology is in scene monitoring where the security personnel can

freely move around the scene without having to watch a fixed set of CCTV screens (where the

spatial coherence between views and the activities are lost). Further, this can be combined with

algorithms that alert the personnel when events of interest occur.

D. Distributed particle Filtering

The algorithms for tracking and recognition presented here, were both based on online infer-

ence using particle-filtering. Therefore, in order to make these algorithms truly distributed and

enable their implementation on huge camera networks containing hundreds of cameras one needs

to pay attention to methods that enable these particle filter based estimates to be performed in

a distributed manner. This can be achieved either using Synchronized Particle Filtering or by

the more general means of Distributed function estimation.

1) Synchronized Particle Filtering: One way to decentralize the filter operations is to replicate

it identically at each node. For particle filtering, this can be done easily if the random number

generators are made identical across nodes. Such a scheme is referred to as synchronized particle

filtering [77]. By initializing the random number generator with the same seed, all nodes can

be made to generate the same particles, which in turn makes fusion of the associated weights

simpler. The communication costs are then limited to the transmission of the associated weights

across the whole network.

The immense flexibility of this approach allows for it to be effective in any particle filtering

algorithm. However, this freedom in generality comes with associated drawbacks. For one, the

stability of the algorithm depends critically on the requirement of synchronized random numbers,

which requires that the hardware at each node be the same. Further, this particular way of

decentralization, does not efficiently use the processing power of the nodes, as in the end the

same computations are performed identically at each node.
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2) Distributed function estimation: However, we can relax the need to make our distributed

inference algorithm to be identical to the centralized one. There are a host of methods that allow

for the computation of average mean through explicit global communication or through local

consensus [78][50].

An alternative to the concept of synchronous filtering can be by approximating the inference

at each camera with a Gaussian mixture model [79] or in general, any parametric density family.

The parameters can then be transmitted to all nodes in the sensor network, each of which locally

updates their densities.

In addition to distributed inference and filtering, efficient implementations of particle filters

form an important direction for future research, especially in the context of decentralized com-

puting and sensing. Existing approaches to this problem [80], [81] are limited to node level

algorithms, although under a distributed architecture of computing.

E. The future of distributed smart cameras

The increasing need and reliance on distributed array of visual sensors for automated moni-

toring has several important wide ranging applications from surveillance and homeland security

to traffic management and commercial access control to medical applications such as automated

monitoring of the elderly. Such applications and their prevalence will only increase in the future.

The need to come up with a concerted and integrated approach for solving the inter-disciplinary

problems is paramount and recent research efforts in the direction have made some significant

progress.
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Fig. 7. Two Camera views viewing a scene in which there are several bees freely flying around. Second column shows the

background subtracted images. Note that each object occupies only a few pixels. The spatio-temporal curvature as observed at

the two camera views is also shown. Note how the maxima of the spatio-temporal curvature match irrespective of the camera

view. The reconstructed 3D flight paths are shown below. (Image Courtesy [35])
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Fig. 8. (Top Row) 2D appearance models for the individuals in the gallery. (Bottom Row) Two images from a video sequence

in which a person is walking. The target’s face is being tracked and the image within the bounding box of the tracked face is

matched with the 2D appearance models in the gallery in order to perform recognition.

Fig. 9. Tracking results under severe occlusion, extreme poses and different illumination conditions. The cylindrical grid is

overlaid on the image plane to display the results. The 3-tuple shows the estimated orientation (roll, yaw, pitch) in degrees. The

second column shows a cylindrical model in the pose estimated for the sequence in the first column. ( Courtesy [48])
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(a) Top down view of the sensing area showing camera positions and orientations

(b) Estimated 3D Models (c) Tracking Results

Fig. 10. Tracking and verification across non-overlapping views. (a) A schematic top-view of the sensing area with field of

views of three cameras shown (b) 3D structures (with texture maps overlaid) of three vehicles, as estimated from one of the

views. (c) shows tracking results with the output inlaid in magenta.
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